
Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

182

* Corresponding author. thekkan1998@graduate.utm.my

Modern Web Automation with Cypress.Io

Jyolsna Thekkan Othayoth1*, Syahid Anuar2

1,2,Razak Faculty of Technology and Informatics,

Universiti Teknologi Malaysia,54100 Kuala Lumpur
1thekkan1998@graduate.utm.my,2syahid.anuar@utm.my

Article history

Received:

20 Sept 2022

Received in revised

form:

30 Nov 2022

Accepted:

1 Dec 2022

Published online:

15 Dec 2022

*Corresponding

author

suriani.kl@utm.my

Abstract

Over the past few decades, software test automation has seen significant changes. Less manual

intervention and great test result accuracy are guaranteed by the automation tools. Web automation

has been essential to delivering continuous delivery and guaranteeing excellent quality of the

product in each iteration by automating repetitive testing as Agile software development has grown

in popularity. Despite the fact that test automation is essential, there are some shortcomings with

popular web automation tools, such as wait time problems and erratic test results, a lengthy process

for creating tests, difficulties setting up the test environment, problems with page and element load,

insufficient test result reporting, a lack of built-in commands for automating tests, the absence of

features for image testing, etc. In this case, the development and client organizations, as well as the

project team, would benefit more from a solution that is more dependable, quick, and supports

development and testing simultaneously. A more solid and powerful web automation tool is required

to successfully deliver within an agile CI/CD pipeline and to effectively handle the features of

dynamic web applications. An emerging web test automation tool called Cypress.io is becoming

more popular among the industry experts. Cypress has been highlighted as a modern web

automation tool capable of addressing the new issues posed by today's industry trends. In this

project, a test automation framework using Cypress.io is implemented for a work-in-progress

application, and the tool's effectiveness is assessed.

Keywords: Software testing, Test Automation, Web testing, Automated testing in Agile, Cypress.io

1. Introduction

 Agile Software Development is the most preferred choice in the global

software development world. It is an iterative method wherein each iteration is a

self-contained approach that consists of requirement analysis, design, coding, and

testing [1]. Quality delivery with Continuous integration, is an integral part of

successful projects in Agile; with continuous integration code is being deployed to

the production environment continuously or whenever there is a business/project

need [2]. A web automation framework that supports end-to-end automation and

continuous delivery is integral to any Agile projects. Test automation involves, tools

to automate the tests and ensure less manual intervention [3]. It helps to free up the

test resources for other effective and efficient use of them rather than executing the

repeated time-consuming tests [4]. Web automation faced longer development and

execution time that results into delayed product releases [5]; Testing contributes a

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

183

high portion of overall software life cycle, with the iterative nature of the Agile, the

traditional Software testing is not a right fit for ensuring the quality product, Agile

enforces the need for a wide and stable test automation approach to bring the

necessary agility in the project and helps it to respond to rapid changes and iterative

releases [6]. During the initial years of test automation, capture and playback tools

were popular, the tester would capture a set of action on the applications and the

tool records those actions and the tester can play back the recorded action for the

future testing [7]. In the following years, different test automation approaches have

been evolved namely,

 Linear Scripting, Structured scripting, Data driven, Keyword Driven,

Process Driven, Model Based etc. The automation approach was decided based on

the System under test and the Project characteristics [8]. Most of the popular web

automation tools have been identified as not effective for implementing continuous

integration. With the above challenges and the rapid Agile needs [9]; the industry

experts are on the verge of analyzing and exploring new Web automation tools to

meet the testing and quality needs of the modern web applications [10]. Cypress.io

is an evolving tool which is gaining more popularity in the field of test automation

for web applications. Cypress is a JavaScript-based end-to-end testing framework;

unlike other web testing tools, Cypress does not use Selenium drivers at all [11]. It

is built on NodeJS architecture. It is built on top of Mocha (JavaScript test

framework). It runs in the same loop as the web application and captures snapshots

at the time of test execution [12]. Cypress is a collection of libraries that are packed

together. It connects directly with the Application Under Test (AUT) from the

browser. The browser is used to run all Cypress test scripts. For example, to click

on a certain button, Cypress does not use a specific driver to convey the command

to the browser. Instead, it sends the click command to the button using DOM events.

As a result, test findings are executed significantly more quickly. This allows the

team to develop tests that are faster, easier, and more. Cypress uses automatic

waiting, whereas it knows that application is busy and waits on its own. For Cypress

to achieve parallel execution one will have to use docker images and it support

headless chrome. Test efficiency refers to the cost-effectiveness in relation to an

organization's resources or in this case the total effort involved in building the

automation script. The most efficient test is one that can achieve an acceptable

software quality level with the least amount of work [13]. Compared to other web

automation tools, Cypress creates fewer lines of code. This suggests that writing

automation scripts in Cypress requires less effort, resulting in a considerable gain

in test efficiency. In case of other automation tools, programs must be instantiated

with importing required libraries and web pages, whereas Cypress handles most of

the automation script directly on the browser [14]. This project aims to analyze

Cypress.io and to implement a test automation framework using cypress.io within a

development project that follows Agile CI process. The advantages and efficacy of

the tool will be discussed towards the end of the project.

2. Methodology

2.1 Introduction

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

184

 The objective of this project is to automate the E2E test cases of a web

application named ‘Smart TV’, which is under development, targeting stable,

efficient and flake free automated tests that complies with the standard guidelines

recommended by ISTQB for effective and efficient test automation. The application

under test is built in JavaScript, and tests written in JavaScript using Cypress enable

for better DEV-QE collaboration, which is an important factor in the CI process

[15]. This chapter explains the development of the whole project, that focuses on

design, implementation, execution, results, and reports. The Agile cycle for this

project will be the same as for the Smart TV development project. The set of UI

tests that should be automated will be identified based on the end-to-end

functionality that requires regression towards the end of every sprint. Then these

tests will be automated using Cypress.io and an evaluation will be performed to

understand the efficacy of the tool.

2.2 Project Plan
a) The test project will follow the same Agile development cycle of the

application under test.

b) The end-to-end UI tests that require sprint vise regression tests will be

automated.

c) The software quality engineers dedicated for the development project Smart

TV, will be responsible for automating the identified E2E tests with cypress.io,

together with their other responsibilities.

2.2 Smart TV Project Structure
There are 3 Software Quality Engineers, dedicated for the Smart TV Project

including one senior QE, and all three of them are responsible for the test

automation with Cypress.io. The team can seek occasional advises from the Test

automation Architect who is basically serving as a test automation consultant across

multiple projects. The quality team within the Smart TV project reports to the

Software Quality Manager who oversee the quality team deliverables across

multiple projects.

Figure 1. Scrum Team Structure for the Smart TV Project

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

185

The Smart TV application follows an Agile development model with sprints

spanning 2 weeks (10 working days) per sprint. As in the Figure 1, the scrum team

for the ‘Smart TV’ project comprises of Product Owner who is responsible for

preparing the requirements and pass to the scrum team, Scrum

Master who is basically an agile coach makes sure that the team can function and

deliver within the ‘agile processes and practices’ and helps to address any

bottlenecks that impact the team delivery and efficiency. The scrum team comprises

of 6 Developers and 3 QEs.

2.4. Identifying tests to be automated

Test cases to be automated as part of the Cypress.io implementation have been

identified based on three parameters basically,

a. Tests for critical features of the application.

b. Tests covering end to end business flows.

c. Tests that require mandatory regression tests for each release.

2.5. Generic Test Automation Architecture

The test framework with Cypress.io follows the generic Test Automation

Architecture (TAA) recommended by ISTQB as in the Figure 2.

Figure 2. Generic Test Automation Architecture recommended by

ISTQB

As in the Figure 2, the Test Automation System (TAS) interacts with the Project

Management System, which is Jira in Smart TV project and Configuration

management which is GitHub and Test Management which is TestRail in the

current project.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

186

2.6. Test Automation framework with cypress

Figure 3 depicts the test automation framework with Cypress architecture, Cypress

comprises of all required libraries within it such as assertion libraries and mocking

mechanism. This makes installing and using Cypress easy. Cypress directly

communicates with the AUT through the browser unlike other automation tools.

Fig. 3. Test Automation framework with Cypress.io

Cypress uses JavaScript as the programming language. Test automation scripts are

built using the Page Object Model (POM). As a good test automation practices to

improve maintainability and to maintain the modular structure of the project, page

objects and tests are separated from each other [14].

2.7. Tools Required for Test Framework Development

Table 1 lists out the tools used for Test Framework Development and the

purpose/role of each tool.

Table 1. Tools used for Test Framework Development

SI. No. Tool Purpose

1 Cypress.io Web test automation

2 Visual Studio Code

1.62 IDE

Integrated Development

Environment

3 GitHub Source code management

4 Jenkins Automation tool used for CI

purposes

5 Node JS JavaScript runtime environment

6

Mocha chai

Mocha is a JavaScript test

framework and Chai is TDD

assertion library

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

187

7

Node Server

The Node Server sets up an HTTP

server that listens for server ports,

also respond to clients

8 Run-Server Static file server used on a specific

port

9 Local storage manager Used to modify local and session

storage data

10 Allure Test reporting extension

11 Jira Agile Project Management tool

12 TestRail TestRail is an end-to-end test

management tool

13 Microsoft Office 2019 Documentation

2.8. Project Setup

Once the above tools have been installed and the setup has been completed, a test

folder, as in the Figure 4(a) will be created under the root folder (Smart-TV) of UI

Project for the AUT (Smart TV application). As highlighted in Figure 4(a) Page

Object Model has been adopted and the tests are separated from the page.

Figure 4. (a, b, c) Smart-TV Project - Folder Structure

Within the test folder there is another folder named Cypress that contains another 2

folders test and support Figure 4(b). All class implementations are done within

pages folder inside the support folder and all tests are implemented in tests folder

Figure 4(c). This way pages and tests are separated from each other.

2.9. Code Snippet

In this project Cypress tests are implemented using Mocha chai framework. Mocha

is a JavaScript test framework. It is used to plan and perform tests, and it supports

asynchronous testing as well. Chai is a test-driven development (TDD) assertion

library for NodeJS and the browser. There are two main function calls needed when

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

188

writing a test using Mocha chai framework: describe () and it (). In Mocha, describe

() is merely a technique to arrange tests. It () is used to run a single test case. Figure

5 depicts the code snippet for implementing tests and pages. In the Figure 5 (a) the

test is implemented using describe () and it () functions, Figure 5 (b) depicts the

class implementation of corresponding page.

Figure 5. (a, b) Smart-TV Code Snippet Sample

Once tests are implemented using the page object model, open the cypress test

window by executing the command ‘npx cypress open’ on the terminal. Upon

successful completion of executing the command Cypress window opens as in

Figure 6(a). Meanwhile, POM is a high-level abstraction that isolates web pages

from test cases to increase code reuse. It minimizes the coupling between test cases

and web pages, allowing them to be independent of one another and more easily

reused in other sections of the code. Furthermore, POM implementation makes it

easy to write test cases.

Figure 6. (a, b) Cypress Test Window

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

189

The test that needs to be executed can be triggered by double clicking on the test

in the newly opened Cypress window. Test will start to execute and upon

completion the test result will be shown as the output as in the Figure 6(b). In case

of failure the execution window will provide details of the failure. The QE can

also debug backtracking to the failed test. In addition to the debugging

capabilities, Cypress also provides a feature for inspecting the elements on the

webpage.

2.10. The implementation of CI process integrating the cypress.io test

framework

The Continuous integration process flow with the Cypress implementation has

been depicted in Figure 7. The steps in CI process with Cypress:

a) Developer creates a feature branch from the master branch.

b) Completes development of new feature and write unit/integration tests.

c) Creates a PR with WIP tag.

d) QE creates build in Jenkins and run regression tests locally.

e) QE writes test scripts and merge the changes to the same branch.

f) Run E2E tests in Jenkins.

g) Reviewer approves the PR, and the PR will be merged to the master.

Figure 7. Continuous integration process flow with the Cypress

implementation

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

190

The development and testing take place in the same cycle within the CI process.

The frontend developer creates a branch locally in his/her machine and completes

the development of the feature and verify that the unit and integration tests pass;

Next the developer proceeds to push the changes to GitHub remote repository and

creates a pull request (PR). In the PR, the developer would provide a comment WIP

indicating that the feature is under work in progress and not ready to merge to the

master. Next the developer will move the feature in the Project management

platform Jira, from ‘In progress’ to ‘Ready for Review’ notifying QE team tagging

PR as 'Ready for Review’. Figure 8 depicts a pull request with changes approved

and ready to be merged to the Master.

Figure 8. GitHub pull request

QE will create the build in Jenkins and download it. QE will also checkout to the

same branch and run regression tests locally. QE develops the test script for the new

feature in the same branch, The QE will test the newly developed feature by

executing the tests. Once QE completes building tests and verification for the new

feature, the changes will be merged to the same branch. QE will trigger the end-to-

end test execution in Jenkins by providing a comment e2e test in the PR. This is

achieved through GitHub and Jenkins integration. Once all the end-to-end test pass

in Jenkins, QE will update the PR with a comment ‘Ready for merge’. One of the

reviewers within the project team will review the PR and approves it for merging if

the changes meet all criteria and tests are passed. Then Dev/ QE will Merge the PR

to the master. Now the developer can move the story in the Jira board from ‘In

Review’ lane to ‘In QA’ lane tagging the build number in the comment. Figure 9

depicts the Jenkins job scheduled to run E2E tests.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

191

Figure 9. The Jenkins job scheduled to run E2E tests

The QE will execute the regression tests triggering a Jenkins job as shown in the

Figure 9, and make sure that all the E2E tests passed on QA environment before the

story gets moved to the Done column. In this approach the development phase and

testing phases are integrated together. This ensure both Development and Test code

goes to the master at the same time; also, it helps to ensure that each feature is tested

before merging to master. Also, it helps to make sure that tests are maintained for

every single change in the development code. The corresponding Jira process flow

has been depicted in Figure 10.

Figure 10. Jira workflow for a new feature

The Jira process contains six stages, starting from ‘New’, ‘In Progress’, ‘In
Review’, ‘In QA’, ‘Verified by QA’, and ‘Done’ (Accepted).

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

192

2.11. Test Results and Reporting

Tests results reporting is achieved through integrating Allure extension to the test

automation framework, Once the Jenkins job has been completed with the test

execution Allure reports will be available in Jenkins. The test reports can be

configured to share in email or other communication channels such as ‘Slack’, as

per the stakeholder’s preferences. Figure 11 depicts Allure Reporting for the Smart

TV test execution which is integrated to Jenkins.

Figure 11. Allure Reporting for the Smart TV test execution

The above Figure 11 illustrates the test reporting with Allure for AUT test

execution. In the above figure there are 40 test cases within 8 test runs. The 8 Test

runs are: Schema Create, Ad-Schema, AdEdit, Ad-CRUD, Schema-Edit, Ad-Spec,

Annual Plan-Create, Ad-Status. All 8 Test runs together contains 40 test cases out

of which 36 tests (96%) passed in the current test execution. The specific test cases

can be verified by double clicking on the test run.

 3. Results

3.1. Automated End to End tests for Smart TV

There are 40 test cases identified and automated as part of this project. Tests are

identified based on parameters detailed in section 2.4. Figure 12 illustrates the E2E

automated tests for Smart TV.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

193

Figure 12. E2E automated tests for Smart TV

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

194

In Figure 12, there are 4 columns, Jira ID, TestRail Id, Title, and Automation Status.

Requirements are stored in project management tool Jira and listed in the form of

Jira Ids, each requirement has a unique Jira ID. Test cases are captured and listed in

the form of Jira Ids, each test case has a unique TestRail ID. Title indicates the

TestRail title of each test case. Automation Status used to indicate whether the test

has been automated or not.

3.2. Requirements Traceability Matrix

Generally, the requirements are tracked using the Traceability Matrix which is also

called Requirements Traceability Matrix (RTM). The requirements are matched

against test cases, with RTM the test coverage and traceability are achieved.

In this project, the RTM is not maintained explicitly, however the requirement

traceability is achieved integrating Project Management tool Jira and TestRail.

Every User story/requirement in Jira will have a corresponding test case in TestRail.

Requirements Traceability is achieved here within project and test management tool

integrations. This ensures that all requirements are covered as tests and all tests are

automated as part of the test automation project.

4. Conclusions

Cypress is an E2E web automation solution that is more dependable, faster, and

allows concurrent development and testing. Until Cypress.io era, end-to-end testing

was not easy, but with Cypress setting up, writing, running, and debugging tests are

easier compared to existing tools, implementing the CI process also found to be

successful with Cypress.io. Most testing tools run outside of the browser and

execute remote commands over the network, but Cypress runs alongside the AUT

in the same run loop. Cypress is powered by a Node.js server. Cypress and the

Node.js process are in constant communication, synchronization, and task execution

mode. The ability to respond to the application's events in real time is enabled by

having access to both sections (front and back).

Cypress can also read and change web traffic on the fly at the network layer. This

allows Cypress to change not only what comes in and out of the browser, but also

code that could interfere with its ability to automate it. Cypress finally has complete

control over the automation process, putting it in the unique position of being able

to comprehend everything that happens inside and outside of the browser. As a

result, Cypress can produce more consistent results than any other web testing tool.

Cypress can also tap into the operating system for automation activities because it

is installed locally on the DEV-QE workstation. This allows capturing screenshots,

capture movies, and do general file system and network tasks. Cypress.io can be

evaluated with below parameters:

a) Setting up tests: Setting up Cypress is easier compared to existing

automation tools, no dependencies to be installed or configured, no servers

or driver bindings.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

195

b) Writing tests: Cypress tests are simple to read and understand for any third

person, which makes it easier when new team members are added to the

team.

c) Running tests: Cypress renders content as quickly as browser allows. One

can watch tests run in real time as they work on the application.

d) Debugging failures: Debugging is easy in Cypress; the error messages are

detailed and precise. Also, can back track to the failures upon clicking on it.

Error messages are more readable compared to other tools.

e) Time travel: Cypress takes screenshots while the tests are running. To

observe exactly what happened at each stage and for further inquiry, the test

analyst can hover over the in the Command Log.

f) Realtime reloads: Cypress reloads the test automatically whenever it is

changed. One may observe commands run in real time in the application.

g) Consistent results: Test results are stable, fast and flake free.

h) Debuggability: The test analyst does not need to do any guessing for the

failures, debugging is possible with developer tools too.

i) Automatic waiting: There is no need for the test analyst to add additional

waits in the code, Cypress automatically waits for commands before

executing the next step.

j) Screenshots and videos: Screenshots and videos are available throughout

the test, which makes it easier to track back in the event of a failure.

It is identified that most of the features and specialties mentioned in the

Cypress.io official portal is very much useful when it comes to reality.

Cypress.io has been identified as a promising web automation tool with the

implementation of new framework.

References

[1] Vahid Garousi, Alper Buğra Keleş, Yunus Balaman and Zeynep Özdemir Güler Testinium A.Ş. (2020) ‘Test

automation with the Gauge framework: Experience and best practices’, Part of the Lecture Notes in Computer Science
book series (LNCS, volume 12250).

[2] Abdul Rauf EM and E. Madhusudhana Reddy. (2015) ‘Software Test Automation: An algorithm for solving system
management automation problems’, Research and Development Centre, Bharathiyar University, Coimbatore641014,
Tamil Nadu, India.

[3] Rosnisa Abdull Razak and Fairul Rizal Fahrurazi. (2011) ‘Agile Testing with Selenium’, 2011 Malaysian Conference
in Software Engineering.

[4] Kai Presler-Marshall, Eric Horton, Sarah Heckman, Kathryn T. Stolee. (2019) ‘Wait Wait. No, Tell Me. Analyzing
Selenium Configuration Effects on Test Flakiness’, 2019 IEEE/ACM 14th International Workshop on Automation
of Software Test (AST), Montreal, QC, Canada.

[5] Alok Mishra and Ziadoon Otaiwi. (2020) ‘DevOps and software quality: A systematic mapping’, Faculty of Logistics,
Molde University College-Specialized University in Logistics, Molde, Norway.

[6] Mubarak Albarka Umar and Chen Zhanfang. (2019) ‘A Study of Automated Software Testing: Automation Tools

and Frameworks’, 1,2 School of Computer Science and Technology, Changchun University of Science and
Technology.

[7] Fatini Mobaraya and Shahid Ali. (2019) ‘Technical analysis of Selenium and Cypress as Functional Automation
Framework for Modern Web Application Testing’, Department of Information Technology, AGI Institute, Auckland,
New Zealand.

[8] Satish Gojarea, Rahul Joshib and Dhanashree Gaigaware. (2015) ‘Analysis and Design of Selenium WebDriver
Automation Testing Framework’, 2nd International Symposium on Big Data and Cloud Computing (ISBCC’15).

[9] Maurizio Leotta1, Diego Clerissi1, Filippo Ricca1 and Cristiano Spadaro. (2013) ‘Repairing Selenium Test Cases:
An Industrial Case Study about Web Page Element Localization’, 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation, Luxembourg, Luxembourg.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

196

[10] Eliane Figueiredo Collins and Vicente Ferreira de Lucena Jr. (2012) ‘Software Test Automation Practices in Agile
Development Environment: An Industry Experience Report’, 2012 7th International Workshop on Automation of
Software Test (AST), Zurich, Switzerland.

[11] Abdullah, N. N. B., Honiden, S., Sharp, H., Nuseibeh, B., & Not- kin, D. (2011) ‘Communication Patterns of Agile
Requirements Engineering’, Proceedings of the 1st Workshop on Agile Requirements Engineering (pp. 1–4).

[12] Alexey Ieshin, Marina Gerenko and Vadim Dmitriev. (2009) ‘Test Automation: Flexible Way’, 2009 5th Central and
Eastern European Software Engineering Conference in Russia (CEE-SECR). Moscow, Russia.

[13] Megan Sumrell. (2007) ‘From Waterfall to Agile – How does a QA Team Transition?’, Agile 2007 (AGILE 2007),
Washington, DC, USA

[14] Sandeep Sivanandan and Yogeesha C. B. (2014) ‘Agile Development Cycle: Approach to Design an Effective Model
Based Testing with Behavior Driven Automation Framework’, 20th Annual International Conference on Advanced
Computing and Communications (ADCOM).

[15] Michel Nass, Emil Alégroth and Robert Feldt. (2020) ‘Why many challenges with GUI test automation (will) remain’,
H. SERL, Blekinge Institute of Technology, Sweden, P. SERL, Blekinge Institute of Technology, Sweden, Chalmers
University of Technology, Sweden.

	Abstract
	2.4. Identifying tests to be automated
	2.5. Generic Test Automation Architecture

	Figure 2. Generic Test Automation Architecture recommended by ISTQB
	2.6. Test Automation framework with cypress

	Fig. 3. Test Automation framework with Cypress.io
	2.7. Tools Required for Test Framework Development

	Table 1. Tools used for Test Framework Development
	2.8. Project Setup
	Figure 4. (a, b, c) Smart-TV Project - Folder Structure
	2.9. Code Snippet

	Figure 5. (a, b) Smart-TV Code Snippet Sample
	Figure 6. (a, b) Cypress Test Window
	2.10. The implementation of CI process integrating the cypress.io test framework

	Figure 7. Continuous integration process flow with the Cypress implementation
	Figure 8. GitHub pull request
	Figure 9. The Jenkins job scheduled to run E2E tests
	Figure 10. Jira workflow for a new feature
	2.11. Test Results and Reporting

	Figure 11. Allure Reporting for the Smart TV test execution

	3. Results
	3.1. Automated End to End tests for Smart TV
	Figure 12. E2E automated tests for Smart TV
	3.2. Requirements Traceability Matrix

	4. Conclusions
	References

