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A growing need for irrigation in agriculture results from recent climatic parameter uncertainties brought
on by climate change, global warming, and other factors. The present-day tumultuous, unpredictable,
ever-changing, and ambiguous nature of the onset, cessation, and duration of adverse weather conditions
poses a formidable obstacle for farmers in formulating informed judgments pertaining to agricultural
practices. In this study, the metrological simulation was carried out based on different input variables,
including wind speed, wind direction, relative humidity, and minimum and maximum temperature, to
predict the rainfall in the arid agricultural area of Kano, Nigeria. For this purpose, an adaptive neuro-
fuzzy inference system (ANFIS), feed-forward neural network (FFNN), and multi-linear regression
(MLR) were utilized. Five evaluation criteria for predictive control, including determination coefficient
(R2), Nash–Sutcliffe efficiency (NSE), mean square error (MSE), mean absolute error (MAE), and root mean
square error (RMSE), were used to figure out how accurate the models were based on how the features
were chosen. The output proved the reliable accuracy of intelligent regression learning. The results
depicted that MLR-M1 with R2 = 0.9989, NSE = 0.9872, and RMSE = 0.0016 performs the best at predicting
rainfall, even though all three computational models (ANFIS, FFNN, and MLR) produced good results. The
predictive models justified reliable tools for the management of water resources, especially in the agri-
cultural sector.
� 2023 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The world population is adding up rapidly, which necessitates
more demand for food and water than what we have now; demand
for water increases with agriculture taking the lion’s share of about
70% (Abioye, Abidin, Aman, Mahmud, & Buyamin, 2021; Yahaya
et al., 2022). Because traditional cultivation methods are insuffi-
cient to meet food demand, the world’s population explosion and
climate change pose a threat to food security. Due to the desertifi-
cation brought on by climate change and global warming, agricul-
tural water is becoming more and more scarce. During the
agricultural revolution, irrigation was used to make up for the dif-
ference in crop production between rainfed agriculture and irriga-
tion. Since then, issues of dam construction and other technical
issues have been the bottleneck, especially in areas where techni-
cal know-how is inadequate. This problem is exacerbated in areas
with low rainfall or in desert areas of the world (Bwambale,
Abagale, & Anornu, 2022).

Irrigation and seasonal rainfall are the main sources of water for
cultivation activities. Climate change and global warming are caus-
ing problems with the starting, ending, duration, and shift in sea-
sonal rainfall, causing it to be difficult to be predicted, because it
is chaotic, and fluctuating, which is not favorable to cultivation
(Abioye et al., 2020). The main function of irrigation is to meet
the water demand of a crop; its success depends on how well it
is scheduled and executed. Irrigation scheduling is the act of pro-
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viding the exact amount of water demand at the right time and
location (Saleem et al., 2013). Irrigation serves as a method of
applying water artificially for agricultural purposes to maintain
soil moisture, prevent desert encroachment, and maintain the
cooling effect of the soil surface (Oborkhale, Abioye, Egonwa, &
Olalekan, 2015). (Ma, Shi, Chen, Hsu, & Chuang, 2019) developed
a system that received environmental data from sensors and
images, then processed it using artificial intelligence to predict
the moisture level of the soil. It is profitable and beneficial to apply
the exact amount of water needed by a specific plant at the right
time to check over- and under irrigation (Adeyemi, Grove, Peets,
Domun, & Norton, 2018). Precision irrigation is achieved by finding
the exact volume needed by a plant at a particular time at a precise
location (Smith & Baillie, 2009). Sometimes, precision irrigation is
regarded as ‘‘drip irrigation”. The main aims that could be achieved
by drip irrigation include saving water and costs, reducing adverse
environmental effects, and maximizing agricultural yield (Smith &
Baillie, 2009).

Similarly, Chen et al. (2021) created a data-driven predictive
control model that predicts dynamic stem water potential using
stem, soil, and root statistics as well as weather forecasted data,
saving more than 7% of irrigation water when compared to the
commonly used on–off system and eliminating the problem of
over- or under-irrigation. Yazdi, et al. proposed an improvement
of the traditional method of water allocation for irrigation by using
real time weather data and employing neural network techniques.
The method requires recent weather data from the previous ten
days. To achieve precision irrigation, there is a need to predict
plants’ future behavior and use that prediction to plan for that pre-
dicted demand. Model prediction control has been used in irriga-
tion in many aspects, which include irrigation scheduling, soil
moisture regulation, canal control, precipitation and evapotranspi-
ration predictions, and water potential regulation (Bwambale et al.,
2022).

Progress in the Internet of things (IoT) and advancements in
computation made it easier to generate big data from agricultural
facilities (Bwambale et al., 2022). The IoT allows for the low-cost
setup of data collection systems as well as mechanisms for moni-
toring and irrigation control (Cáceres, Millán, Pereira, & Lozano,
Table 1
Review comparison of the related literature.

Ref Type Param

(Ma et al., 2019) Predict soil moisture Weat

(Adeyemi et al., 2018) Predict one-day-ahead soil volumetric moisture Soil m
clima

(Shang, Chen, Stroock,
& You, 2019)

Predictions of evapotranspiration, precipitation, soil
moisture level, and water usage

Past d
Soil m

(Chen et al., 2021) Predict dynamic state of stem water level Forec
conte

(Saleem et al., 2013) Realtime Irrigation scheduling Desir
Evapo

(Yazdi et al., 2013) Estimating irrigation requirement Real t
(Balbis & Jassim, 2018) Irrigation scheduling Evapo

Clima
(Bwambale et al.,

2022)
Soil moisture Evapo

(Gomez, Capraro, Soria,
& Peña, 2018)

Irrigation scheduling Evapo

Irrigation scheduling Precip
(Abioye et al., 2021) Irrigation scheduling Soil m
(Cáceres et al., 2021) Irrigation scheduling Soil m
(Guo & You, 2018) Precipitation, and evapotranspiration prediction Precip
(Chen et al., 2020) Soil water potential regulation Weat

Precip
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2021). Chen et al. (2020) designed and proposed a system that con-
trols irrigation based on tree trunk water instead of soil moisture.
When it was compared to on–off and certainty equivalent MPC, it
outperformed both. Table 1 shows a brief related review of the
recent developments in the field. Other researchers that employed
the application of soft computing in hydro-environmental engi-
neering and modelling are presented in the following (Adnan,
Dai, et al., 2023; Adnan, Mostafa, et al., 2023; Mostafa et al.,
2023). The study aimed to use metrological simulation to predict
rainfall in the arid agricultural area of Kano, Nigeria, based on dif-
ferent input variables as follows wind speed, wind direction, rela-
tive humidity, and minimum and maximum temperature. The
motivation for using machine learning control in irrigation in Kano,
Nigeria is to improve the efficiency and effectiveness of water
usage in agriculture. With the use of machine learning algorithms,
it is possible to optimize irrigation schedules, reduce water waste,
and increase crop yields. This technology can also help farmers
adapt to changing climate conditions and improve the sustainabil-
ity of agriculture in Nigeria. Besides the contribution mentioned
above, this study explored the comprehensive decades’ biblio-
graphic review as visualized in Fig. 1. The survey was based on
obtained 1,170 documents from Scopus database with the key-
words coverage of machine learning control, and irrigation.
Fig. 1a presented more than 800 keywords that were above the
threshold showing the global interest in the field. Similarly,
Fig. 1b among the 109 countries, more than 50 countries meet
the threshold with China, United State of America (USA), India on
top across the globe. It is clearly seen that there is limited research
in Nigeria hence this indicated a virgin area in Kano, Nigeria.

The research gap in the context of predictive-based control of
precipitation in Kano, Nigeria refers to the lack of existing studies
or comprehensive research on utilizing predictive methods to
manage and regulate rainfall patterns in the region. Currently,
there is limited knowledge and understanding of how predictive-
based control mechanisms can be applied to influence or manipu-
late precipitation events in specific geographic locations like Kano.
However, conducting this work is necessary for several reasons.
Firstly, Kano, Nigeria, like many other regions, is vulnerable to
the impacts of erratic and insufficient rainfall, which can have
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Fig. 1. a) major keywords used over the literature on ml and irrigation b) investigated research region for ml and irrigation control.
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severe consequences for agricultural productivity, water resource
management, and overall socio-economic stability. By developing
a predictive-based control system for precipitation, it is possible
to enhance the resilience of the region’s agricultural sector, opti-
mize water allocation strategies, and mitigate the negative effects
of water scarcity. Secondly, the advancement of predictive-based
control techniques for precipitation in Kano could contribute to a
more sustainable and efficient use of water resources. By accurate
forecasting and influencing rainfall patterns, it becomes feasible to
optimize irrigation scheduling, reduce water waste, and promote
responsible water management practices. Furthermore, this
research can potentially bridge the existing gap between meteoro-
logical forecasting and actionable interventions. By establishing a
526
predictive-based control system tailored to Kano’s unique climatic
conditions, policymakers and stakeholders can make informed
decisions on when and how to intervene to maximize the benefits
of rainfall while minimizing the risks associated with extreme
weather events.
2. Proposed artificial intelligent models

One major limitation of AI-based methodology is its susceptibil-
ity to bias and discrimination. AI-based algorithms learn patterns
and make predictions based on the data they are trained on, which
can reflect societal biases present in the data. If the training data is
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biased or contains discriminatory patterns, the resulting model can
perpetuate and amplify these biases when making decisions or
predictions. Additionally, AI-based models can struggle with inter-
preting causal relationships or understanding context, leading to
potential errors or misinterpretations. Ensuring fairness, inter-
pretability, and addressing bias are critical challenges in AI-based
models that require careful consideration and mitigation strate-
gies. AI models are an effective tool used for predicting and fore-
casting rainfall due to their effectiveness and accuracy, as
revealed by many research studies when solving nonlinear sets
of variables (Jibril et al., 2022). Therefore, in order to predict the
rainfall, the study used three AI-based models (ANFIS, FFNN, and
MLR). Using the conventional feature extraction method, the sug-
gested modeling technique replicates R (mm) based on the corre-
lation coefficient between the parameters. Based on sensitivity
analysis, Eq. (1) tells us how to group the input features that will
be used to calibrate the ANFIS, FFNN, and MLR models (see
Fig. 2). The prediction was based on the current scenario of rainfall.

R ðmmÞ ¼
M1 ¼ RhþWd

M2 ¼ RhþWdþ Tmin

M3 ¼ RhþWdþ TminþWsþ Tmax

8><
>:

ð1Þ

The different input combinations used for the models’ training
are denoted by M1, M2, and M3. where Rh is the relative humidity,
Wd is the wind direction, Tmin and Tmax depict the minimum and
maximum temperature, and WS is the wind speed (Fig. 2). A
methodology for external validation was applied throughout the
analysis of the dataset, dataset used is received from Nigeria
metrological agency (NiMet) for the Kano city, Nigeria, which com-
prises of daily weather indicators, for the duration of eight years,
starting from 1st January 2015 to August 2022. It is then divided
into calibration (80%) and verification (20%) sets. Prior to modeling,
the model performances were validated using the k-fold cross-
validation method. Despite the fact that different validation tech-
niques can be utilized, the k-fold cross-validation technique is fre-
quently employed (for a small dataset) to produce unbiased model
Fig. 2. Proposed modelling sc
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performance predictions (Abba et al., 2020) (Pham et al., 2019). In
order to boost the dataset’s consistency and model accuracy, the
dataset was normalized to have a range between zero and one,
and Eq. (2) was used to reduce data redundancy.

Xi ¼ xu�xmin

xmax�xmin
ð2Þ

‘‘Xi” represents the dataset’s normalized quantity, ‘‘Xu” is the
un-normalized quantity, ‘‘Xmin” is the minimum quantity, and
‘‘Xmax” is the maximum quantity.

2.1. Theory of models

2.1.1. Adaptive neuro-fuzzy inference system (ANFIS)
Jang established ANFIS in 1990 (Jang, 1993), It uses both a fuzzy

inference system and neural networks as part of a hybrid modeling
approach (FIS) and possesses the ability to resolve interactions that
are complex in nature (Armaghani & Asteris, 2021) (Malami et al.,
2021). FIS is well-liked overall because it can translate foreknowl-
edge into some limitation sets. By combining FL algorithms and
neural networks with the ANFIS, a multi-layer feed-forward neural
network (MFFNN), also known as a backpropagation neural net-
work, can store the mapping (BPNN) (Malami et al., 2021) (see
Fig. 3). The Takagi Sugeno IF-THEN fuzzy rules used in the ANFIS
are used to describe the knowledge between an engineering sys-
tem’s input and output variables. In this method, fuzzy logic and
neural network learning functionality are combined to provide a
system model that is more accurate (Golafshani, Behnood, &
Arashpour, 2020) (Okeke et al., 2022). The Sugeno fuzzy inference
system, where all inputs and outputs are membership functions
assigned to input values, estimates output values for new input
values by formulating rules based on known data (Cho et al.,
2016). This membership function includes gaussian (gaussm),
bell-shaped (gbellmf), sigmoidal (sigmf), triangular (Trimf), and
triangular-triangular (tramf). The ANFIS structure consists of five
main layers shown in Fig. 1, which are fuzzification (fuzzy clusters
are generated from input values), rules, Eq. (6), normalization
hema used in this study.



Fig. 3. The two inputs and one output ANFIS structure (Karaboga & Kaya, 2019).
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(which determines the normalized firing strengths for each rule),
Eq. (7), defuzzification (where each node calculates the weighted
values of the rules), Eq. (8), and aggregation (by adding the results
obtained for each rule in the defuzzification layer, the actual out-
put of ANFIS is obtained), and Eq. (9) (Golafshani et al., 2020)
(Karaboga & Kaya, 2019) (Ly et al., 2019) (Malami et al., 2021).
Once the parameters of the model have been determined, the out-
come of the model is determined for each batch of training data
and compared with the experimental measurements to determine
the discrepancy between the real and accepted values. When the
halting condition is satisfied, the model is complete.

Assume the FIS has one output, ‘‘f,” and two inputs, ‘‘x” and ‘‘y.”
A first order Sugeno fuzzy has the following rules:

Ruleð1Þ : iflðxÞisA1andlðyÞisB1; thenf 1 ¼ p1xþ q1yþ r1 ð3Þ

Ruleð2Þ : iflðxÞisA2andlðyÞisB2; thenf 2 ¼ p2xþ q2yþ r2 ð4Þ
The membership function for the supplied inputs� and y is rep-

resented as A1, B1,A2,B2, and the parameters for the outlet functions
are p1,q1,r1, and p2,q2,r2,. The structural formula and of the 5-layer
ANFIS are as follows.

Layer 1

Q1
i ¼ lAi xð Þ for i ¼ 1;2or Q1

i ¼ lBi xð Þ for i ¼ 3;4 ð5Þ
The term Q1

i refers to the grade of membership for the � and y
inputs, and the Gaussian membership function was chosen as the
membership function since it minimizes prediction error.

Layer 2

Q2
i ¼ wi ¼ lAi xð Þ:lBi yð Þ for i ¼ 1;2 ð6Þ
Layer 3

Q3
i ¼ w

�
i ¼ wi

w1 þw2
i ¼ 1;2 ð7Þ

Layer 4

Q4
i ¼ w

�
iðpixþ qiyþ riÞ ¼ w

�
if i ð8Þ

The consequent parameters p1, q1, r1, are irregular parameters.
Layer 5

Q5
i ¼ w

�
iðpixþ qiyþ riÞ ¼

X
i

w
�

if i ¼
P

iwif iP
iwi

ð9Þ
2.1.2. Feedforward neural network (FFNN)
The most popular and effective forward type of ANN algorithm

in the literature is the FFNN (Haruna et al., 2021). FFNN is also
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referred to as a neural network or a multilayer perceptron (MLP).
FFNN is frequently employed when the variables are neither
sequential nor time-dependent. Among other ML algorithms, the
FFNN mathematical model looks at the correlations between the
input and output sets of nonlinear data sets. Neurons were previ-
ously used by ANN to mimic a biological brain’s nervous system.
It is common practice to employ FFNN with backpropagation
(BP) computations to address a range of design problems
(Meshram, Ghorbani, Shamshirband, Karimi, & Meshram, 2019).
The eight-layer FFNN diagram for the top model in this investiga-
tion is shown in Fig. 4. The whole number of features in the data-
set, or the number of neurons, is present in the input layer. The
input layer receives data about the inputs and transmits it to the
second layer. A hidden layer that contains several neurons that
transmit changes from the input layer to the output layer exists
between the input and output layers. Depending on how closely
two neurons are related to one another, each neuron in the hidden
layer has a different weight. The characteristic or objective of the
issue that we are attempting to predict is the output layer
(Nguyen, Ly, Mai, & Tran, 2020).

2.1.3. Multilinear regression analysis (MLR)
Regression models are used to examine various types of rela-

tionships between the predictors and the dependent variable as
well as to assess the degree of correlation between them. Simple
linear regression (SLR) and multiple linear regression are the two
subcategories of linear regression models (MLR). Multiple linear
regression (MLR) is a model that predicts the linear correlation of
two or more predictor variables using only one criterion, whereas
simple linear regression (SLR) is a model that predicts the correla-
tion of variables from a single predictor using only one criterion. A
summary of the data, an analysis of the relationship between the
variables, and a straight line that best fits the target and output
data are all produced by multiple linear regression (Khademi,
Akbari, Jamal, & Nikoo, 2017). Eq (10) represents the MLR in its
general form.

Y ¼ ao þ Rm
j¼1ajXj ð10Þ

Where y is the output in the model, Xj is the input data of the
model, which is independent and a0, a1, a2, . . ., am are partial
regression coefficients.

2.2. Performance evaluation criteria

In this study, the performance of the ANFIS, FFNN, and MLR
models given by Equations 11–15 was judged by five statistical
measures: the determinacy coefficient (R2), the Nash coefficient



Fig. 4. Structure of FFNN.

Fig. 5. Matrix of correlations for the parameters used to model rainfall.
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Fig. 6. Overall comparison using radar plots for R2 and NSE criteria.
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(NSE), the mean square error (MSE), the mean absolute error
(MAE), and the root mean square error (RMSE).

R2 ¼ 1�
Pn

i¼1ðOR � PRÞ2Pn
i¼1ðOR � ORmÞ2

ð11Þ

NSE ¼ 1�
Pn

i¼1ðPR � ORÞ2Pn
i¼1ðPR � ORmÞ2

ð12Þ

MSE ¼ 1
N

XN
i¼1

ðOR � PRÞ2 ð13Þ

MAE ¼ 1
N

XN
i¼1

jPR � ORj ð14Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðOR � PRÞ2
vuut ð15Þ

where OR stands for observed Rainfall in mm, PR for predicted
Rainfall in mm, ORm for observed mean Rainfall in mm, and N for
the number of data points for each dataset.

3. Result of AI-based model

3.1. Results

Modelling rainfall in arid regions such as Northern Nigeria can
be challenging due to the scarcity of rainfall data and the complex
nature of rainfall processes in these regions. However, there are
some essential parameters that can be used to model rainfall in
arid regions to serve the irrigation and agricultural demand. The
ML-based models (ANFIS, FFNN, and MLR) used in the study were
constructed using rainfall data collected at various temperatures.
The following sections contain the results and a discussion of them.
Both the input and the target were normalized prior to the model-
ing activity. The descriptive statistics of the datasets and critical
data used in model development are shown in Table 1 (Abba,
Hadi, & Abdullahi, 2017) (Nourani, Elkiran, & Abba, 2018). The
most frequent and efficient input combinations with the target
variable were examined using a correlation matrix in a conserva-
tive statistical method, as illustrated in Fig. 5. The matrix is capable
of establishing what kind of linear relationship exists between the
variables and looking at the primary signs of any potential correla-
tion between sets of variables. Direct relationships between two
variables are indicated by positive correlation values, whereas neg-
ative correlation values indicate stationary and significant vari-
ables with a probability of less than 0.05 (P 0.05).

This statistical table presents summary statistics for six differ-
ent parameters related to metrological input variable conditions.
Tmax (maximum temperature) is 34.059, with a standard devia-
tion of 4.240. The maximum and minimum temperatures observed
are 44.8 and 20.4, respectively. The distribution of Tmax appears to
Table 2
Statistical between the input and output parameters.

Parameters Tmax Tmin R

Mean 34.059 19.783
Median 33.800 21.100
Standard Deviation 4.240 4.959
Kurtosis 2.460 2.104 7
Skewness 0.001 �0.406
Minimum 20.40 5.00
Maximum 44.80 29.80 18
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be slightly positively skewed, with a skewness of 0.001. Similarly,
Tmin (minimum temperature) was 19.783, with a standard devia-
tion of 4.959. The maximum and minimum temperatures observed
are 29.8 and 5.0, respectively. The distribution of Tmin appears to
be slightly negatively skewed, with a skewness of �0.406. The R
(rainfall) was observed to be 2.360 mm, with a standard deviation
of 9.244 mm. The maximum amount of rainfall observed is
182.4 mm, with a minimum of 0.0 mm. The distribution of R is
highly skewed, with skewness of 6.838. Also, WS was found to
be 9.692 m/s, with a standard deviation of 3.953 m/s. The maxi-
mum and minimum wind speeds observed are 2.5 and 0.0 m/s,
respectively. The distribution of WS appears to be slightly nega-
tively skewed, with skewness of �0.074. However, the WD was
observed to be 160.10 degrees, with a standard deviation of
WS WD RH

2.360 9.692 160.10 48.26
0.000 10.000 1675.0 46.0
9.244 3.953 73.088 22.815
7.791 3.051 1.462 1.719
6.838 �0.074 �0.042 0.097
0.000 0.0 0.000 6.000
2.400 2.500 322.5 100.0
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73.088 degrees. The maximum and minimum wind directions
observed are 322.5 and 0.0 degrees, respectively. The distribution
of WD appears to be slightly positively skewed, with skewness of
�0.042. Lastly, RH was 48.26%, with a standard deviation of
22.815%. The maximum and minimum relative humidity observed
is 100.0% and 6.0%, respectively. The distribution of RH appears to
be slightly positively skewed, with skewness of 0.097. In addition,
Kurtosis measures the degree of peakedness of distribution, with
higher kurtosis indicating a more peaked distribution. Most of
the parameters appear to have a relatively low kurtosis, except
for R, which has a very high kurtosis of 77.791. This indicates that
the distribution of rainfall is highly peaked and has heavy tails.

3.2. Evaluation and comparative analysis

It is worth mentioning that rainfall modelling plays a critical
role in agriculture and irrigation as it helps farmers and water
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Fig. 7. Comparison of error pl

Table 3
Five separate data-driven models’ outcomes.

Models Calibration phase MSE MAE RMS

R2 NSE

ANFIS-M1 0.9980 0.9833 0.0100 0.0181 0.10
ANFIS-M2 0.9955 0.9736 0.0100 0.0173 0.10
ANFIS-M3 0.9954 0.9711 0.0130 0.0170 0.11
FFNN-M1 0.9974 0.9782 0.0120 0.0180 0.10
FFNN-M2 0.9952 0.9688 0.0140 0.0170 0.11
FFNN-M3 0.9950 0.9670 0.0130 0.0179 0.11
MLR-M1 0.9989 0.9872 0.0100 0.0216 0.10
MLR-M2 0.9603 0.9948 0.0114 0.4646 0.10
MLR-M3 0.9987 0.9863 0.0100 0.0218 0.10
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resource managers to predict and plan for potential changes in
rainfall patterns. This information can aid in making informed
decisions about crop management and water allocation, improving
yields, and conserving resources. The performance assessment
analysis results for prediction models are presented in Table 2.
While taking into consideration errors and goodness of fit stan-
dards, the statistical indices (R2, NSE, MSE, MAE, and RMSE) are
used to evaluate the models’ estimated efficiency and propensity
for making predictions. According to Table 20s findings, almost all
the combinations satisfied the models’ accuracy level in terms of
the statistical requirements (M1, M2, and M3). These approaches
are acknowledged to be able to manage models with multiple
uncontrolled parameters, reduce the error function, and address
data fitting issues based on the acquired results. They have proven
to be an average response to extremely complex, nonlinear circum-
stances. The statistical criterion for precision was met by more
than half of the models (R2 values up to 0.95). ANFIS, and FFNN
FFN
N-M

3

ML
R-M

1

ML
R-M

2

ML
R-M

3

Calibra�on
Verifica�on

2

FFN
N-M

3

ML
R-M

1

ML
R-M

2

ML
R-M

3

ot for the all the models.

E Verification Phase MSE MAE RMSE

R2 NSE

00 0.9713 0.9780 0.0020 0.0184 0.0452
00 0.9616 0.9755 0.0020 0.0198 0.0452
41 0.9591 0.9754 0.0018 0.0189 0.0429
96 0.9662 0.9774 0.0020 0.0183 0.0448
84 0.9568 0.9752 0.0019 0.0186 0.0431
41 0.9550 0.9750 0.0017 0.0196 0.0415
00 0.9752 0.9789 0.0022 0.0231 0.0466
68 0.9828 0.9403 0.2873 0.4891 0.5360
00 0.9743 0.9787 0.0021 0.0222 0.0461
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model combinations attained satisfy with criteria. In the MLR
model, only MLR-M1 and MLR-M3 achieved the required criteria.
It is highlighted that the MLR-M1 model performs the best for pre-
Fig. 8. CDF between the predicte
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dicting the rainfall (R) mm, with R2 = 0.998907, NSE = 0.987205,
and the lowest RMSE of 0.001685 in the calibration phase
(Fig. 6). These approaches have been found to be successful at min-
d models and observed data.
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imizing the error function, controlling models with multiple
uncontrolled parameters, and addressing issues with fitting data.
They’ve evolved into a common strategy for dealing with extre-
mely complex, nonlinear situations.(See Fig. 7 Table 3).

During the modeling phase, the R2 performance evaluation cri-
terion was utilized to compare all the models using the radar dia-
gram. Fig. 4 displays the ANFIS, FFNN, and MLR-M. These models
produce predictions more accurately when compared to other
models. The suitability of AI-based modeling for engineering and
scientific research is discussed in this article. The numerical com-
parison showed that, in the calibration phase, ANFIS-M1 and
MLR-M1 performed the best with R2 values of 0.9980 and
0.9989, respectively. However, in the verification phase, ANFIS-
M1 and MLR-M1 had lower R2 values than other models, indicating
overfitting. On the other hand, ANFIS-M3 and FFNN-M3 had the
highest R2 values in the verification phase, indicating better gener-
alization ability. In terms of NSE, MLR-M2 had the highest value in
the calibration phase, but it had a much lower value in the verifi-
cation phase, indicating poor generalization ability. In contrast,
ANFIS-M1 had a relatively consistent NSE value between calibra-
tion and verification phases.

However, MSE and RMSE are two other commonly used evalu-
ation metrics that measure the average squared and root-mean-
squared errors, respectively. ANFIS-M1 and MLR-M1 had the low-
est values for both metrics in the calibration phase, but their per-
formance deteriorated in the verification phase. In general,
ANFIS-M3 and FFNN-M3 had the lowest values for these metrics
in the verification phase. To conclude, MAE measures the average
absolute difference between the predicted and actual values.
ANFIS-M1 and MLR-M1 had the lowest MAE values in the calibra-
tion phase, while ANFIS-M3 and FFNN-M3 had the lowest values in
the verification phase. Generally, ANFIS-M3 and FFNN-M3 seem to
be the most promising models, as they had consistently high per-
formance across different evaluation metrics in the verification
phase. However, it’s worth noting that different metrics may have
different levels of importance depending on the specific
application.

During the model, an error plot was also employed to depict the
overall error of the model and to reveal the model with the least
error, as shown in Fig. 6, which shows how accurate and effective
an AI based model is when dealing with a nonlinear set of vari-
ables. In comparison, MLR-M1 has the lowest overall error with a
RMSE of 0.00168, which reduces the error of ANFIS-M1 by
35.77% and FFNN by 25.73%. Fig. 8 shows how the data values
are uniformly distributed using the cumulative distribution func-
tion (CDF) model. The distribution of sizable datasets can be com-
pared using this information. As a result, although the variation is
independent of the models’ quantitative reliability, it resembles
the data dispersion.
4. Conclusion

AI-based models are getting more and more popular due to
their accuracy and effectiveness when dealing with non-linear sets
of variables. Three models ANFIS, FFNN, and MLR were used in this
study to create models to forecast the rainfall R (mm) in the arid
agricultural area of Kano, Nigeria. Although all of the computa-
tional models (ANFIS, FFNN, and MLR) produced good results, the
MLR-M1 model performed the best for forecasting the rainfall (R)
mm, with R2 = 0.998907, NSE = 0.987215, and the lowest RMSE
of 0.001685 in the calibration phase the findings in this research
will help to make knowledge-based plans for irrigation and effec-
tive management. The proposed model can serve as a background
and could be part of the tools used by farmers and researchers in
decision making in sub-Saharan Africa, where it is highly needed.
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In conclusion, the application of MLs models, namely ANFIS, FFNN,
and MLR, has shown promise in predicting rainfall patterns. The
models were trained using various input variables such as temper-
ature, humidity, and wind speed to accurately forecast rainfall. The
ANFIS and FFNN models outperformed the MLR model in terms of
accuracy and precision in some scenarios. Additionally, the models’
ability to handle non-linear relationships and complex data sets
make them suitable for rainfall prediction. However, the accuracy
of these models can be affected by the quality and quantity of
the input data. Generally, the application of MLs models in rainfall
prediction provides a promising avenue for advancing our under-
standing of climate patterns and enhancing weather forecasting
capabilities. The outcomes of this paper suggested that other feasi-
ble alternatives should be used to improved the accuracy of the
approach.
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