
Open International Journal of Informatics (OIJI) Vol. 10 No.

1 (2022)

114

A Preliminary Study on Malware Classification

using Image Pattern

Fauzi Mohd Darus1, Noor Azurati Ahmad2, Aswami Fadillah

Mohd Ariffin3

Faculty of Technology and Informatics Razak, Universiti

Teknologi Malaysia
1fauzimdarus@gmail.com

2azurati@utm.my
3aswami@cybersecurity.my

Article history

Received:

23 May 2022

Received in revised

form:

2 June 2022

Accepted:

15 June 2022

Published online:

30 June 2022

*Corresponding

author

azurati@utm.my

Abstract

Android operating system occupies more than 80% of the world market share in mobile operating

system. The popularity of the Android operating system motivates cybercriminals to develop

malware targeting this platform. In the first half of the year 2021, there were 1.3 million new

malicious Android applications circulated on the globe which the malware analysts need to analyse.

Traditional malware analysis techniques are no longer reliable to analyse the huge amount of

malware, and they require more resources to process and store them. This research proposed a

different approach to analyse Android malware and maintain high classification accuracy with

minimal resource usage. 3,900 Android applications consist of malware downloaded from Android

Malware Dataset, and benign samples downloaded from APKMirror website were used in this

research. The preliminary results of the study show that the image pattern from the same family are

analogous meanwhile different family of malware presents distinctive image pattern. Thus, further

analysis is needed for different sizes and rotation of extracted malware images.

Keywords: Malware classification, Embedded Security, Machine Learning, Embedded System,

Image Pattern, Visualisation techniques,

1. Introduction

We live in the digital era where most of our daily activities involve the Internet.

Smartphone is the technology in our hands that we use to get connected to the

Internet and communicate with our families and friends. With smartphones, we can

send chat messages, get the latest updates from online news, or socialize with our

friends using social media.

G Data is a company that developed the world’s first antivirus software had

released a report that shows more than 1.3 million new malicious Android

applications were in circulation in the first half of the year 2021 [1]. This indicates

Open International Journal of Informatics (OIJI) Vol. 10 No. 1(2022)

115

that cyber-criminals are eager to target Android devices and they keep on releasing

more and more Android malware every day. The Android malware comes in several

types and there are trojan, backdoor, worms, botnet and spyware [2].

The rest of the paper is organized as follows: Section 2 summarizes the existing

literature related to this study. The data source and methodology are presented in

Section 3. This is followed by the results and discussion in Section 4. Finally,

Section 5 provides the conclusion of this study.

2. Literature Review

There are two types of analysis that are normally being used by malware analysts;

static analysis and dynamic analysis [3]. Static analysis or signature-based analysis

is based on specific strings from the disassembled code without executing the binary

file. These strings act as the feature and signature of the malware. This analysis can

quickly capture the syntax and semantic information for thorough analysis based on

the signature database. Even though this technique is fast and accurate, it is easily

disturbed if the malware uses code obfuscation and encryption technology. It cannot

detect new malware because the feature of the new malware is not found in the

signature database [4].

The second type of analysis is dynamic analysis. This technique will analyse the

malware behaviour such as network activities, system calls, and file operations by

executing the malware in a sandbox. This technique can be used to detect newly

created malware because it is not dependent on the malware signature.

Unfortunately, this technique has disadvantages where it takes time to execute and

affects the system’s performance [5].

Naseer et al [6] had summarised issues and challenges in conducting malware

analysis. One of the challenges is the limited number of computing and storage

resources in malware analysis. Due to the number of new malware that keeps

emerging, malware analysts need to continually gather these malwares to keep their

malware detection accurate. This activity had cost them money to maintain their

machine processing power and storage space resources.

Visualization-based techniques have been introduced to analyse computer

malware where the binaries of the malware were translated into images and analysis

were done on the images [7]; [5]; [8]; [9]; [10]). The techniques had improved the

way to identify and classify malware binaries without the need to do in-depth

analysis and achieved more than 90% classification accuracy by using machine

learning on the images.

The machine learning algorithms that were used to classify the malware are K-

Nearest Neighbours ([11];[12];[8];[9]), Random Forest and Support Vector

Machine [13]; [8];[9], XGBoost and LightGBM [14].

Open International Journal of Informatics (OIJI) Vol. 10 No. 1(2022)

116

Many studies on visualisation-based techniques have been done on computer

malware but not many studies on Android malware [15]; [16]. Based on the

promising results from computer malware studies, these techniques will be used to

identify and classify Android malware.

2.1 Malware Visualisation

Malware visualisation technique was first introduced by L. Nataraj where the

computer malware binaries were presented in grey scale images [17]. A byte

contains 8 bits (8 binary numbers) where these numbers can be converted into

decimal numbers starting from 0b00000000 (0) up to 0b11111111 (255). Each byte

represents a grey level where 0 represents black, and 255 is white, while the other

values between these two numbers represent different degrees of grey colour.

These bytes values are organised into a two-dimensional matrix and visualised

as an image. Based on L. Nataraj., the image's width depends on the size of the

binary file while the height is changed accordingly as shown in Table 1.

Table 1:Image width based on file size range

File Size Range Image Width

< 10 kB 32

10 kB – 30 kB 64

30 kB – 60 kB 128

60 kB – 100 kB 256

100 kB – 200kB 384

200 kB – 500kB 512

500 kB – 1000 kB 768

> 1000 kB 1024

By visualising the malware binary into an image, malware analysts can visually

view the malware structure and identify the similarity between one image and the

other. The example is shown in Figure 1 below, where two malware families show

different image patterns. However, when it comes to malware from the same family,

the images have the similarities of the same patterns between each malware instance

[7].

Open International Journal of Informatics (OIJI) Vol. 10 No. 1(2022)

117

Figure 1: Malware visualisation from two different malware families

Another technique was done by [11] where he visualised the Android malware

binaries into four different colour formats, i.e. Grayscale, RGB, CMYK and HSL.

For the grayscale, the technique he used is similar to [17]. RGB stands for Red (R),

Green (G) and Blue (B) is a colour format that is very popular in computer graphics

and image processing. Instead of just using 8 bits, RGB will use 24 bits to define a

colour from 16 million possible colours.

While for CMYK, the colour format is usually used for printing purposes, and it

is almost similar to RGB. It is just that the CMYK represents the colour components

for Cyan (C), Magenta (M), Yellow (Y) and Black (K). Finally, for HSL it stands

for Hue (H), Saturation (S) and Luminance (L) where hue defines the colour tone,

saturation defines the colour tone with grey, and luminance defines the lightness of

the colour.

3 instances of
malware from

Dontovo.A
family

3 instances of
malware from

Fakerean family

Open International Journal of Informatics (OIJI) Vol. 10 No. 1(2022)

118

Figure 0: Sample of benign and malware in four image formats (Grayscale,

RGB, CMYK and HSL) by [10]

2.2 Feature Extraction

Image processing can be used to help in image segmentation and classification

of images. One of the algorithms that can be used in feature extraction is GIST [7];

[15]. GIST contains the scene feature information obtained in a short time, which

can be used as a vector to represent the image feature. It has five perceptual

properties [18] naturalness, openness, roughness, expansion and ruggedness.

Another feature extraction algorithm is Local Binary Pattern [19]. The image

pixels are reorganized into a 3x3 grid and the value at the centre is the threshold for

the grids. The threshold value will be compared with the neighbour pixels. If the

neighbour’s pixel value is greater than the threshold, the value for the neighbour

will be ‘1’ and if the neighbour’s pixel value is less than the threshold, the value

will be ‘0’.

2.3 Image Classification

Image classification is a proses to identify and classify samples with features

similarities from the trained data. The classification can be done by using machine

learning algorthims where the features will be trained and tested with the model.

Random Forest (RF) is one of the machine learning algorithms that can be used for

classification. RF has been used in many types of research related to malware image

classification [11]; [15]. RF is an ensemble machine learning where it works by

constructing a multitude of Decision Tree during training time and providing the

class based on the total votes from the Decision Tree output.

Open International Journal of Informatics (OIJI) Vol. 10 No. 1(2022)

119

XGBoost is another machine learning that can be used for image classification.

XGBoost or eXtreme Gradient Boosting is a scalable machine learning for tree

boosting. In 2015, 17 out of 29 machine learning challenges were solved using

XGBoost machine learning. It uses less resources, less training time and produces

high prediction accuracy [20].

3. Data and Methodology

3.1 Data Source

Related works had been studied, discussed and reviewed to identify the problem

related to Android malware analysis. The currently available techniques to visualize

and classify Android malware were identified. The type of image to generate, image

feature extraction algorithms to be used, and relevant machine learning algorithms

to classify the image had been identified in this phase. In this phase, we able to

identify how to calculate the accuracy of the classification technique.

Data used for this study are APK files from two categories, malware and benign

samples. We have obtained 24,553 Android malware samples from Android

Malware Dataset project from Argus Cyber Security [21]. This dataset contains 71

malware families collected from the year 2010 until 2016.

3.2 Image Creation

One classes.dex file will be extracted from each randomly selected APK file. In

this phase, all these data sections including the classes.dex will be converted into 8-

bit gray scale image.

But before the input file can be converted into an 8-bit image, the script will get

the size of the input file. This file size is used to determine the image's width that

will be created based on the information in Table 1.

The input file will be read as binary and each 8-bit (1 byte) of the data will be

converted into gray scale pixel of the image. If the 8-bit value is 0b00000000 (0),

the pixel colour will be black. And if the 8-bit value is 0b11111111 (255), the pixel

will be white. While the byte value between these two numbers will represent

different degrees of grey colour.

And finally, the images will be resized into 64x64 pixels to ensure all images are

in using the same dimension for feature extraction and classification process in the

later phase.

3.3 Image Feature Extraction

Open International Journal of Informatics (OIJI) Vol. 10 No. 1(2022)

120

Computer vision cannot view the image as humans do. If the image has a ‘car’

object, humans can identify the image has tyres, headlamps, door, etc that represent

a ‘car’. But for computer, it needs digital information to analyse and translate that

data as a ‘car’.

To get that information, the features from the image need to be extracted where

the computer will use this information to identify and classify the image

accordingly.

GIST descriptor is an image feature extraction that will be used in this

experiment. It will extract the information of the scene using low dimensional

feature vectors, and it performs well in scene classification.

The image files created from the previous phase will be the input in this

workflow. The system will extract the malware family name based on the filename

format that we have set in the previous section.

Then the system will extract the features from the given image using the GIST

descriptor. The features will then be stored in a dataset based on the family name,

section type and orientation.

For example, we have ten images from ‘fusob’ malware family that have been

rotated to 90° from ‘data’ section. The system will append all features from these

ten images into one single NumPy file and become the dataset for that image group.

This process is repeated until all images have been extracted their features.

4. Results and Discussion

The input for this experiment is the APK files consisting of benign and malware

samples. For benign samples, 300 APK files were downloaded from APKMirror

website. While for the malware samples, 300 APK files were randomly selected

from Android Malware Dataset (AMD), released by Argus Lab.

4.1 APK benign and malware samples

Table 2 shows the number of samples and Android malware families that have

been randomly selected for this experiment. These samples consisted of 300 APK

files from APKMirror website and 3,600 samples are the malware APK files from

12 different families in Android Malware Dataset.

Open International Journal of Informatics (OIJI) Vol. 10 No. 1(2022)

121

Table 2: APK files for benign and malware samples

No Type Family Name Source Number of Samples

1. Benign APKMirror APKMirror 300

2. Malware Airpush AMD 300

3. Malware Bankbot AMD 300

4. Malware Dowgin AMD 300

5. Malware Droidkungfu AMD 300

6. Malware Fakeinst AMD 300

7. Malware Fusob AMD 300

8. Malware Jitsu AMD 300

9. Malware Kuguo AMD 300

10. Malware Lotoor AMD 300

11. Malware Mecor AMD 300

12. Malware Rumms AMD 300

13. Malware Youmi AMD 300

 Total 3,900

The randomly selected samples from Android Malware Dataset is recorded in a

log file for reference. The log file records the path where the APK files were

selected. Some malware families in Android Malware Dataset might have multiple

varieties. With this log file, we can easily identify the selected APK files from which

variety and family.

Figure 7 shows the APK files that were randomly selected from ‘airpush’

malware family and all of them came from ‘variety1’. As been noticed, Android

Malware Dataset used the file’s MD5 hash as the APK filename.

Open International Journal of Informatics (OIJI) Vol. 10 No. 1(2022)

122

Figure 7: List of randomly selected APK files from 'airpush' family

4.2 Android malware images from same family

Table 3 shows four images of Android malware samples from Airpush and

FakeInsta families. As you can see, the patterns for these four images are the same

for each family. Even though their image lengths are different, but their image

patterns are similar. This can be concluded that Android malware from the same

family will have the same image pattern.

Open International Journal of Informatics (OIJI) Vol. 10 No. 1(2022)

123

Table 3: Image of malware from same family

Airpush #1 Airpush #2 Airpush #3 Airpush #4

4.3 Android malware images from different families

However, when the malware came from different families, the image patterns

are different. Table 4 shows the image pattern of malware from airpush, bankbot,

dowgin and droidkungfu family. All these images show different image patterns

from each other.

Open International Journal of Informatics (OIJI) Vol. 10 No. 1(2022)

124

Table 4: Image pattern from different malware families

Airpush Bankbot Dowgin Droidkungfu

4.4 Resized Android malware images

After the images had been created, they were resized into 64x64 pixel. This

process is to standardize the image dimension so that all images are in the equal size

for feature extraction and classification.

Table 5 shows four-section images of an airpush malware that have been resized

into 64x64 pixels dimension.

Table 0: Resized image of a malware from airpush family

Full Header Data String

Open International Journal of Informatics (OIJI) Vol. 10 No. 1(2022)

125

5. Conclusion

In conclusion, this study is significant because currently, there is not much

research on Android malware using machine learning with visualisation approach.

Based on the initial work, we found a lot of research was done on computer malware

[7];[5];[8];[9]). These research were successful and produced accurate malware

classification results. Using this as motivation, we would like to use the same

approach to classify Android malware and to improve the resource usage of the

analysis. From this research, we can compare the classification performance with

other machine learning algorithms.

Previous research only used classes.dex file and the data section from classes.dex

to conduct Android malware classification. This research used strings from

classes.dex and converted them into images and used them for Android malware

classification with machine learning. The preliminary results of the study show that

the image pattern from the same family are analogous meanwhile different family

of malware presents distinctive image pattern. Thus, further analysis is needed for

different sizes and rotation of extracted malware images.

Acknowledgement

This work has been supported by the grant from UTM and Ministry of Higher

Education (MOHE) with the project number R.K130000.7314.4B581.

References

[1] G DATA Software AG (2021) G DATA Mobile Malware Report: Criminals keep up the pace with Android

malware, G DATA.
[2] Mahindru, A. and Sangal, A. L. (2021) ‘MLDroid—framework for Android malware detection using machine

learning techniques’, Neural Computing and Applications, 33(10), pp. 5183–5240.

[3] Hadiprakoso, R. B., Kabetta, H. and Buana, I. K. S. (2020) ‘Hybrid-Based Malware Analysis for Effective

and Efficiency Android Malware Detection’, in 2020 International Conference on Informatics, Multimedia,

Cyber and Information System (ICIMCIS), pp. 8–12.
[4] International Data Corporation (2022) ‘Smartphone OS’, IDC.

[5] Karimi, A. and Moattar, M. H. (2017) ‘Android ransomware detection using reduced opcode sequence and

image similarity’, in 2017 7th International Conference on Computer and Knowledge Engineering (ICCKE),

pp. 229–234.

[6] Naseer, M., Rusdi, J. F., Shanono, N. M., Salam, S., Muslim, Z. Bin, Abu, N. A. and Abadi, I. (2021)
‘Malware Detection: Issues and Challenges’, Journal of Physics: Conference Series. {IOP} Publishing,

1807(1), p. 12011.

[7] Nataraj, L., Karthikeyan, S., Jacob, G. and Manjunath, B. S. (2011) ‘Malware Images: Visualization and

Automatic Classification’, Proceedings of the 8th International Symposium on Visualization for Cyber

Security. Pittsburgh, Pennsylvania, USA: ACM, pp. 1–7.
[8] Makandar, A. and Patrot, A. (2017) ‘Malware class recognition using image processing techniques’, in 2017

International Conference on Data Management, Analytics and Innovation (ICDMAI), pp. 76–80.

[9] Manavi, F. and Hamzeh, A. (2017) ‘A New Method for Malware Detection Using Opcode Visualization’, in

2017 Artificial Intelligence and Signal Processing Conference (AISP), pp. 96–102.

[10] Liu, X., Lin, Y., Li, H. and Zhang, J. (2020) ‘A novel method for malware detection on ML-based
visualization technique’, Computers & Security, 89, p. 101682.

[11] Kumar, A., Sagar, K. P., Kuppusamy, K. S. and Aghila, G. (2016) ‘Machine learning based malware

classification for Android applications using multimodal image representations’, in 2016 10th International

Conference on Intelligent Systems and Control (ISCO), pp. 1–6.

[12] Nataraj, L. and Manjunath, B. S. (2016) ‘SPAM: Signal Processing to Analyze Malware’, IEEE Signal
Processing Magazine, 33(2), pp. 105–117.

[13] Nataraj, L. (2015) A Signal Processing Approach to Malware Analysis.

Open International Journal of Informatics (OIJI) Vol. 10 No. 1(2022)

126

[14] Pan, Q., Tang, W. and Yao, S. (2020) ‘The Application of {LightGBM} in Microsoft Malware Detection’,

Journal of Physics: Conference Series. {IOP} Publishing, 1684(1), p. 12041.

[15] Manzhi, Y. and Qiaoyan, W. (2017) ‘Detecting android malware by applying classification techniques on

images patterns’, in 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis

(ICCCBDA), pp. 344–347.
[16] Jung, J., Choi, J., Cho, S., Han, S., Park, M. and Hwang, Y.-S. (2018) ‘Android malware detection using

convolutional neural networks and data section images’, in Hung, C.-C. and Said, L. Ben (eds) Proceedings

of the 2018 Conference on Research in Adaptive and Convergent Systems, {RACS} 2018, Honolulu, HI,

USA, October 09-12, 2018. ACM, pp. 149–153.

[17] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q. and Liu, T. Y. (2017) ‘LightGBM: A
highly efficient gradient boosting decision tree’, in Guyon, I., Luxburg, U. V, Bengio, S., Wallach, H., Fergus,

R., Vishwanathan, S., and Garnett, R. (eds) Advances in Neural Information Processing Systems. Curran

Associates, Inc., pp. 3147–3155.

[18] Oliva, A. and Torralba, A. (2001) ‘Modeling the shape of the scene: A holistic representation of the spatial

envelope’, International Journal of Computer Vision.
[19] Luo, J.-S., Chia, D. and Lo, -Tien (2017) ‘Binary Malware image Classification using Machine Learning with

Local Binary Pattern’, in 2017 IEEE International Conference on Big Data (Big Data), pp. 4664–4667.

[20] Wang, J., Li, B. and Zeng, Y. (2018) ‘XGBoost-Based Android Malware Detection’, in Proceedings - 13th

International Conference on Computational Intelligence and Security, CIS 2017, pp. 268–272.

[21] Wei, F., Li, Y., Roy, S., Ou, X. and Zhou, W. (2017) ‘Deep Ground Truth Analysis of Current Android
Malware’, in International Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment (DIMVA’17). Bonn, Germany: Springer, pp. 252–276.

	Abstract
	3.3 Image Feature Extraction
	4.2 Android malware images from same family
	4.3 Android malware images from different families
	4.4 Resized Android malware images

	Acknowledgement
	References

