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Abstract: Drought prediction is the most effective way to mitigate drought impacts. The current
study examined the ability of three renowned machine learning models, namely additive regression
(AR), random subspace (RSS), and M5P tree, and their hybridized versions (AR-RSS, AR-M5P, RSS-
M5P, and AR-RSS-M5P) in predicting the standardized precipitation evapotranspiration index (SPEI)
in multiple time scales. The SPEIs were calculated using monthly rainfall and temperature data
over 39 years (1980–2018). The best subset regression model and sensitivity analysis were used
to determine the most appropriate input variables from a series of input combinations involving
up to eight SPEI lags. The models were built at Rajshahi station and validated at four other sites
(Mymensingh, Rangpur, Bogra, and Khulna) in drought-prone northern Bangladesh. The findings
indicated that the proposed models can accurately forecast droughts at the Rajshahi station. The
M5P model predicted the SPEIs better than the other models, with the lowest mean absolute error
(27.89–62.92%), relative absolute error (0.39–0.67), mean absolute error (0.208–0.49), root mean square
error (0.39–0.67) and highest correlation coefficient (0.75–0.98). Moreover, the M5P model could
accurately forecast droughts with different time scales at validation locations. The prediction accuracy
was better for droughts with longer periods.

Keywords: drought prediction; standardized precipitation evapotranspiration index; hybrid machine
learning; additive regression; northern Bangladesh

1. Introduction

Drought is one of the most complicated recurring natural disasters, defined by a defi-
ciency of precipitation, causing prolonged water scarcity. Failure to manage drought risk
effectively has the potential to have dire consequences for people, livelihoods, the economy,
and ecosystems [1–6]. Like the rest of South Asia, Bangladesh is plagued by periodic
droughts. Due to the adverse impact on agricultural productivity and the environment,
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it is one of Bangladesh’s most expensive natural disasters [7,8]. Drought-related damage
to agriculture is more prevalent than any other natural disaster in the country. Pre- and
post-monsoon droughts (March–May and October–November) are the most common in
Bangladesh, and pre-monsoon droughts can last into the monsoon season, delaying the
arrival of rain. Drought susceptibility, on the other hand, varies according to region. In
recent years, annual rainfall has increased across Bangladesh, including in the drought-
prone northern region, while the western region has seen a decrease [2,9]. Extreme climate
events such as droughts have increased in frequency over the past two decades, which has
put food security in some regions at risk [10,11]. The frequency of extreme droughts will
nearly double in the coming decades [12]. Thus, drought forecasting, and early warning
are critical for agricultural resilience to climate change.

Due to its complexity and spatial–temporal development, drought forecasting is
one of the most difficult issues for climate scientists and hydrologists [13]. Statistical,
dynamical [14,15], and hybrid models [16] are typically utilized to forecast drought oc-
currences. For drought forecasting, statistical models employ correlation relationships
between climate variables and drought indicators [17]. As opposed to statistical models,
dynamical models are founded on the physical connections between the earth, ocean, and
climate. These interactions are theoretically defined and resolved in dynamic models to
develop drought forecasts and predictions [18]. A hybrid model, in contrast, is a combi-
nation of statistical and dynamical techniques [19,20]. For instance, to create an ensemble
prediction, multiple dynamical model predictions can be combined using a statistical
framework that assigns weights to the various dynamical model predictions [21]. Due to
their simplicity [22] and low processing costs, statistical models are widely used to predict
droughts [23–25]. Recently, machine learning (ML) techniques have also been used to
predict drought in many global regions.

ML strategies involve a set of commands that enable systems to learn and improve
without extensive programming [26–29]. In different climatological applications, such as
rainfall prediction, ML algorithms have been used to develop models that can reproduce
the empirical relationships between the variables [30], drought prediction [31], forecasting
heat waves [32], and runoff simulation [17]. There are many critical issues to consider
when developing a drought forecasting model. Systematic monitoring and early warning
of impending droughts are essential for effective drought management. Various statistical
models are widely used to predict droughts, such as ARIMA, multilinear regression (MLR),
and the Markov chain [33]. As a result, hydrological research typically employs non-linear
time series models. When it comes to predicting drought and climate, ML applications
have performed exceptionally well in recent years [34,35]. SVR, RF, ELM, M5T, ANFIS, LGP,
ERT, LSSVR, and MVR have all been successfully applied to drought forecasting [22,36–49].
Several recent studies have shown that hybrid ML models perform exceptionally well and
accurately [22,42,50–53]. However, it is not always the case. Thus, evaluation of the models
is essential to predict drought in a particular region.

Additionally, models for drought forecasting exist in different parts of the world, but
a universal or ideal model cannot be developed for all climates. Incorrect model structure
variables can lead to erroneous predictions. Thus, it is necessary to evaluate the models at
the regional scale. Only a few studies have been performed using ML algorithms to predict
drought in Bangladesh. SPI has been used in previous studies to predict droughts [44,54].
Despite this, no research has been conducted in Bangladesh on the use of ML and hybrid
methods to predict SPEI. This study’s primary goal was to fill in this knowledge gap.

Compared to other parts of the country, the Barind tract and the Teesta floodplain
regions of the northern and northwestern parts (known as North Bengal) are highly im-
pacted by drought due to high poverty rates, dependency on agriculture, low adaptive
capacity and high variability of annual and seasonal rainfall [55,56]. Drought is a recurrent
event in these regions [1,57]. Over the years, drought severity, frequency, and variability
have increased in North Bengal [1,2,7,8,58–60]. Several studies indicated that droughts
have significantly affected agricultural production and the natural environment in the
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country in recent years [7,61]. Although there have been tremendous improvements in
irrigation systems in Bangladesh in recent decades, agricultural activities remain dependent
on seasonal rainfall [62]. A study conducted by Islam [63] indicated that North Bengal has
experienced significant increases in rainfall variability, long seasonal-scale dry spells and
numerous instances of below-normal rainfall in recent decades, significantly hampering
crop growth. In addition, variability in temperature has a substantial effect on crop yields
(such as rice and wheat) in North Bengal [64]. However, there is a dearth of literature
regarding the evolution of drought in eastern Bangladesh.

Drought analysis and prediction need reliable rainfall and temperature data recorded
for a longer period. However, an uninterrupted climate record for a longer period is
not available in most of the meteorological stations of Bangladesh. This limits drought
prediction using conventional statistical and numerical models. ML algorithms could
be one of the solutions for bridging the climate data gap. Furthermore, to the best of
our knowledge, no research has been published in the literature that predicts the SPEI
in the study region using ML approaches applied. Hence, this work aimed to assess the
performance of standalone models and novel hybrid ML algorithms in SPEI estimation.
Additive regression, random subspace, and M5P tree models and their hybridized ver-
sions were used to predict SPEI. Agricultural drought is measured in Bangladesh using a
6-month SPEI, while the water scarcities, river flow declines, and hydrological droughts are
measured using 9, 12, and 24-month SPEIs. As a result, forecasting models were developed
to predict SPEI for those four timescales over 38 years (1980–2018). The models were
developed for a single station in northwestern Bangladesh (Rajshahi), which is extremely
prone to droughts, and tested at four locations, including Bogra, Rangpur, Mymensingh
and Khulna.

The organization of the remaining parts of this article is as follows. Section 2 explains
the study area and the data used in the study. Additionally, the theories of the ML al-
gorithms used and the construction of prediction models using ML are discussed in this
section. Section 3 explains the results obtained in this study. Section 4 provides a discussion
of the study’s findings. Finally, conclusions drawn from the results and discussion are
provided in Section 5.

2. Materials and Methods
2.1. Study Area

Bangladesh covers a land area of 147,570 km2 and is situated between latitudes
20.34◦ N and 26.38◦ N and longitudes 88.01◦ E to 92.41◦ E. It is surrounded by the deltas
of several rivers that originate in the Himalayas (Figure 1). A humid tropical climate
characterizes most of the country. The temperature is below 12.8 ◦C in January and above
31.1 ◦C in May. The temperature’s spatial variability is extremely low because of the
country’s extremely flat topography. Different seasons have different temperature gradient
orientations. As a result, the yearly average temperature in different regions is very similar.
Rainfall in Bangladesh varies between northwest and northeastern Bangladesh by 1600 and
4400 mm, respectively. Seasonal and yearly variations in rainfall are significant. Nearly 70%
of the year’s rainfall occurs between May and September, with only 3% occurring in the
winter months between December and February. In large parts of the country, the annual
monsoon rainfall variability coefficient is greater than 30%. Since the country experiences
a wide range of rainfall variability, droughts are common. Following its independence
in 1973, Bangladesh was hit by droughts in 1978, 1979, 1981, 1982, 1989, 1992, 1994, and
1995. In recent memory, the worst droughts were in 1973, 1979, and 1994–1995, when the
northwestern region lost 3.5 million tons of rice alone. A 25–30% decrease in average crop
production was recorded in this region during the drought of 2006 [65,66].
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Figure 1. Study area and weather stations.

2.2. Data

Monthly temperature and precipitation data were collected from five meteorological
stations (Table 1) from the Bangladesh Agricultural Research Council (BARC) for a 38-year
period (1980–2018). The BARC team checked all the datasets for errors and inconsisten-
cies. The rainfall and temperature data were seasonally divided using the R function
na.seasplit [67] to examine missing data in the monthly climate variables. No missing data
were found at these sites during the research period.

Table 1. Meteorological stations and descriptive statistics for rainfall and temperature.

Station Name
Geographical

Locations
(Lat × Lon)

Elevation
MSL (m)

Annual Mean
Rainfall

(mm)

Tmax
(◦C)

Tmin
(◦C) Remarks

Rajshahi 24.37 × 88.7 19.5 1424.51 31.31 20.50 Model Development station

Bogra 24.85 × 89.37 17.9 1738.05 30.75 21.01 Model Validation station
Mymensingh 90.43 × 24.72 18 2264.20 29.90 20.88 Model Validation station

Khulna 89.53 × 22.78 3.6 1834.92 31.28 21.77 Model Validation station
Rangpur 89.23 × 25.73 32.61 2248.82 29.63 20.24 Model Validation station

2.3. Methodology

Data were collected in the first phase to estimate the SPEI from 1980 to 2018. The best
subset regression model for selecting the optimal combination of climatic variables was
then used to create seven machine learning models (standalone and hybrid) to predict
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the multiscale SPEI. The validation stations were used to forecast SPEIs using the best
prediction model.

2.3.1. SPEI Calculation

Standardized precipitation evapotranspiration indexes (SPEIs) were derived from
precipitation and temperature data as part of a simple water balance to account for sur-
face evaporation changes, which is more sensitive to drought reactions caused by rising
global temperatures.

The difference in the water balance was normalized as a log-logistic probability distri-
bution in order to estimate SPEI’s value. In mathematical terms, the probability density
function is represented by the following equation:

f (x) =
β

α

(
x − λ

α

)[
1 +

(
x − λ

α

)]−2
(1)

Scale, shape and origin were all represented by the aforementioned parameters α,
β, and γ, respectively. The probability distribution function can, therefore, be expressed
as follows.

F(x) =

[
1 +

(
α

x − γ

)β
]−1

(2)

The SPEI may be simply calculated using the standardized values of F(x)

SPEI = W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3 (3)

when P≤ 0.5, W =
√
−2ln(P), and when P > 0.5, W =

√
−2ln(1 − P), C0 = 2.5155, C1 = 0.8028,

C2 = 0.0203, d1 = 1.4327, d2 = 0.1892, and d3 = 0.0013.
The drought index was calculated using the SPEI package in the R environment [29].

Negative SPEI values, accompanied by a decrease in rainfall, signal drought, whereas
positive SPEI values signal wetter conditions.

2.3.2. Machine Learning Algorithms

For the perdition multiscale SPEI, this study considered three tree-based algorithms,
random subspace (RSS), additive regression (AR), and M5 pruned (M5P), and their stacking
hybrid forms, AR-RSS, AR-M5P, RSS-M5P, and AR-RSS-M5P. The basic concept of tree-
based algorithms is fitting decision trees to different sub-samples of calibration datasets
and then integrating the prediction of each tree to provide the final output. Fitting models
to different sub-samples allows data decomposition in detail for better identification of
complex input–output relations. The advantages of these non-parametric methods are
accurate prediction, little data pre-processing such as normalization or scaling, and no
assumptions on space distributions. A detailed description of the standalone model can
be found in the study by Elbeltagi et al. [68]. Wolpert [69] proposed the use of a hybrid
stacking algorithm. This method facilitates the use of ensemble algorithms, which combine
two or more algorithms throughout the training period. The idea behind stacking hybrid
generalization is to use first-level learners to train and predict training datasets. For the
meta learner, a new training dataset was created by combining the predicted outcomes
from first-level learners. Sikora et al. [70] provided comprehensive information on stacked
hybrid generalization.

All modelings were carried out using the WEKA (Version3.8.4, Waikato University,
Hamilton, New Zealand) software (https://www.cs.waikato.ac.nz/ml/weka, accessed on
20 May 2021). Table 2 contains the model parameters. Additionally, a flowchart illustrating
the methodology used is shown in Figure 2. The WEKA software is a collection of ML tech-
niques related to data mining. It can manage and process various data types using multiple
tools, i.e., regression, clustering, and visualization. The program also features a graphi-

https://www.cs.waikato.ac.nz/ml/weka
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cal user interface (GUI), which facilitates the program’s operation. There are additional
alternatives, such as MATLAB, Python, and R, but preparing and implementing computer
codes using those programs requires considerable time. However, the implementation of
models in different environments does not affect the obtained results. Therefore, WEKA
was chosen considering its simple implementation procedure compared to other software.

Table 2. The parameters of the machine learning algorithm in modeling SPEI-6, -9, -12 and -24.

Model Names Parameter Descriptions

Random Subspace (RSS)
Batch size-100, Classifier = REPTree, random seed-1,
subspace size = 0.5, numbers of executions slots = 1,

number of iterations = 10

Additive Regression (AR) Batch size-100, Classifier = Bagging, shrinkage = 1,
number of iterations = 30

M5 Pruned (M5P) Batch size-100, Minimum number of instances = 4
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Figure 2. Flowchart of SPEI estimation methodology in the study area.

A grid search optimization algorithm was used to select optimum ML model parame-
ters. It randomly searches the optimum parameters within a discrete grid space. The value
within the range that provides the most accurate prediction is selected. Table 2 shows the
selected optimum ML model hyperparameter values.

2.4. Constructing and Evaluating Models

Choosing suitable input and output variables for non-linear hydrologic systems can be
time-consuming. SPEI 6, 9, 12, and 24 were calculated using precipitation and temperature
data from Rajshahi station. The most important inputs (at different time lags) for the target
variable (output) were selected by using subset regression and sensitivity analyses. When
there are many input variables, one of the most critical stages in the soft computing model
is feature selection. Numerous procedures, such as best subset regression, forward stepwise
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selection, and mutual information, can be used to determine the best combinations of all
possible inputs. The current study employed best subset regression to determine the best
possible input combinations for the SPI 6, 9-, 12-, and 24-month models. The optimal input
combination was determined using six statistical criteria (MSE, determination coefficients
(R2), adjusted R2, Akaike’s AIC, Mallows’ Cp, Akaike’s AIC, and Amemiya’s PC).

Multiscale SPEI data were predicted using standalone ML models and their stacking
hybrid forms at the Rajshahi station. The models were developed using 30-year monthly
data (1980–2009), and 9-year data (2010–2018) were used to test the model at Rajshahi
station. Evaluation of model outputs was carried out using statistical indices and visual
interpretation, including Taylor diagram, scatter, and boxplots. The models with the
lowest RMSE, MAE, RAE, RRSE, and greater R during testing were considered superior
for drought prediction. An evaluation was performed on the generalizability of the most
successful model developed at Rajshahi station to predict SPEI at other stations (Bogra,
Mymensingh, Khulna and Rangpur).

2.5. Statistical Performance Measurement

Several performance metrics were calculated to assess the model performance, includ-
ing the root mean square error (RMSE), coefficient of determination (R), mean absolute error
(MAE), relative absolute error (RAE), and root relative squared error (RRSE). Definitions
for all parameters are as follows:

RMSE =

√
∑N

i=1
(
SPEIObs − SPEIpre

)2

N
(4)

MAE =
∑N

i=1
∣∣(SPEIObs − SPEIpre

)∣∣
N

(5)

RAE =

∣∣∣∣SPEIObs − SPEIpre

SPEIpre

∣∣∣∣× 100 (6)

RRSE =

√
∑N

i=1
(
SPEIpre − SPEIObs

)2√
∑N

i=1
(
SPEIObs − SPEIpre

)2
(7)

R =
∑N

i=1
(
SPEIObs − SPEIObs

)(
SPEIpre − SPEIpre

)√
∑N

i=1
(
SPEIObs − SPEIObs

)2
√

∑N
i=1
(
SPEIpre − SPEIpre

)2
(8)

The actual and predicted SPEIs are represented by SPEIobs and SPEIpre, respectively,
with SPEI representing the average values of the actual SPEI index, and N representing the
number of observations.

3. Results
3.1. Model Input Selection

Table 3 summarizes the statistical indices of model performance for various input
combinations. Best results are indicated by bolded numbers in Table 3. The results indicate
that three lag values, 1, 6, and 7, were the most accurate predictors of SPI-6. Similarly,
inputs 1, 2, 3, 4, 6, 7, and 8 provided the best forecasts for SPEI-9 and SPEI-12, but only
lag 1 did so for SPEI-24.

The input variables were analyzed for sensitivity at a 5% significance level. The
results from the regression analysis for SPEI-6, SPEI-9, SPEI-12, and SPEI-24 are depicted
in Figure 3. Spikes with lags of 1, 6, 7, 8 for SPEI-6; 1, 2, 3, 4, 6, 7, 8 for SPEI-9; 1, 3, 4, 5, 6,
7, 8 for SPEI-12, and 1 for SPEI-24 were statistically significant, according to the findings.
Sensitivity analysis verified the results of the statistical metrics presented in Table 3. In this
way, the SPEI of the corresponding scale was predicted using those lags. The inputs used
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to develop the SPEI for various temporal scales at the Rajshahi station are summarized
in Table 4.

Table 3. The best subset regression analysis for determining the best input combinations to model.

SPEI-6

Variables MSE R2 Adjusted R2 Mallows’ Cp Akaike’s AIC Amemiya’s PC

SPEI1 0.404 0.581 0.580 31.480 −417.726 0.421
SPEI1/SPEI6 0.396 0.590 0.588 22.969 −425.756 0.413

SPEI1/SPEI6/SPEI7 0.379 0.609 0.606 3.166 −445.282 0.396
SPEI1/SPEI3/SPEI6/SPEI7 0.377 0.611 0.608 2.119 −446.371 0.395

SPEI1/SPEI3/SPEI4/SPEI6/SPEI7 0.378 0.612 0.607 3.785 −444.711 0.397
SPEI1/SPEI3/SPEI4/SPEI5/SPEI6/SPEI7 0.378 0.612 0.607 5.141 −443.367 0.398

SPEI1/SPEI3/SPEI4/SPEI5/SPEI6/SPEI7/SPEI8 0.379 0.612 0.606 7.072 −441.437 0.400
SPEI1/SPEI2/SPEI3/SPEI4/SPEI5/SPEI6/SPEI7/SPEI8 0.380 0.612 0.605 9.000 −439.511 0.401

SPEI-9

SPEI1 0.246 0.745 0.744 11.701 −642.458 0.256
SPEI1/SPEI8 0.243 0.749 0.748 6.194 −647.901 0.253

SPEI1/SPEI3/SPEI8 0.241 0.752 0.750 2.947 −651.176 0.251
SPEI1/SPEI3/SPEI4/SPEI8 0.240 0.753 0.750 3.533 −650.608 0.252

SPEI1/SPEI3/SPEI4/SPEI7/SPEI8 0.240 0.753 0.751 4.020 −650.145 0.252
SPEI1/SPEI2/SPEI3/SPEI4/SPEI7/SPEI8 0.240 0.754 0.750 5.394 −648.782 0.253

SPEI1/SPEI2/SPEI3/SPEI4/SPEI6/SPEI7/SPEI8 0.241 0.754 0.750 7.016 −647.168 0.254
SPEI1/SPEI2/SPEI3/SPEI4/SPEI5/SPEI6/SPEI7/SPEI8 0.241 0.754 0.750 9.000 −645.184 0.255

SPEI-12

SPEI1 0.151 0.844 0.844 6.523 −861.581 0.156
SPEI1/SPEI8 0.148 0.848 0.847 −0.607 −868.752 0.154

SPEI1/SPEI5/SPEI8 0.149 0.848 0.847 0.857 −867.297 0.154
SPEI1/SPEI6/SPEI7/SPEI8 0.149 0.848 0.847 2.160 −866.005 0.155

SPEI1/SPEI3/SPEI5/SPEI7/SPEI8 0.149 0.848 0.846 3.684 −864.489 0.155
SPEI1/SPEI3/SPEI4/SPEI6/SPEI7/SPEI8 0.149 0.848 0.846 5.127 −863.057 0.156

SPEI1/SPEI3/SPEI4/SPEI5/SPEI6/SPEI7/SPEI8 0.149 0.848 0.846 7.023 −861.164 0.156
SPEI1/SPEI2/SPEI3/SPEI4/SPEI5/SPEI6/SPEI7/SPEI8 0.150 0.848 0.846 9.000 −859.187 0.157

SPEI-24

SPEI1 0.081 0.916 0.916 1.071 −1116.440 0.084
SPEI1/SPEI5 0.081 0.917 0.916 1.240 −1116.287 0.084

SPEI1/SPEI5/SPEI7 0.081 0.917 0.917 0.835 −1116.724 0.084
SPEI1/SPEI5/SPEI7/SPEI8 0.081 0.918 0.917 1.403 −1116.182 0.084

SPEI1/SPEI5/SPEI6/SPEI7/SPEI8 0.081 0.918 0.917 3.057 −1114.535 0.084
SPEI1/SPEI2/SPEI5/SPEI6/SPEI7/SPEI8 0.081 0.918 0.917 5.033 −1112.559 0.085

SPEI1/SPEI2/SPEI4/SPEI5/SPEI6/SPEI7/SPEI8 0.081 0.918 0.916 7.025 −1110.568 0.085
SPEI1/SPEI2/SPEI3/SPEI4/SPEI5/SPEI6/SPEI7/SPEI8 0.081 0.918 0.916 9.000 −1108.593 0.085

SPI1 = SPI (t-1), SPI8 = SPI (t-8); Bold: indicates the selected input combinations.
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Table 4. Input variables selected for multiscale SPEI prediction.

Output Input Variables

SPEI6 SPEI (t-1), SPEI (t-6), SPEI (t-7)
SPEI9 SPEI (t-1), SPEI (t-2), SPEI (t-3), SPEI (t-4), SPEI (t-6), SPEI (t-7), SPEI (t-8)

SPEI12 SPEI (t-1), SPEI (t-3), SPEI (t-4), SPEI (t-5), SPEI (t-6), SPEI (t-7), SPEI (t-8)
SPEI24 SPEI (t-1)

3.2. Prediction of Droughts Using Machine Learning Techniques

To forecast multiscale SPEI data at Rajshahi station, individual and hybrid model
versions were developed. It took 30 years of data from 1980 to 2009 to create models and
data from 2010 to 2018 for testing at Rajshahi station. Various statistical indices and visual
interpretations were used to evaluate the models’ performance, including Taylor diagrams,
scatter diagrams, and boxplots. As a general rule, models with a lower RMSE, MAE, RAE,
RRSE, and a larger R during testing were deemed more accurate for drought prediction.
According to statistical metrics, the models’ performance at Rajshahi station is shown in
Table 5. The best results are shown in the table in bold type.

Based on the testing data, the best-performing model was selected. Table 5 shows
that M5P was the best predictor of SPEI on all time scales, with the highest accuracy. M5P
had the lowest RRSE, RAE, MAE and RMSE, and the highest R of any other model when
predicting SPEI over various time scales, with R ranging from 0.750 to 0.98, MAE ranging
from 0.208 to 0.49, and the RMSE from 0.389 to 0.67; RAE was between 16.60% and 55.26%,
and RRSE was between 27.89% and 62.92%. There was a positive correlation between
increasing SPEI time scales and improved model accuracy. Consequently, SPEI-24 had the
best prediction accuracy.

Taylor diagrams (TD) were used to examine the geographic configuration of predicted
and calculated (observed) multiscale SPEI values based on various ML models during
testing. Model performance can be evaluated visually using Taylor [64], which provides
a polar plot to show how models reproduce observed values while emphasizing their
accuracy and precision. TD shows three statistical matrices, including standard deviation
(SD), root mean square error (RMSE), and correlation coefficient (R). There was a good
correlation between the Taylor diagram (Figure 4) and the derived performance indicators
in Table 4. SPEI has the best M5P prediction–observation agreement (orange triangle) of
any timeframe except SPEI9, as shown by the Taylor diagram. The lowest RMSE (0.424)
and highest correlations (0.869) were for the M5P model for SPEI9, while the variation in
RSS-M5P (0.968) was the most in line with observations.

Table 5. Computed statistical index values for the eight machine learning models (individual and
hybrid) during training and testing stages.

Models

Training Period (1980–2009) Testing Period (2010–2018)

R MAE RMSE RAE
(%)

RRSE
(%) R MAE RMSE RAE

(%)
RRSE
(%)

SPEI6

AR 0.929 0.268 0.363 34.20 37.70 0.675 0.594 0.770 66.90 71.90
M5P 0.785 0.443 0.596 56.58 61.97 0.757 0.491 0.674 55.26 62.92
RSS 0.809 0.431 0.567 54.99 58.95 0.687 0.571 0.740 64.32 69.12

AR-M5P 0.786 0.453 0.597 57.83 62.06 0.707 0.542 0.715 60.94 66.81
AR-RSS 0.788 0.458 0.593 58.46 61.66 0.642 0.597 0.770 67.20 71.97

RSS-M5P 0.7947 0.444 0.586 56.72 61.02 0.713 0.536 0.708 60.29 66.16
AR-M5P-RSS 0.7697 0.473 0.618 60.37 64.27 0.697 0.547 0.722 61.54 67.43

Numbers in boldface indicate the ideal values.
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Table 5. Cont.

Models

Training Period (1980–2009) Testing Period (2010–2018)

R MAE RMSE RAE
(%)

RRSE
(%) R MAE RMSE RAE

(%)
RRSE
(%)

SPEI9

AR 0.968 0.168 0.246 21.35 25.25 0.747 0.444 0.600 53.97 57.32
M5P 0.879 0.323 0.465 41.03 47.61 0.763 0.397 0.571 48.31 54.53
RSS 0.893 0.316 0.444 40.14 45.48 0.762 0.426 0.573 51.77 54.76

AR-M5P 0.858 0.346 0.503 44.01 51.55 0.736 0.447 0.615 54.34 58.75
AR-RSS 0.922 0.284 0.387 36.14 39.65 0.718 0.460 0.619 55.95 59.08

RSS-M5P 0.882 0.320 0.461 40.70 47.23 0.742 0.438 0.612 53.23 58.44
AR-M5P-RSS 0.859 0.345 0.502 43.91 51.42 0.740 0.460 0.619 55.95 59.08

SPEI12

AR 0.977 0.133 0.210 16.95 21.45 0.833 0.339 0.483 40.62 45.21
M5P 0.925 0.254 0.373 32.33 38.06 0.869 0.281 0.424 33.56 39.70
RSS 0.909 0.321 0.434 40.74 44.26 0.711 0.472 0.617 56.43 57.82

AR-M5P 0.926 0.249 0.370 31.67 37.80 0.851 0.306 0.44 36.62 41.62
AR-RSS 0.954 0.209 0.298 26.55 30.41 0.802 0.407 0.53 48.64 49.42

RSS-M5P 0.934 0.243 0.350 30.86 35.71 0.849 0.313 0.45 37.44 42.20
AR-M5P-RSS 0.928 0.246 0.365 31.21 37.22 0.847 0.324 0.456 38.74 42.75

SPEI24

AR 0.975 0.140 0.197 19.28 22.19 0.908 0.227 0.403 18.18 28.92
M5P 0.960 0.168 0.247 23.09 27.90 0.928 0.208 0.389 16.60 27.89
RSS 0.969 0.156 0.221 21.47 24.91 0.915 0.232 0.401 18.54 28.75

AR-M5P 0.958 0.182 0.254 25.09 28.71 0.884 0.269 0.436 21.49 31.30
AR-RSS 0.959 0.183 0.251 25.13 28.38 0.878 0.280 0.441 22.37 31.62

RSS-M5P 0.963 0.172 0.241 23.70 27.16 0.874 0.283 0.440 22.68 31.58
AR-M5P-RSS 0.962 0.173 0.242 23.84 27.32 0.886 0.270 0.433 21.59 31.09

Numbers in boldface indicate the ideal values.
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During the testing period (2010–2018), model performance at Rajshahi station was
evaluated using scatter plots (Figure 5). Predicted and observed values showed good
correlation. The ideal line (a 45◦ line) was aligned with the majority of the predicted
points, indicating that all models had a high degree of accuracy in their predictions. For all
timeframes, M5P had the best correlation coefficient performance (R = 0.76–0.93), while
AR-RSS had the worst (R = 0.64–0.87). On average, the scatter plots indicated that the M5P
outperformed the other models.
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SPEI data were used to create boxplots showing the 25%, 50%, and 75% quantiles
of the observed and predicted SPEI values (Figure 6). All prediction models performed
admirably in predicting SPEI quantiles at various scales, especially at higher orders. In
simulating SPEI quantiles at all scales, the M5P model showed the best overall accuracy,
while the RSS and AR models performed the worst.
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3.3. The Best Predictive Model Is Applied in Various Regions

The best predictive model (M5P) was used to predict multi-scaler SPEI values at
four different stations located throughout the drought-prone northern part of Bangladesh:
Rangpur, Borga, Mymensingh, and Khulna. Model performance was evaluated at the test
locations for the whole study period (1980–2018). According to various statistical indices,
the performance evaluation results are summarized in Table 6. The model performed
satisfactorily in terms of the statistical indices computed. The M5P predicted the SPEI-6, 9,
12, and 24 with R values ranging from 0.787 to 0.802, 0.850 to 0.882, 0.899 to 0.938, and 0.927
to 0.966, respectively. The MAE, RMSE, RAE, and RRSE were all low in terms of prediction
on all time scales. In terms of accuracy, SPEI-24 was predicted the best by the M5P model,
followed by SPEI-9 and SPEI-6. According to the findings, drought forecasting in western
Bangladesh could benefit from the M5P model developed in this study.

Table 6. Statistical performance of M5P model in predicting SPEIs at the test stations.

Models
Statistical Indices

R MAE RMSE RAE RRSE

SEPI6-Bogra 0.802 0.44 0.58 54.50 59.47
SEPI6-Khulna 0.793 0.45 0.60 54.14 60.65

SEPI6-Mymensingh 0.787 0.46 0.61 55.37 61.37
SEPI6-Rangpur 0.791 0.46 0.61 56.09 60.85

SEPI9-Bogra 0.882 0.31 0.46 38.03 46.65
SEPI9-Khulna 0.850 0.37 0.52 43.58 52.32

SEPI9-Mymensingh 0.880 0.33 0.47 40.81 46.99
SEPI9-Rangpur 0.861 0.35 0.51 42.79 50.38

SEPI12-Bogra 0.938 0.24 0.34 29.04 34.34
SEPI12-Khulna 0.899 0.30 0.44 36.15 43.37

SEPI12-Mymensingh 0.925 0.26 0.37 31.57 37.43
SEPI12-Rangpur 0.929 0.24 0.37 30.13 36.65

SEPI24-Bogra 0.962 0.17 0.27 20.60 26.45
SEPI24-Khulna 0.927 0.24 0.37 28.25 36.17

SEPI24-Mymensingh 0.961 0.18 0.27 21.94 26.80
SEPI24-Rangpur 0.966 0.16 0.26 19.28 25.17

4. Discussion

Droughts frequently affect agriculture and the livelihoods of farmers in northern
Bangladesh. Reliable forecasting of droughts is important to reduce drought impacts in the
region. However, drought analysis and prediction need reliable rainfall and temperature
data recorded for longer periods, which most of the meteorological stations in Bangladesh
do not have. ML algorithms were used in this study to overcome the limitations of climate
data. The present study revealed that the SPEI, the most widely used DI, can be accurately
forecasted using ML models for a multi-month horizon (i.e., 6, 9, 12 and 24). SPEI6, SPEI9,
SPEI12, and SPEI24-month models were optimized using the best subset regression analysis.
Predictions of SPEI using M5P were the most accurate across all time scales. The temporal
variability of SPEIs could be replicated in different parts of western Bangladesh. Water
professionals and policymakers may find this model useful for making intelligent decisions.

The studied models better predicted SPEIs over longer periods than shorter periods.
This is expected as the smoothness and randomness of SPEI time series increase with
increasing time scale. More linear data improve the machine learning models’ performance,
as was found in the current study. M5P was still able to predict lower-scale SPEI series with
an R = 0.76. A highly non-linear process can be captured using the M5P model.

A multivariate linear algorithm is how the M5P model works. The leaves on the
tree represent different linear regression models. Segmenting data and fitting it with an
appropriate regression model are made easier with this method [71]. Due to its decomposi-
tion capability, it can fit different models to various non-linear datasets. M5P’s ability to
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simulate each data point in a data series helped it to better predict linear model phenomena
than the other models tested in this study. M5P’s ability to learn efficiently and model
high-dimensional data also improved as a result of this change.

Several drought indicators have been predicted using algorithms inspired by nature
and a stochastic (time-series) model. The M5P results were compared to those of these
models (DIs). The AR and non-linear bi-linear (BL) models based on global climate indi-
cators and delayed SPI data were used to predict the meteorological drought in Ankara,
Turkey [45]. The predictive power of the BL and AR models was lower than the prediction
accuracy obtained in this study. The least-squares support vector machine (LSSVM), mul-
tivariate adaptive regression splines (MARS), and M5 tree models were used to predict
droughts in eastern Australia [42]. Prediction accuracy was reported to be higher for the
M5 tree approach. Özger et al. [72] used ANN and SVM and their hybrids with wavelet
decomposition for forecasting droughts in the Antalya region of Turkey. They showed that
hybridization improved model performance significantly, which agrees with the present
study’s findings. Nguyen et al. [73] used different ML models, including ANFIS, M5, M11
and M13 models, to predict SPEI in the Cai River basin of Vietnam. They reported M5 as the
best performing model, followed by M11 and M13. Adarsh and Janga Reddy [74] employed
stepwise linear regression, genetic programming, and M5 methods to predict standardized
precipitation indices for different regions of India. They reported superior performance
from M5 in predicting droughts in all regions. Shamshirband et al. [75] predicted SPEI
using support vector regression, gene expression programming (GEP), and M5 models and
reported higher performance with the M5 model. Barzkar et al. [76] used three ML models,
GEP, M5, and multivariate adaptive regression spline (MARS), to predict SPEIs for different
climatic conditions. They showed that the M5 model performed better in all cases.

The literature mentioned above clearly indicates the ML models’ capability to predict
droughts in different meteorological settings. The present study revealed that the ML model,
specifically M5P, was more capable of forecasting meteorological droughts over a wide
range of timescales. The study revealed that a hybrid ML model can significantly improve
the standalone ML models’ performance. Longer-period droughts are more predictable
than shorter-period droughts. This may be due to the higher variability of shorter-period
droughts. Droughts have a devastating impact on society and the economy. The findings
of this study indicate that drought forecasting models in drought-prone eastern regions of
Bangladesh have the potential to be installed as an early warning system to mitigate the
effects of drought.

5. Conclusions

Newly developed machine learning models for forecasting SPEI in Bangladesh were
evaluated in this study. In Rajshahi, Bangladesh’s most drought-prone location, the models
were developed to predict SPEI for the period from 1980 to 2018. The model was validated
at four stations distributed over the country’s western region. SPEI was accurately predicted
in Rajshahi using the M5P model. R values for SPEI-6, 9, 12, and 24 at the validation stations
were 0.787–0.802, 0.850–0.882, 0.899–0.938 and 0.927–0.966, respectively. The M5P model
can forecast droughts on multiple timescales according to correlation and low errors. As a
result of climate change, the model’s output could help predict when droughts will occur
in the country and help mitigate their growing negative effects. This study considered
only three tree-based algorithms for drought prediction. Bangladesh’s droughts can be
predicted using other ML models to see how well they work. Optimization algorithms can
be combined with machine learning models to improve predictability.
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