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Abstract 
This study, investigates the possibility of applying artificial 
neural network (ANN) as an alternative method to estimate 
the pore size of the asymmetric hollow fiber membranes. 
ANN, a connectionist-based (black box) model, consists of 
layers of nodes with nonlinear basis functions and weighted 
connections that link the nodes. Using the nodes and 
weights, the inputs are mapped to the outputs after being 
trained with a set of training data. The input data needed 
for training the ANN model, the solute rejection and the 
permeation rate, are obtained from permeation 
experiments. Since the number of experimental data points 
needed for training the ANN model is limited, stacked 
neural network is utilized instead of the more common and 
simple feedforward ANN. With the development of this 
ANN model, the procedure to estimate membrane pore size 
was found to be easier and faster with a testing error of 
less than 2% compared to the experimental data. 
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Introduction 
Neural networks have been attracting great interest as 
predictive models, as well as for pattern recognition 
(Nascimento, Giudici and Guardani, 2000). For the past 
two decades, neural networks are a rapidly growing field of 
artificial intelligence that has found many applications in 
process modeling especially for nonlinear systems (Hao, 
Youngseok and En, 1998).  

 
Artificial neural networks (ANN) have the ability 

to map non-linear relationships without prior information 
about the process or system model. Their advantages over 
the classical mathematical models are the simultaneous 
identification of structure parameters as well as the ability 
to “learn” and adapt by examples. ANN modelling, 
however, is no replacement for a good understanding of 
process behaviour but it makes possible to develop quickly 

models of complex reactions (Morris, Montague and 
Willis, 1994). The success in obtaining reliable and robust 
network depends strongly on the choice of process 
variables involved, as well as the available set of data and 
the domain used for training purposes (Nascimento, Giudici 
and Guardani, 2000). 

 
Various methods have been used to characterize 

the pore size and pore size distribution of hollow fiber 
membranes. The 3 general methods generally used are i) 
microscopy observation method, ii) thermoporometry 
method and iii) permeation experiments. In cases of 
asymmetric hollow fiber membranes, due to the very small 
pore sizes, microfiltration characterization techniques such 
as microscopy observation method cannot be used for 
asymmetric membranes (Mulder , 1981). Generally, the last 
method is used, based on permeation and rejection 
performance using reference molecules and particles. In 
order to characterize the pore size and pore size distribution 
from permeation experiments, quantitative transport model 
and the so called “pore model” or hydrodynamic model has 
been used. In recent years the surface force pore flow 
model has been developed to correctly characterize the pore 
size and pore size distribution (Ani et al, 2002 and Tam et. 
al.1993). It contained the interfacial force parameters and 
friction force parameters and the effect of concentration 
polarization and operating conditions. However, the 
mathematical solutions involved in the determining the 
pore size and pore size distribution involved complicated 
equations, with trial and error calculations that is 
complicated and tedious. Thus, in this study, artificial 
neural network is applied as an alternative method to 
estimate the pore size of the asymmetric hollow fiber 
membranes. The raw data needed for the artificial neural 
network are obtained from permeation experiments, that is 
the solute rejection and the permeation rate. With the 
development of this neural network model, the procedure to 
estimate membrane pore size could be made easier and 
faster with an output error of less than 2% compared to 
experimental data. 
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In reviewing literature on membrane 
characterization, so far there has not been any work found 
that uses ANN for modeling. A hindering factor is the 
small number of data points available for training from 
permeation experiments. In this research, this obstacle is 
overcome by utilizing stacked network instead of the more 
commonly used feed forward ANN.  
 
Conventional Methods to Estimate Pore Size 
Asymmetric membrane can be considered as porous where 
the thin top layer of the membrane supported by a porous 
sub layer, with the resistance to mass transfer being almost 
completely determined by the top layer.  For this reason, 
the characterization of asymmetric membranes involves the 
characterization of the top layer such as its thickness, pore 
size distribution and surface porosity.  Because of the small 
pore sizes, microfiltration characterization techniques 
cannot be used for asymmetric membranes.  The resolution 
of an ordinary scanning electron microscope is generally 
too low to determine the pore sizes in the top layer 
accurately.  Furthermore, mercury intrusion and bubble-
point methods cannot be used because the pore sizes are too 
small, so that very high pressures would be needed, which 
will destroy the polymeric structure.  

 
Two general methods to estimate pore sizes of 

asymmetric membrane are briefly discussed here (Mulder, 
1996): 

a) Thermoporometry  
b) Permeation experiments 

 
Thermoporometry 
Thermoporometry is based on the calorimetric 
measurements of a solid-liquid transition (e.g. of pure 
water) in a porous material and can be applied to determine 
the pore size in porous membranes.  This may be the pores 
in the skin of an asymmetric membranes, the temperature at 
which the water in the pores freezes (the extent of 
undercooling) depending on the pore size.   As the pore size 
decreases the freezing point of water decreases. Each pore 
(pore size) has its own specific freezing point.  

For cylindrical pores containing water, the following 
equation for melting can be derived: 

T
rp ∆

−=
33.3268.0           (1) 

 
where rp is the pore radius (nm) and ∆T the extent of 
undercooling (˚C).  It can been seen from equation (i) that 
as the pore radius becomes smaller the extent of 
undercooling increases. 
 

Permeation Experiments 
This method is based on permeation and rejection 
performance using reference molecules and particles.  In 
order to characterize the pore size and pore size distribution 
for permeation experiments, quantitative transport model 
such as the surface force pore flow (SF-PF) model has been 
used by many researchers (Ani et al, 2002, Tam et. al, 

1993, Matsuura and Sourirajan, 1981).  The SF-PF model 
was first suggested by Matsuura and Sourirajan (1981) and 
since then it has been used by many researchers to describe 
and predict the performance of reverse osmosis type 
membranes.  Matsuura and Sourirajan (1981) developed 
general expressions based on the preferential sorption-
capillary flow mechanism, taking into account the surface 
forces acting on the solute to analyse experimental reverse 
osmosis data.  The two main equations used for this model, 
the solute separation equation and momentum balance 
equation are shown below: 
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These two complicated equation have to be solved by trial 
and error, which is rather complicated and lengthy. 
Although this problem can be solved using conventional 
simulation method it involved many iterations before the 
final solution obtained. Thus in this study, artificial neural 
network is applied as an alternative method to estimate the 
pore size of the asymmetric hollow fibre membranes.  
 

Artificial Neural Network Model Architecture 
Artificial neural networks (ANN) are made up of individual 
models of biological neuron that are connected together to 
form a network. Unlike the human brain which consists of 
between 1011 to 1014 neurons, the number of artificial 
neurons in an ANN is relatively very small. The 
connections within ANN are much more simplified than 
that of the brain (Muller and Reinhardt, 1990). However, 
despite the simplicity, an ANN designed using only a few 
neurons can be trained to learn information pattern 
recognition and systems indentification.  

 
An ANN is constructed of interconnected basic 

elements called neurons or nodes. A typical feedforward 
neural network model constitutes three types of  layers of 
nodes.  The first layer is known as input layer. This layer 
receives information from an external source and passes the 
information to the second layer of nodes, which is known 
as the hidden layer. There can be more than one hidden 
layer.  However, one hidden layer is normally sufficient for 
chemical and biochemical processes.  The last layer of 
nodes, the output layer, receives processed information 
from the network and sends the results an external receptor 
(Baughman and Liu, 1995).   Figure 1 illustrates a typical 
three-layer network with 4 nodes in the hidden layer. 
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Figure 1 – A feedforward network with 4 nodes in the 
hidden layer. 

 
At present, the most commonly used ANN is the 

feedforward backpropagation network, which accounts for 
most neural network applications (Hao, et al., 1998).  
Multilayer feedforward ANN were mathematically proven 
to be a universal approximator [Hornik, et. al., 1989]. 

 
To develop a neural network model, three phases are 

required; training phase, recall phase and generalization 
phase. In the training phase, a set of training data is 
repeatedly presented to the neural network model to teach 
it. The weights between the nodes are optimised until the 
specified input yields the desired output. Through these 
adjustments, the neural network “learns” the correct input-
output behavior. In the recall phase, input patterns from the 
training data will be used to test the networks and 
adjustments will be made to make the system more reliable 
and robust. During the generalization phase, input patterns 
that have not been seen in training will subjected to 
networks model in order to monitor the system 
performance (Baughman and Liu, 1995).   
 

Stacked Neural Network 
Using a single basic neural network with few experiment 
data points, it is difficult to guarantee that a good predictive 
model will be obtained in the complete experimental 
domain (Lanouette et al, 1999). To improve the accuracy of 
a model when only a limited number of experimental data 
points in the training data set is available, stacked neural 
network is recommended (Wolpert, 1992). In stacked 
neural networks, several different neural network models 
are combined in order to improve model performance. 
Since each neural network representation can behave 
differently in different regions of the input space, 
representational accuracy over the entire input-output space 
can be improved by combining several neural network 
models (Zhang et al., 1997). A sample architecture for a 
stacked neural network is shown in Figure 2. 
 

Starting from the identical training data set, a large 
number of different neural network models can be 
obtained, using each time a different set of initial weights 

or using a different subset of the training data set (Lanoutte 
et al., 1999). The outputs of these networks, called the 
level-0 models outputs, along with the original input data, 
are then used as inputs to other models, at a higher level in 
the stacking structure. The second level of model, called 
the level-1 model, is developed using the results of level-0 
model (Ali et al, 2001). 
 

 
Figure 2 – Architecture of a stacked network. 
 

A set of training data set is needed in order to 
develop the stacked neural network. Firstly, let us denote 
level-0 and level-1 data set as DL0 and DL1 respectively. For 
level-0, a few networks models have to be developed using 
data set DL0. Next, one experimental data point is removed 
from DL0. This subset is known as D1. By using the same 
method, more different subset of data Di can be obtained by 
removing different data points. Each of these subsets is 
then used as training data for the candidate ANN models 
that has been developed earlier. The output predicted by 
these models is combined with the actual output to develop 
level-1 models.  
 

There exist numerous types of level-1 model to 
produce the output stacked model. A simple approach is to 
take equal weights for the individual networks (Zhang et al, 
1997).  A second way is to obtain a weighted sum of each 
prediction, the weight corresponding to inverse of the 
contribution of each level to the sum of squares of the 
errors calculated which is known as weighted output 
(Lanouette et al, 1999).  The third way is to combine the 
models is by using principal component analysis (PCA). 
Wolpert (1992) an alternative method, where the outputs 
from level-0 models are used as training data to train a new 
level-1 ANN model. The output from this model is the final 
output for the stacked network. 
 
Model Development 

In this work, all ANN models were developed in MATLAB 
environment and utilized MATLAB neural network 
toolbox.  All ANN models had one hidden layer with the 
sigmoid function as the activation function. The models 
were trained using backpropagation algorithm with the 
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Levenberg-Marquadt method used to optimize the weights 
and biases.  To develop the ANN models, the number of 
nodes in the hidden layer and the maximum acceptable 
error during training were varied.  The number of training 
and testing data was also varied.  The results given in this 
paper are the best found during the study. 
 

Evaluations of the models are based on root mean 
squared (RMS) error from each model prediction of the test 
data.  Error is defined as the difference between desired (or 
actual value provided by the testing data) output value and 
the predicted output value.   
 

Ten individual neural network models had been 
developed to estimate pore size with different subset of 
training data and network architecture.  There were 6 raw 
experimental data, as shown in Table 1.  Data number 5 
was used for the overall stacked model validation, and the 
rest were used for the individual ANN model development 
in level-0.  To create the training subset for level-0 models, 
4 data points were assigned as the training data, while 1 
point was used as testing data to validate the individual 
model.  For example, ANN1, which has 4 nodes in the 
hidden layer, was trained using data number 2, 3, 4 and 6 
until the weights and biases have been optimised to give an 
acceptable training error.  It was then validated with the test 
data in the generalization phase for ANN1 using data 
number 1.  ANN2, which has 6 nodes in the hidden layer, 
had the same training and testing data as ANN1.  Each odd-
numbered network has 4 nodes and each even numbered 
network has 6 nodes in the hidden layer.  Each pair of 
network from ANN3 to ANN10 was similarly formulated, 
except different training and testing subsets were utilised. 

 
For the level-1 model, three main techniques have 

been used in this study to combine the individual level-0 
neural network models.  They are output averaging, 
weighted average, and a level-1 ANN model.  

 
Table 1: Experimental data for the system NaCl-H2O using 
porous cellulose acetate membrane (Matsuura and 
Sourirajan, 1981). 
 Permeate Rate,  

PR x 1010kg/hr 
Solute 

Separation, f 
Membrane pore size, 

R x 1010m 
1 69.45 0.978 6.9 
2 69.63 0.965 8.2 
3 90.19 0.885 12.7 
4 112.13 0.857 13.2 
5 133.67 0.827 13.7 
6 156.94 0.679 18.2 
 

Results  
Table 2 gives the calculated root mean square error 
(RMSE) for single network predictions based on different 
training and testing data.  The first column shows the 
training data number that was used for training.  For 
example, when data numbers 2, 4 and 6 were used for 

training, data numbers 1, 3 and 5 were used for testing (the 
RMSE for this testing set is 0.3208). 

 
The RMSE of the individual ANN models in level-0 of the 
stacked network are given in Table 3.  RMSE for stacked 
network with different methods of combination are shown 
in Table 4.    
 
Table 2 -  Single network prediction. 

Training 
data set 

Testing data 
set 

RMSE 

2,4,6 1,3,5 0.3208 
1,2,4,6 3,5 0.2563 

1,2,3,4,6 5 0.1469 
 
 
Table 3 -  RMSE of level-0 ANN models. 

ANN RMSE 
ANN 1 0.57576 
ANN 2 0.70199 
ANN 3 0.34749 
ANN 4 0.01156 
ANN 5 0.90903 
ANN 6 0.27073 
ANN 7 0.26749 
ANN 8 0.81604 
ANN 9 0.27714 

ANN 10 0.61566 
 
 
Table 4 - Stacked network prediction with different level-1 
models. 

Method RMSE 
ANN 0.0078 
Average 0.3877 
Weighted average 0.1384 
 
 
Discussion 
 
From Table 2, the results show that the best single network 
prediction, 0.1469, was obtained when 5 data points were 
used for training and 1 for testing.  For the stacked network 
model results shown in Table 4, although the level-0 model 
predictions were unsatisfactory, the generalized stacked 
network (ANN in level-1) provided the best performance 
with an error of less than 1%. This is a big improvement in 
predicting the test data compared to the individual single 
network models. 
 

Among the three level-1 models, using a straight-
forward average gave the worst prediction.  The prediction 
RMSE is also greater than the single network predictions.  
However, the weighted average level-1 model prediction is 
better than the single network prediction.  This is expected, 
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because taking a simple average does not give priority to 
the level-0 model with the better prediction.  The weighted 
average performed better because the connection weights 
from the corresponding network output was taken into 
account.  Using another ANN in level-1 gave the best 
prediction because the network was able to learn and 
improve the prediction further during the learning phase. 
 
Conclusion  
In this study, limited experimental data are insufficient for 
development of ordinary feedforward network model. Ten 
networks have been developed in order to provide more 
data to increase the accuracy of stacked network. The 
combination of the ten models has shown a better result 
compared to the performance of individual neural 
networks. A general conclusion form this study is that the 
stacked networks developed is able to predict the size of 
pore size with low percentage of error. Although the 
network can only be verified with one testing datum out of 
the six raw experimental data available, the results show 
that ANN is able to model the pore size prediction.  Based 
on the results obtained, the networks are reliable and could 
be an alternative to estimate pore sizes in the future. 
 

For future work, estimation of pore size can be 
carried out for other types of membrane besides 
asymmetric membrane.  In addition, a higher number of 
data points is desirable to obtain a better model and 
verification of the model. 
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Nomenclature 

AC  dimensionless solute concentration at the pore 
outlet 

'f  true value of solute separation by membrane pore 

r radial distance, m 
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Greek Letters 
ρ  dimensionless quantity defined by eqn. (a) 

)(ρα  dimensionless solution velocity profile in the  pore 

1β  dimensionless solution viscosity 

2β  dimensionless operating pressure: 

α  activity coefficient 

)(ρΦ  dimensionless potential function: 

φ  potential in the interfacial force field 

)(ρb  dimensionless friction function 

 
Subscripts 
1 bulk feed solution on the high pressure side of 

membrane 
2 concentrated boundary solution on high pressure 

side of membrane 
 
Subscripts 
1 bulk feed solution on the high pressure side of 

membrane 
2 concentrated boundary solution on high pressure 

side of membrane 
3 membrane permeated product solution on the low-

pressure side of membrane
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