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Abstract: While timber harvesting has plateaued, repeat-logging and conversion into plantations
(especially oil palm) are still active in the tropics. The associated hydrological impacts especially
pertaining to enhanced runoff, flood, and erosion have been well-studied, but little attention has been
given to water resource availability in the humid tropics. In the light of the increasing climate extremes,
this paper compared baseflow values and baseflow recession constants (K) between headwater
catchments of five differing land-uses in Sabah, Malaysian Borneo, namely primary forest (PF), old
growth/virgin jungle reserve (VJR), twice-logged forest with 22 years regeneration (LF2), multiple-
logged forest with 8 years regeneration (LF3), and oil palm plantation (OP). Hydrological and
meteorological sensors and dataloggers were established in each catchment. Daily discharge was
used for computing K via four estimation methods. Catchment ranks in terms of decreasing K were
VJR (0.97841), LF3 (0.96692), LF2 (0.90347), PF (0.83886), and OP (0.86756). Catchment ranks in terms
of decreasing annual baseflow were PF (1877 mm), LF3 (1265 mm), LF2 (812 mm), VJR (753 mm),
and OP (367 mm), corresponding to 68%, 55%, 51%, 42%, and 38% of annual streamflow, respectively.
Despite the low K, PF had the highest baseflow magnitude. OP had the fastest baseflow recession and
lowest baseflow magnitude. Baseflow persistence decreased with increasing degree of disturbance. K
showed strong association to catchment stem density instead of basal area. For dynamic catchments
in this study, the Kb3 estimator is recommended based on its lowest combination of coefficient of
variation (CoV) and root mean squared error (RMSE) of prediction. For wetter catchments with even
shorter recession events, the Kb4 estimator may be considered. Regarding climate change, logging and
oil palm agriculture should only be conducted after considering water resource availability. Forests
(even degraded ones) should be conserved as much as possible in the headwaters for sustainable
water resource.

Keywords: baseflow; land-use; water resource; water management; oil palm; forest; logged forest;
tropical; agriculture; climate change

1. Introduction and Brief Review

Evaluating and understanding the hydrological and water resource consequences of
land-use and land management changes together with current and future predicted climatic
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change constitute major challenges. In the wet tropics these challenges are particularly dif-
ficult because of the scale, pace, and complexity of land-use change and management, and
the uncertainties as to how key hydrological processes (especially transpiration, intercep-
tion, and infiltration), and the different vegetational factors and climatic factors influencing
them may respond to (or, in the case of climatic factors, be involved in) the climatic changes.
The current study is focused on the impacts of land-use change on baseflow and baseflow
recession in a wet tropical environment and the following review section provides a brief
overview of previous studies and identifies some key research gaps tackled by the paper.

In the humid tropics, as in other parts of the world, it is well-established by paired
small-catchment studies (including a forest control catchment) astride of disturbance
that forest logging and forest conversion to other land-uses have major hydrological
consequences for river flow and evapotranspiration (ET) [1–6]. Although, in general,
total river flow and the stormflow component have increased and the evapotranspiration
components and the baseflow component have decreased, the magnitudes of increases and
decreases vary greatly, as do temporal patterns of change in terms of times for recovery (in
cases of log-and-leave), and over growth life cycles (for replacement covers) (see detailed
reviews of Douglas [5,6]). For logging, factors influencing the magnitude and duration of
hydrological impact upon water balance components include logging type (clearfelling or
selective logging), logging practices and management (including roads), and, in the case
of selective logging, the intensity of logging. With forest conversion, additional factors
are found by influencing hydrological response to include the type of replacement land-
use and its land management practices, the nature of the land preparation, and planting
phase, vegetation biomass, height and structure over the replacement land cover’s lifecycle,
the density and nature of any roads and tracks, and, in the case of tree crops and tree
plantations, the degrees of ground cover and soil compaction on slopes by labour and
machinery, and the frequency and nature of replanting phases.

Recently, there have been major advances achieved by an upsurge in large catchment
studies, notably in Amazonia [7–10] and Indonesia [11], assessing water budget responses
to land-use and climate change using a combination of long-term river flow and rainfall
records and spatiotemporal records of changes in land-use and forest character and extent
derived from repeat remote sensing imagery [12]. In the case of the Xingu catchment,
it was demonstrated that over the period 1976–2015 river flow remained unchanged,
because large-scale conversion of rainforest to pasture and soybean (low vegetation types
with low evapotranspiration) meant that a reduction in rainfall of 245 mm was offset by
a large fall in evapotranspiration [9,11]. In Indonesia, the relative contributions of land-use
change (mainly to oil palm) and rainfall decline to the water budget of the Bengawasan
Solo River were able to be quantified [11]. Although most studies continue to consider
evapotranspiration as a whole rather than considering transpiration and interception, the
pioneer study by Fan et al. [13] has included separate consideration of interception in
their modelling of evapotranspiration in catchments that are partly rainforest and partly
oil palm in Indonesia. Other important recent studies have demonstrated the higher
evapotranspiration of oil palm than rainforest (in contrast to the reductions recorded by
most other replacement land-uses), with consequences of steeper falls in baseflow of streams
in the 2015 ENSO event [14] and the changes in transpiration over the life-cycle of oil palm
trees and hence also plantations [15]. Advances have also been made in incorporating
heterogeneity of infiltration capacity into modelling of hydrological impacts of agricultural
land-use change [16].

Most small catchment studies in the wet tropics, such as the Sungei Tekam paired
catchment of forest conversion to oil palm and cocoa in Pahang, Malaysia [3,4], assessed
impacts on the baseflow and stormflow components, total discharge, and (by subtraction of
river flow from rainfall) evapotranspiration. There are some key limitations and research
gaps that apply to most of these studies: (1) Impacts on baseflow recession curves have
not been systematically explored, unlike in some studies outside the wet tropics [17–19].
This may be because of the ever-wet climate, which means that most dry periods and
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recessions are short, and low flows not viewed as a water resource problem; (2) Most
studies are relatively short (<10 years) and do not cover the lifecycles of replacement
tree crops, forest plantations, or of forest recovery from logging; (3) There is an absence
of studies of catchments that have experienced multiple logging or multiple land-use
change; (4) Evapotranspiration components, infiltration and runoff on slopes and from
roads and tracks are rarely measured in parallel studies, hence the reasons for changes tend
to be imprecise and inconclusive. Additionally, although there have been many studies of
associated hydrological impacts of land-use changes covering hydrological pathways [20],
aboveground hydrology [21,22], streamflow dynamics [1,23], erosion [2,24–26], and stream
ecology [27,28], in various land-use changes, recovery phases, and hydrometeorological
conditions [29–34], they have seldom been used in explaining changes in baseflow and
the water budget. Most of these key limitations and research gaps (apart from length of
studies) identified above relating to small catchment studies, also apply to the recent large
catchment research, with baseflow persistence and dynamics receiving little attention.

The aims of the current study are to explore the differences in baseflow and, in
particular, baseflow recession constant values for five catchments with contrasting histories
of logging and conversion to oil palm in a very wet tropical area in the interior of Sabah,
Malaysian Borneo. The paper addresses the first three of the research gaps identified in the
short review, namely (1) the paucity of studies in the ever-wet tropics focusing directly on
baseflow and baseflow recession, (2) the paucity of baseflow and water balance research
focusing on catchments a long time after forest conversion, and (3) the lack of baseflow
and water budget research for catchments that have undergone and are recovering from
multiple phases of disturbance and/or conversion. The five catchments studied comprised
two primary or near-primary forest catchments, a twice-selectively-logged catchment,
a multiple-selectively-logged catchment and a ~20-year-old oil palm catchment. These
land-use and logging histories were selected because repeat-logging and conversion to oil
palm are spatially important not only within Sabah [29], but throughout ever-wet parts of
SE Asia and the global tropics [35–41].

The objectives of the paper are (1) to apply and compare the performance of different
estimators of the baseflow recession constant; (2) to assess, compare, and explain differences
in values of baseflow recession constant for the five catchments; (3) using all available flow
data over the period December 2011–August 2013, to derive, compare, and interpret values
of baseflow magnitude per unit area and baseflow as a percentage of total discharge for the
five catchments. The research reported here forms part of a larger experiment exploring
hydrological, erosional, and sediment transport impacts of varying land-use change and
recovery in the study area. Previous publications have focused on suspended sediment
and storm discharge [1,2].

2. Experimental Design and Study Area

In Southeastern inland Sabah, five headwater catchments with differing degree of
disturbance and recovery were monitored and compared (Figure 1). The different land-
uses are primary forest (PF), virgin jungle reserve/old-growth forest (VJR), twice-logged
and recovering forest (LF2), multiple-logged and recovering forest (LF3), and oil palm
plantation (OP). All catchments were selected to be as close as possible in terms of catchment
size (1.7–4.64 km2) and characteristics. The PF (1.7 km2) is an undisturbed primary forest
catchment nested within the 438 km2 Danum Valley Conservation Area (DVCA). The VJR
(3.08 km2) is largely undisturbed and resembles a primary forest, but minimal clearing was
completed near the catchment boundary to build an access road. The LF2 (4.64 km2) was
first logged in the 1970s, extracting an average of 113 m3 km−2, followed by a second round
of logging in the 1990s extracting 37 m3 km−2. The LF3 (2.78 km2) was also first logged in
the 1970s (113 m3 km−2 extraction), followed by three more rounds between 1990 and 2004
extracting 26, 22, and 18 m3 km−2, respectively. The LF2 and LF3 have been regenerating
since cessation of logging and they are characterised by fast-growing pioneer species such
as Macaranga. However, the LF2 has a higher count of taller trees and more extensive
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canopy cover due to fewer rounds of logging whereas the LF3 has more understorey and
fewer canopy trees—evident in leaf area index (LAI), aboveground biomass (AGB), and
tree density (Table 1). The OP (3.27 km2) is a mature (20 years old) oil palm plantation with
bench-terracing and extensive dirt roads. All forested catchments are (or were originally)
lowland-dipterocarp forest with the exception of VJR that has upland-ultramafic forests in
the higher reaches. The OP catchment is planted with Elaeis guineensis. More information
on vegetation is available in past investigations [42,43].

Figure 1. Study area. Reprinted/adapted with permission from Nainar et al. [1]. 2018, Elsevier.

Table 1. Catchment characteristics. Source: Nainar et al. [1].

Catchment
Area
(km2)

Runoff
ratio, C

µ Channel
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Primary Forest (PF) 1.70 0.789 8.94 9.41 188–309 4.74 22.50 1706 453
Virgin Jungle Reserve (VJR) 3.08 0.615 38.64 50.48 97–859 4.15 9.34 233 48
Twice-logged Forest (LF2) 4.64 0.889 12.10 26.11 429–864 3.82 5.39 173 456

Multiple-logged Forest (LF3) 2.78 0.796 32.81 39.64 277–904 4.02 5.90 400 440
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With regards to lithology, the PF, LF2, LF3, and OP are of Oligocene to Middle Miocene
rocks of the Kuamut and Kalabakan formations, comprising a mélange of sedimentary and
volcanic rocks, including slump breccia and interbedded mudstones, tuffs, tuffaceous sand-
stones, shale, conglomerate, chert, and limestones [44]. The VJR catchment is composed
of Cretaceous to Early Tertiary igneous and metamorphic rocks (mainly gabbro, dolerite,
serpentinite, peridotite, dunite, and pyroxenite) [45] All catchments are mountainous but
the VJR has a higher proportion of steeper slopes (Table 1).

The climate is equatorial—hot and humid all year round without a distinct dry or
wet season. Long-term averages for rainfall and temperature in the DVCA (near PF) is
2870.3 mm and 27 ◦C, respectively (1985–2016), whereas in the SAFE area (near VJR, LF2,
LF3, and OP), they are 2,398.5 mm and 26 ◦C, respectively (2011–2016).
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3. Methodology
3.1. Data Collection and Processing

In the stream of each catchment, a gauging station comprised a solar-powered “Camp-
bell” datalogger (CR850), water depth (CS450), turbidity (OBS3+), conductivity, and tem-
perature (CS547a) sensors and a 0.2 mm tipping-bucket raingauge (ARG100) recorded
data at 5-min intervals. At the PF gauging station, a 120◦ v-notch sharp crested weir was
available. The primary parameter analysed in this study, discharge, was converted from
water level via weir equations for PF, and a combination of dilution gauging (low flows)
and Manning’s equation (high flows) for VJR, LF2, LF3, and OP. Daily totals of rainfall and
discharge were calculated. The same dataset as in Nainar et al. [1], spanning November
2011–August 2013, was used in this study.

To produce the baseflow recession dataset, periods of at least 6 days without apprecia-
ble rain (1 mm) were provisionally shortlisted. In each falling limb (consisting of stormflow
and baseflow component), baseflow recession was isolated and extracted. Stormflow reces-
sion was defined as the steep part of the falling limb immediately after peak discharge until
the inflexion point (Figure 2). The baseflow recession was defined as the gentle-sloping,
second part of the falling limb that begins from the same inflexion point until just before
the next rain event [17,46–48]. Theoretically, the inflexion point marks the switchover from
stormflow runoff to baseflow—when a catchment is sufficiently drained, and the stream is
primarily sustained by subsurface flow and/or groundwater. In total, 37 baseflow recession
limbs (7 from PF, 6 from VJR, 10 from LF2, 8 from LF3, and 6 from OP) ranging from three to
ten days in length were extracted—henceforth referred to as recession dataset. All baseflow
recession limbs were individually inspected and three days was set as the minimum length.
The number of samples was low and the recession lengths were short due to: (i) challenges
in recording continuous rain-free days in the tropics; and (ii) we have employed a strict
data-processing protocol in which any anomaly in one data point (5-min data) will result in
the disqualification of whole day’s data. Emphasis was placed on confidence and quality,
over quantity. These recession events were used to produce baseflow recession constants,
K, which is the main metric assessed in this study.

Figure 2. Stormflow recession, inflexion point, and baseflow recession on falling limbs. Examples
of the shortest (3 days) baseflow recession event (a), the median length (5 days) baseflow recession
event (b), and the longest (10 days) baseflow recession event (c).

In addition to K, total baseflow (absolute values and percentage of total discharge)
were also presented and discussed. Baseflow throughout the full study period (November
2011 to August 2013; 22 months)—henceforth referred to as the full dataset—was produced
by subtracting all quickflow from total discharge. Storm event- and quickflow-baseflow-
separation were conducted via the Hewlett–Hibbert technique. Additional information on
storm event separation and analyses is given in Nainar et al. [1].
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3.2. Baseflow Recession Constant

The baseflow recession constant (K) is a less-explored hydrological component/metric
but, historically, has been used in calibrating rainfall-runoff models, modelling surface
runoff, fitting stochastic streamflow models, and hydrograph separation [49–52]. In water-
stressed areas with long dry periods, K is useful for forecasting low flows and water
resource planning [18,51]. From past experiments in various land-uses, K in any given
catchment was affected by moisture conditions, soil drainage properties, and evaporative
and transpiration losses, which were ultimately governed by vegetation. Aside from
environmental factors, different K estimation methods (linear reservoir, ordinary-least-
squares regression, autoregressive, and moving average) resulted in slightly different K-
values with varying baseflow-prediction capabilities [17,19,47]. Conceptually, the baseflow
recession constant (K) in its simplest form can be expressed as:

Bt+1 = KbBt (1)

where Bt is baseflow on day t and Kb is the baseflow recession constant (decay factor).
Equation (1) assumes a linear reservoir theory and is a linear approximation to the unsteady
non-linear flow from a large unconfined aquifer [46,53,54]. Adding an error term results in:

Bt+1 = KbBt + εt+1 (2)

where Et are independent normally [55]. Assuming errors in logarithmic scales, Equation
(2) can be expressed as:

yt+1 − yt = ln(Kb) + εt+1 (3)

where yt+1 = ln(Bt+1) and yt = ln(Bt).
Existing studies recommended using linear solutions, citing that they are the most

practical approach and that non-linear approaches yielded only marginal benefits [17,55–57].
From the three basic equations (Equations (1)–(3)), various estimation procedures for K
can be derived [51,55,58]. In this article, four different K estimators (Kb1, Kb2, Kb3, and Kb4)
from Vogel and Kroll [55] were used. In brief, Kb1 is derived from Equation (1) by ordinary
least squares regression estimation (AR1 model):

Kb1 =
∑n−1

t=1 Bt+1Bt

∑n−1
t=1 B2

t
(4)

where n is the total number of consecutive baseflow recession data.
Kb2 is derived from the integrated moving average, IMA(0,1,0) model in Equation (3),

where in the form of an OLS regression results in:

Kb2 = exp

[
1
m

m

∑
i=1

(yt+1 − yt)

]
(5)

where yt+1 = ln(Bt+1), yt = ln(Bt), and m is the number of pairs of consecutive baseflow
recession observations.

Treating a catchment as a linear reservoir with zero water input during low flows
and assuming outflow is directly proportional to basin storage results in the Kb3 estimator.
Using the approximations dB/dt ≈ Bt − Bt−1 and B ≈ (Bt + Bt−1)/2, the OLS estimator is
expressed as:

Kb3 = exp

{
− exp

[
1
m

m

∑
i=1
{ln[Bt−1 − Bt]− ln[

1
2
(Bt + Bt−1)]}

]}
(6)

where Bt is discharge at time t. Fundamentally, the Kb3 estimator regresses the decrease in
discharge by mean discharge for all consecutive pairs of observation, then averages a value.
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A steady state solution to Equation (3) is:

Bt = B0(Kb6)
te∏n

t=1 ε (7)

By applying natural logarithms, the resulting traditional regression estimator (Kb4) is
obtained:

ln(Bt) = ln(B0) + ln(Kb6)t + ∏n
t=1 ε

Kb4 = exp
{

ln(Bt)−ln(B0)
t

} (8)

3.3. Statistical Analyses

In evaluating the performance of the different K estimators, the coefficient of variation
(CoV) and root mean squared error (RMSE) were considered. For RMSE evaluation,
computed baseflows were generated by applying catchment-specific average K values
to Equation (1). The computed baseflow recessions were then compared with measured
baseflow recessions to produce RMSE. After this scrutiny, K-values from the best estimator
were compared via the Kruskal–Wallis H test.

4. Results and Analysis
4.1. Evaluation and Selection of K Estimation Methods
4.1.1. Precision (Coefficient of Variation)

The coefficient of variation (CoV) was calculated for all K estimation methods in each
stream. LF3 had the lowest CoV, followed by VJR, OP, LF2, and PF (Table 2). Instead of
vegetation factors, CoV appeared to show association to channel gradient and slope angle,
whereby catchments with steeper slopes have lower CoV and vice-versa.

Table 2. Coefficient of Variation (CoV) of K produced by the various K estimators.

Catchment
CoV of K

Kb1 Kb2 Kb3 Kb4

PF 0.07790 0.07197 0.07017 0.04804
VJR 0.01980 0.01938 0.01901 0.01449
LF2 0.03968 0.03541 0.03797 0.02298
LF3 0.01072 0.01017 0.00814 0.00706
OP 0.01783 0.01536 0.01547 0.01788

Note: Red and blue indicate lowest and highest values, respectively.

Between K estimators, Kb1 had the highest CoV; nevertheless, it was still considered
low (Table 2). Kb4 produced the lowest CoV for most catchments (except OP). In general,
a low CoV is preferred when deciding on the best K estimator for a given area; however,
other factors, e.g., the root mean squared error (RMSE) of prediction, need to be considered
as well.

4.1.2. Performance of Various K Estimators (Root Mean Squared Error)

Comparing land-uses, RMSE decreased in the order: PF, VJR, LF2, LF3, OP (Table 3).
In addition to catchment land-use, RMSE showed an inverse relationship with baseflow
recession length (Figure 3).
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Table 3. Root mean squared error (RMSE) of prediction in the different land-uses.

Catchment
RMSE

Kb1 Kb2 Kb3 Kb4

PF 0.27598 0.27096 0.26721 0.39453
VJR 0.06526 0.06496 0.06445 0.06281
LF2 0.03595 0.03564 0.03815 0.05209
LF3 0.03292 0.03319 0.03581 0.05644
OP 0.02193 0.02343 0.02519 0.06996

Note: Red and blue indicate lowest and highest values, respectively.

Figure 3. Root mean squared error (RMSE) versus recession days.

Among the different K estimators, Kb4 had the highest RMSE of prediction, which is
unfavourable. At the same time, Kb4 had the lowest CoV. More emphasis is placed on low
RMSE because one of the main uses of K is for forecasting baseflow. In this study, Kb3 is
recommended as it is balanced in terms of low CoV and RMSE.

4.1.3. Effects of Baseflow Recession Length on K

K generated from shorter recession events tended to be lower (Figure 4). All K
estimators showed similar patterns except Kb4, which was more resistant to low-K bias
when baseflow recession lengths were short. Our recommendation of using Kb3 stands, but
Kb4 should be considered if a study mostly comprises short recession events.
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Figure 4. K versus recession days. Red line is the mean.

4.2. Baseflow and K in a Gradient of Land-Use Disturbances

The VJR had the highest K followed by LF3, LF2, OP, and PF. This pattern was
consistent for K from all estimators (Kb1, Kb2, Kb3, and Kb4) (Table 4, Figure 5). The lowest K
(fastest baseflow recession) was in PF and OP, and corresponds to the highest tree density
in these catchments (Table 1), while the highest K was in VJR (slow baseflow recession)
corresponds to the lowest tree density. Mean leaf area index (LAI), aboveground biomass
(AGB), and other catchment characteristics, however, did not show any relationship with K.
Full results can be found in Appendix A.

Table 4. Mean baseflow recession constants produced by various estimators (Kb1, Kb2, Kb3, and Kb4)
in the different land-uses.

Catchment Kb1 Kb2 Kb3 Kb4
PF 0.83278 0.83585 0.83886 0.88076

VJR 0.97783 0.97804 0.97841 0.98372
LF2 0.88988 0.89453 0.90347 0.92328
LF3 0.96402 0.96468 0.96692 0.97405
OP 0.86022 0.86480 0.86756 0.90010

Note: Red and blue indicate lowest and highest values, respectively. Baseflow recession constant produced by the
estimator Kb3 (highlighted grey) is preferred in this study.
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Figure 5. Kb1, Kb2, Kb3, and Kb4 in the different land-uses.

In an earlier analysis on the same dataset [1], baseflow rate showed the same pattern
as K did between the different land-uses in this study with exception to PF (Tables 5 and 6).
The PF, however, showed discrepancies, whereby it has the fastest baseflow recession
(lowest K), but baseflow remained highest among all land-uses (Tables 4 and 5).

Table 5. Values of discharge parameters for the catchments of differing land-use. All parameters
were derived from the full dataset (22 months) except for Kb3 which was derived from the recession
dataset (37 recession events).

Discharge Parameter PF VJR LF2 LF3 OP

Annual streamflow (mm) 2764 1785 1597 1907 956
Annual stormflow (mm) 887 1032 785 1049 589
Annual baseflow (mm) 1877 753 812 1265 367
Annual baseflow (%) 67.92 42.18 50.84 55.02 38.43

CoVQ 1.231 1.527 2.025 1.486 2.062
Kb3 0.83886 0.97841 0.90347 0.96692 0.86756

Table 6. Rank order of land-uses for various key catchment hydrological parameters. The runoff ratio
and % baseflow were based on the full dataset (22 months); K was based on the recession dataset
(37 recession events).

Hydro.
Component

Catchment Rank

Lowest −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Highest

Runoff ratio OP VJR LF2 PF LF3
% baseflow OP VJR LF2 LF3 PF

K PF OP LF2 LF3 VJR
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5. Discussion
5.1. Evaluation and Selection of K Estimation Methods

The more consistent recession characteristics in areas with steeper slopes (Table 2)
could be afforded by gravity [1]. This, however, needs to be substantiated by more data in
the future. RMSE (Table 3) could be affected by various factors (vegetation, aboveground,
soil, etc.), but we were unable to detect association to any factors at this point. Yang
et al. [17] have linked higher RMSE to larger catchment size. In a study comparing of
a cypress plantation and a natural broadleaf catchment in Japan by Nainar et al. [19], lower
RMSE was found in the well-managed cypress plantation which had consistent baseflow
recession and low CoV of K. Naturally, shorter recession events produced lower K (faster
recession) because of high hydrostatic pressure during times of high catchment moisture
(Figure 4) [17,19].

5.2. Baseflow and K in a Gradient of Land-Use Disturbances

The association of low K to high vegetation stem count and vice versa (Tables 1 and 4)
may suggest that transpiration had a significant influence on baseflow recession [17,19]
and that stand transpiration could be more strongly governed by stem count instead of
basal area [59,60]. These findings differed from the recent convention [22,61,62], but it is
substantiated by others [63] citing that an increase of basal area does not necessarily equate
a proportional increase of sapwood area. Contrary to past studies where transpiration show
strong relationships with basal area [64], the association of low K to high stem density in this
study may reflect the higher growth rates, carbon fixation, and water uptake of young trees
compared to mature trees which, despite their large size, have reached a plateau [63,65,66].
Although LF3 had a high stem count, it comprises sparsely distributed young understorey
trees and shrubs that result in lower stand ET, which may explain its high K (Tables 1 and 4).
One of the likely mechanisms for the faster baseflow recession in the PF (Table 4) is the
higher hydrostatic pressure as a result of high catchment moisture/subsurface flow that
sustains baseflow [17,19].

In a previous article [1], similar arguments were presented for total baseflow, whereby
the low total baseflow in OP was attributed to high water-uptake by oil palm trees whereas
high baseflows in VJR and LF3 were associated with good soil properties and lower water-
uptake. The highest baseflow in PF was linked to the highest annual rainfall, and where
the rainwaters may have effectively infiltrated the soil due to good hydraulic conductivity—
typical of an undisturbed tropical rainforest—and subsequently underutilised due to low
transpiration by mature trees despite their large sizes [59,60,63,67,68]. With regards to
water management of agricultural catchments, the effects of high water use in oil palm
catchments were evident in the 2015 El-Nino Southern Oscillation (ENSO) event whereby
water shortages were experienced by villages and towns downstream of the study area.
Current trends in climate change in Sabah have shown that dry periods are getting hotter
and longer, signalling a need for redesigned management strategies (both conservational
and engineered).

6. Conclusions

Based on 22 months (November 2011–August 2013) of hydrological observation in
the Sabah study area, baseflow dynamics (with emphasis on baseflow persistence) were
compared and assessed among a gradient of land-use disturbances: primary forest (PF),
old growth virgin jungle reserve (VJR), twice-logged forest with 22 years recovery (LF2),
multiple-logged forest with 8 years recovery (LF3), and mature oil palm plantation (OP).
The findings are:

1. Kb3 was found to be the most effective baseflow recession estimator in terms of
resulting in the lowest combination of Coefficient of Variation and Root Mean Squared
Error values. However, Kb4 should be considered in even wetter tropical areas than
the study area where baseflow recessions are even shorter.
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2. The VJR had the highest baseflow recession constant (slowest recession; K = 0.97841),
followed by the LF3 (K = 0.96692), LF2 (K = 0.90347), OP (K = 0.86756), and PF
(K = 0.83886).

3. Catchment baseflow values (absolute; % of streamflow) were found to be (in decreas-
ing order): PF (1877 mm; 68%), LF3 (1265 mm; 55%), LF2 (812 mm; 51%), VJR (753 mm;
42%), and OP (367; 38%). Synthesizing K and baseflow data, the PF has the highest
baseflow quantity and persistence despite having the fastest baseflow recession. This
is followed by the VJR and LF3 (minimal differences in baseflow), the LF2, and the OP.

In today’s changing climate of the humid tropics, where dry periods are getting
longer and more severe, it is crucial to understand how land-use changes and their longer-
term impacts affect water resource availability. In preventing water stress, results from
this study serve as an underlying basis for water management and is especially impor-
tant in the tropics where logging (especially secondary forests) and oil palm agriculture
are primary economic activities. Data from this study have demonstrated that forests
(including multiple-logged) afford superior water resource availability compared to oil
palm catchments—even mature, stabilized ones—and forests, regardless of quality, should
therefore be conserved as much as possible especially in headwaters.
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Appendix A

Table A1. Baseflow recession constants produced via different estimation methods (Kb1, Kb2, Kb3,
Kb4) and their respective root-mean-squared-error (RMSE) in catchments of differing land-uses.

Cat. Event Kb1 Kb2 Kb3 Kb4
Rec.

Days
RMSE

Kb1 Kb2 Kb3 Kb4

PF PF1 0.85333 0.85408 0.85444 0.90019 3 0.29676 0.25221 0.20866 0.41946
PF PF2 0.83822 0.83905 0.84037 0.86902 4 0.03038 0.03523 0.04576 0.27295
PF PF3 0.85561 0.85251 0.85372 0.88721 4 0.11725 0.10339 0.08998 0.12664
PF PF4 0.81860 0.82992 0.83983 0.88313 3 0.33437 0.35716 0.38158 0.82407
PF PF5 0.89208 0.89453 0.89668 0.92839 3 0.27589 0.26170 0.24780 0.06065
PF PF7 0.87565 0.87256 0.87366 0.90281 4 0.12413 0.11606 0.10814 0.01972
PF PF9 0.69596 0.70831 0.71330 0.79460 3 0.75311 0.77099 0.78853 1.03822
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Table A1. Cont.

Cat. Event Kb1 Kb2 Kb3 Kb4
Rec.

Days
RMSE

Kb1 Kb2 Kb3 Kb4

Mean 0.83278 0.83585 0.83886 0.88076 3.4 0.27598 0.27096 0.26721 0.39453
CoV 0.07790 0.07197 0.07017 0.04804 0.86262 0.91092 0.95951 1.00216
VJR VJR1 0.98391 0.98393 0.98398 0.98926 4 0.01239 0.01202 0.01158 0.02902
VJR VJR2 0.98398 0.98396 0.98400 0.98795 4 0.02272 0.02199 0.02066 0.00213
VJR VJR3 0.99028 0.99029 0.99041 0.99222 5 0.04864 0.04785 0.04639 0.02572
VJR VJR4 0.93965 0.94071 0.94186 0.95519 4 0.19620 0.19722 0.19910 0.22574
VJR VJR5 0.97768 0.97777 0.97810 0.98513 4 0.03773 0.03853 0.04002 0.06168
VJR VJR6 0.99149 0.99155 0.99211 0.99260 10 0.07387 0.07213 0.06896 0.03260

Mean 0.97783 0.97804 0.97841 0.98372 5.2 0.06526 0.06496 0.06445 0.06281
CoV 0.01980 0.01938 0.01901 0.01449 1.03607 1.04828 1.07013 1.30623
LF2 LF11 0.87358 0.89298 0.94675 0.91343 4 0.02805 0.02543 0.02265 0.02988
LF2 LF12 0.89415 0.89458 0.89500 0.91985 3 0.00624 0.00368 0.00273 0.01412
LF2 LF13 0.80875 0.82222 0.83430 0.87766 3 0.09172 0.09661 0.10609 0.12757
LF2 LF14 0.94580 0.94548 0.94577 0.95436 6 0.14647 0.13543 0.11380 0.06363
LF2 LF15 0.88131 0.88455 0.88736 0.92147 3 0.01371 0.01711 0.02447 0.04221
LF2 LF16 0.88581 0.88641 0.88666 0.92276 3 0.00598 0.01119 0.02161 0.04521
LF2 LF17 0.89010 0.89180 0.89288 0.92650 3 0.01218 0.01696 0.03237 0.07149
LF2 LF18 0.92076 0.92529 0.94109 0.94955 3 0.02385 0.02114 0.01674 0.01540
LF2 LF19 0.89715 0.90022 0.90293 0.91384 6 0.01863 0.02133 0.03730 0.08522
LF2 LF110 0.90135 0.90180 0.90198 0.93341 3 0.01268 0.00748 0.00370 0.02618

Mean 0.88988 0.89453 0.90347 0.92328 3.7 0.03595 0.03564 0.03815 0.05209
CoV 0.03968 0.03541 0.03797 0.02298 1.28528 1.23031 1.03299 0.68329
LF3 LF21 0.96794 0.96829 0.96982 0.97875 3 0.00842 0.00788 0.00740 0.01628
LF3 LF22 0.94752 0.94956 0.95999 0.96608 3 0.04577 0.04686 0.05062 0.06305
LF3 LF23 0.98321 0.98331 0.98396 0.98746 4 0.03557 0.03434 0.03015 0.01681
LF3 LF24 0.95480 0.95582 0.95827 0.96668 4 0.08326 0.08722 0.10104 0.14695
LF3 LF26 0.96599 0.96655 0.96719 0.97205 6 0.01463 0.01380 0.01706 0.05022
LF3 LF28 0.96544 0.96590 0.96674 0.97431 3 0.04263 0.03839 0.02418 0.02566
LF3 LF29 0.96421 0.96471 0.96567 0.97167 5 0.01925 0.02104 0.03148 0.07676
LF3 LF211 0.96306 0.96329 0.96375 0.97537 3 0.01387 0.01596 0.02455 0.05576

Mean 0.96402 0.96468 0.96692 0.97405 3.9 0.03292 0.03319 0.03581 0.05644
CoV 0.01072 0.01017 0.00814 0.00706 0.75144 0.77202 0.81381 0.75823
OP OP1 0.86144 0.86484 0.86583 0.89681 4 0.00940 0.01173 0.01473 0.06450
OP OP3 0.86393 0.86597 0.86693 0.90852 3 0.01070 0.01060 0.01302 0.06532
OP OP4 0.87328 0.87401 0.87431 0.91414 3 0.01464 0.00951 0.00651 0.03227
OP OP5 0.87403 0.87912 0.88472 0.91770 3 0.02179 0.01914 0.01817 0.04002
OP OP6 0.85644 0.86436 0.86954 0.88561 7 0.05527 0.06707 0.07451 0.17263
OP OP9 0.83221 0.84048 0.84404 0.87780 4 0.01978 0.02252 0.02420 0.04506

Mean 0.86022 0.86480 0.86756 0.90010 4.0 0.02193 0.02343 0.02519 0.06996
CoV 0.01783 0.01536 0.01547 0.01788 0.77721 0.93882 0.98671 0.74349
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