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Abstract: The least-squares finite element method (LSFEM) is successfully employed for the discretiza-
tion of the Stokes equations and the numerical computation of the behaviour of two-dimensional
Stokes flow in a straight rectangular channel under the effect of a point-source magnetic field. LSFEM
has several advantages in terms of theory and computing, where it can always create a symmetric,
positive-definite algebraic system of equations. It also allows for using an equal order shape function
for both velocity and pressure, and it is not required to satisfy the Ladyzhenskaya–Babuška–Brezzi
(LBB) condition. Despite this, LSFEM has an issue where low-order nodal expansions tend to lock.
Thus, the present study proposes the discretization of the problem domain using higher-order nodes
elements with full numerical integration. Results concerning velocity contour and streamlines pattern
are shown. On the basis of current findings, it can be concluded that the LSFEM can be used to solve
Stokes flow problem under the point source magnetic field.

Keywords: LSFEM; Stokes flow; magnetic effect; straight rectangular channel

1. Introduction

Stokes flow is incompressible viscous flow in slow motion. Stokes flow has numerous
crucial functions in industries such as medical applications, the design of innovative
materials, lab-on-chip technologies, microdevices, and biological systems. For instance,
dust settles, and microbes swim in a fluid, both of which are instances of Stokes flow.
Stokes flow is also known as the flow of high-viscosity fluids, such as melt extrusion or
the transportation of paints, heavy oils, or food-processing ingredients [1]. Some essential
characteristics of Stokes flow, such as negligibility of inertial forces, reversibility, and the
minimal energy dissipation theorem, were explored by [2]. Navier–Stokes flow situations
can be subdivided into Stokes flow problems, with nonlinear convective components being
very minor or ignored [1]. The authors in [1] presented two cases, steady-state Stokes flow
(Re = 0) and a very low Reynolds number Stokes flow problem solved with Navier–Stokes
equation (Re = 1). As a problem model, they utilized a square cavity with a moving top
lid with constant velocity, and solved this problem using the dual reciprocity boundary
element method (DRBEM). Then, they came up with an iterative DRBEM for solving the
Stokes flow problem by adding another model problem, a circular cavity [3]. In the study
by [4], the two-dimensional Stokes flow problem was solved by developing the analytical
method of superposition. A rectangular chamber containing a cylinder was utilised as a
model problem to investigate distributive mixing processes in periodic Stokes flows. The
authors in [5] used vorticity–velocity formulation in combination with the multiquadric
method (MQ) to handle steady-state Stokes flow problems in 2D and 3D. Three numerical
problems were used to evaluate the truth and effectiveness of the MQ scheme: a 2D square
cavity problem, a 3D cubic cavity flow problem, and a circular cavity. The 2D Stokes flows
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in a lid-driven square cavity, rectangle cavity with wave-shaped bottom, and cubic cavity
were solved using the method of fundamental solutions (MFS) by [6].

The interaction of fluid in motion with a magnetic effect is among the most studied
due to its many industrial and medical applications. Magnetic devices for cell separation,
targeted medication delivery, magnetic cancer tumour therapy, bleeding reduction during
surgery, and magnetic tracers are just a few of the uses for magnets being developed [7–10].
Thus, the present study investigates Stokes flow with the effect of a point-source magnetic
field. Ferrohydrodynamics (FHD) and magnetohydrodynamics (MHD) are a branch of
fluid mechanics. The body force in FHD is due to polarisation force, while the Lorentz
force occurs in MHD when an electric current passes through a fluid and exerts an effect on
it [11]. The 2D MHD Stokes flow produced by a concentrated point force was analytically
obtained by [12]. The 2D MHD Stokes flow equations in a lid-driven cavity and a backward-
facing step channel subjected to the external magnetic effect with different directions were
solved by [13] using the radial basis function (RBF) approximation method. The authors
in [14] employed RBF for solving 2D MHD Stokes flow in a square constricted enclosure
with a moving left wall with enforced magnetic field in the direction. Then, they solved
MHD Stokes flow using the same numerical method in the same problem domain, but
the external magnetic field from three different directions was applied [15]. The authors
in [16] studied Stokes flow in a lid-driven and circular cavity under an external magnetic
field source. Fluid flow equations in their problem were comparable to those used in FHD.
They implemented DRBEM in solving this problem. In [17], the solution of the MHD
Stokes eigenvalue problem was approximated by using the Chebyshev spectral collocation
method (CSCM).

In this study, the least-squares finite element method (LSFEM) was employed to
solve two-dimensional Stokes flow subjected to point magnetic source. The authors in [18]
studied the theory of LSFEM for the numerical solution of elliptic boundary-value problems.
The use of LSFEM in solving the Stokes problem was first presented by [19]. They developed
LSFEM on the basis of first-order velocity–pressure–vorticity formulation for a simple one-
dimensional Stokes problem. On the basis of their findings, LSFEM leads to a minimisation
problem rather than to a saddle-point problem, which happened in the Galerkin mixed
method. Thus, LSFEM does not depend on the LBB condition. LSFEM has an additional
vorticity degree of freedom as compared to the mixed FEM, which only has pressure and
velocity. This makes the LSFEM matrix larger than the mixed FEM, and it theoretically
takes a longer time to solve. However, the matrix generated by LSFEM is symmetric and
positive-definite, whereas the matrix generated by mixed FEM is not symmetric due to the
convective term, and the matrix is a zero diagonal because of the absence of a pressure
term in the continuity equation. As such, mixed FEM requires a direct solver with pivoting.
On the other hand, LSFEM can be solved by using a very efficient iterative solver such as
preconditioned conjugate gradient method in a fully parallel environment. This offers the
method additional advantages from a computational point of view. The benefit of using
the LSFEM over other vorticity-related techniques is that no artificial numerical boundary
conditions for the vorticity must be created [20–24]. The authors in [25] presented LSFEM
for Navier–Stokes equations of viscous incompressible fluids. They focused on first-order
systems based on velocity–vorticity formulation associated with the mixed formulation.
Predominantly low-order nodal expansion was employed to develop the discrete finite
element model in the context of least-squares finite element formulations. However, low
order nodal expansions tend to lock when the least-squares functional is a nonequivalent
formulation. Locking occurs in lower-order elements because the element’s kinematics
are insufficient to represent the correct solution. It means the effect of a reduced rate of
convergence in dependence of a parameter. Therefore, the present study is proposed to use
the higher-order element to prevent this locking issue.

In this paper, a fully developed, steady, laminar, electrically nonconducting, incom-
pressible fluid was considered under the influence of an external point-source magnetic
field. This study proposes LSFEM for solving Stokes flow subjected to a point-source
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magnetic field in a straight rectangular channel problem. This serves as a fundamental
work to investigate and overcome the issue in LSFEM in the presence of highly nonlinear
body force. Results concerning velocity contour and streamline patterns are presented and
discussed. To the authors’ knowledge, this study is the first implementation of the LSFEM
for the study of Stokes flow under a point-source magnetic field.

2. Mathematical Formulation

Flow was considered to be fully developed, incompressible, steady, laminar, and
electrically nonconducting under the point-source magnetic field. The fluid was flowing
through two parallel plates (channel). The length of the plates was L and the distance
between them was h, such that L/h = 5. The entrance velocity was assumed to be fully
developed flow, whereas the Neumann boundary condition for the exit velocity was set
as zero. A no-slip condition was imposed on the upper and bottom walls of the channel,
and a zero-pressure boundary was imposed at the right lower corner of the channel. The
magnetic source was located below the bottom wall of the channel, as shown in Figure 1.
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The governing equations of the fluid flow are similar to those derived for ferrohydrody-
namics (FHD) [11,16]. Continuity and momentum equations defining the two-dimensional
flow are given by

∂u
∂x

+
∂v
∂y

= 0, (1)

ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
+ µ0M

∂H
∂x

, (2)

ρ

(
u

∂v
∂x

+ v
∂v
∂y

)
= −∂p

∂y
+ µ

(
∂2v
∂x2 +

∂2v
∂y2

)
+ µ0M

∂H
∂y

. (3)

The boundary conditions of the problem are summarised as follows:

Inflow
(

x = 0, 0 ≤ y ≤ h
)

: u = u(y), v = 0,

Outflow
(

x = L, 0 ≤ y ≤ h
)

: ∂
(

R
)
/∂x,

Upper wall
(

y = h, 0 ≤ x ≤ L
)

: u = 0, v = 0

Lower wall
(
y = 0, 0 ≤ x ≤ L

)
: u = 0, v = 0


(4)

where u(y) is a parabolic velocity profile corresponding to fully developed flow, R stands for
u or v, ρ is the fluid density, µ is the dynamic viscosity, and µ0 is the magnetic permeability
of the fluid; H is magnetic field intensity, and M is magnetisation. Terms µ0M∂H/∂x and
µ0M∂H/∂y from (2) and (3) represent the magnetisation force per unit volume and are
known as the FHD terms.

According to FHD, magnetisation property M is generally a function of magnetic field
intensity, fluid temperature, and density of fluid. Since temperature was considered to be
negligible in this present study, the following relation for magnetic fluid was considered:

M = χH (5)
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where χ is magnetic susceptibility.
The components of magnetic field intensity Hx and Hy along the x and y directions

are given as

Hx =
γ

2π

x− a

(x− a)2 +
(

y− b
)2 , (6)

Hy = − γ

2π

y− b

(x− a)2 +
(

y− b
)2 , (7)

where (a, b) is the point where the magnetic source is placed, and γ is the magnetic field
strength at the point. Magnitude H of the magnetic field intensity is given by

H =
[

Hx
2 + Hy

2
] 1

2
=

γ

2π

1√
(x− a)2 +

(
y− b

)2
. (8)

Dimensionless Form

Equations (1)–(3) and (8) could be nondimensionalised by using the following nondi-
mensional variables:

x =
x
h

, y =
y
h

, u =
u
ur

, v =
v
ur

, p =
p

ρur2 , H =
H
H0

(9)

where H0 is magnetic field intensity, h is the height between two plates, and ur is the
maximal velocity at entrance.

First, dimensionless variables are rearranged and then substituted into Equations (1)–(3).
The dimensionless form of the governing equations of the fluid flow under the effect of the
point source magnetic field are obtained as

∂u
∂x

+
∂v
∂y

= 0, (10)

Re
(

u
∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+

(
∂2u
∂x2 +

∂2u
∂y2

)
+

Mn
Re

H
∂H
∂x

, (11)

Re
(

u
∂v
∂x

+ v
∂v
∂y

)
= −∂p

∂y
+

(
∂2v
∂x2 +

∂2v
∂y2

)
+

Mn
Re

H
∂H
∂y

. (12)

The dimensionless forms of the boundary conditions are given by

Inflow (x = 0, 0 ≤ y ≤ 1) : u = 4y(1− y), v = 0
Outflow (x = 5, 0 ≤ y ≤ h) : ∂u/∂x = 0, ∂v/∂x = 0

Upper wall (y = 1, 0 ≤ x ≤ 5) : u = 0, v = 0
Lower wall (y = 0, 0 ≤ x ≤ 5) : u = 0, v = 0

 (13)

The nondimensional parameters are defined as

Re =
hρur

µ
, Mn =

µ0χH0
2

ρur2 , (14)

where Re is the Reynolds number, and Mn is the magnetic number. The magnitude H of
magnetic field intensity in the dimensionless form obtained by substituting the dimensional
variables into (8):

H =
|b|√

(x− a)2 + (y− b)2
. (15)
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We aimed to investigate Stokes flow under the effect of a point-source magnetic field.
Hence, for the Stokes flow case, low Reynolds number (Re � 1) was considered, and
convection terms in (11) and (12) were neglected. Then, the governing equations for the
Stokes flow were written as follows

∂u
∂x

+
∂v
∂y

= 0, (16)

∂2u
∂x2 +

∂2u
∂y2 =

∂p
∂x
−MH

∂H
∂x

, (17)

∂2v
∂x2 +

∂2v
∂y2 =

∂p
∂y
−MH

∂H
∂y

, (18)

where M = Mn/Re.

3. Least-Squares Finite Element Model

In this section, the least-squares formulation for the Stokes equations is presented. This
study focuses on first-order systems based on the velocity–vorticity formulation associated
with the mixed formulation.

3.1. Stokes First-Order System

Two-dimensional, laminar, steady, incompressible, electrically nonconducting fluid
was considered under the effect of a point-source magnetic field. The governing equations
for Stokes flow subjected to a point-source magnetic field in the dimensionless form are
written in Equations (16)–(18).

The following vorticity function is introduced:

w =
∂v
∂x
− ∂u

∂y
. (19)

The vorticity-based equivalent first-order system is given by

∂u
∂x

+
∂v
∂y

= 0, (20)

∂p
∂x

+
∂w
∂y

= MH
∂H
∂x

, (21)

∂p
∂y
− ∂w

∂x
= MH

∂H
∂y

, (22)

w +
∂u
∂y
− ∂v

∂x
= 0. (23)

3.2. Least-Squares Formulation

For the two-dimensional case represented by system Equations (20)–(23), least-squares
functional Ie over a typical element Ωe takes the form

Ie =
1
2

∫
Ωe

(
R2

1 + R2
2 + R2

3 + R2
4

)
dxdy, (24)

where
R1 =

∂p
∂x

+
∂w
∂y
−MH

∂H
∂x

,

R2 =
∂p
∂y
− ∂w

∂x
−MH

∂H
∂y

,
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R3 = w +
∂u
∂y
− ∂v

∂x
,

R4 =
∂u
∂x

+
∂v
∂y

. (25)

3.3. Finite Element Model

Variables of problem (u, v, p, w) are approximated by expansions of the form

u(x, y) =
m

∑
i=1

Ni(x, y)ui , v(x, y) =
m

∑
i=1

Ni(x, y)vi,

p(x, y) =
m

∑
i=1

Ni(x, y)pi , w(x, y) =
m

∑
i=1

Ni(x, y)wi, (26)

where Ni is the serendipity interpolation functions, and (ui, vi, pi, wi) are nodal values of
(u, v, p, w). Then, the expressions form in (26) is used to approximated the dependent
variables in (23). Equation (25) becomes

R1 =
∂Ni pi

∂x
+

∂Niwi
∂y

−MH
∂H
∂x

,

R2 =
∂Ni pi

∂y
− ∂Niwi

∂x
−MH

∂H
∂y

,

R3 = Niwi +
∂Niui

∂y
− ∂Nivi

∂x
,

R4 =
∂Niui

∂x
+

∂Nivi
∂y

. (27)

Equation (27) is expanded; then, (24) yields

Ie = 1
2

∫
Ωe

(
R2

1 + R2
2 + R2

3 + R2
4
)

dxdy

= 1
2

∫
Ωe

[
p2

i

(
∂Ni
∂x

)2
+ 2piwi

(
∂Ni
∂x

)(
∂Ni
∂y

)
− 2pi MH ∂H

∂x
∂Ni
∂x

+w2
i

(
∂Ni
∂y

)2
− 2wi MH ∂H

∂x

(
∂Ni
∂y

)
+
(

MH ∂H
∂x

)2
+ p2

i

(
∂Ni
∂y

)2

−2piwi

(
∂Ni
∂y

)(
∂Ni
∂x

)
− 2pi MH ∂H

∂y
∂Ni
∂y + wi

2
(

∂Ni
∂x

)2

+2wi MH ∂H
∂y

(
∂Ni
∂x

)
+
(

MH ∂H
∂y

)2
+ (Niwi)

2 + 2Niwiui

(
∂Ni
∂y

)
−2Niwivi

(
∂Ni
∂x

)
+ u2

i

(
∂Ni
∂y

)2
− 2uivi

(
∂Ni
∂y

)(
∂Ni
∂x

)
+ v2

i

(
∂Ni
∂x

)2

+u2
i

(
∂Ni
∂x

)2
+ v2

i

(
∂Ni
∂y

)2
+ 2uivi

(
∂Ni
∂x

)(
∂Ni
∂y

)]
dxdy.

(28)

Minimising the least-squares functional in (24) for nodal values of velocities, pressure,
and vorticity obtains

∂Ie =
∂Ie

∂ui
δui +

∂Ie

∂vi
δvi +

∂Ie

∂pi
δpi +

∂Ie

∂wi
δwi = 0,

which yields four sets of m equations each over a typical element:

∂Ie

∂ui
= 0,

∂Ie

∂vi
= 0,

∂Ie

∂pi
= 0,

∂Ie

∂wi
= 0, (29)
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for i = 1, 2, . . . m,, where

∂Ie

∂ui
=
∫

Ωe

[
ui

(
∂Ni
∂y

)(
∂Ni
∂y

)
+ ui

(
∂Ni
∂x

)(
∂Ni
∂x

)
− vi

(
∂Ni
∂y

)(
∂Ni
∂x

)
+vi

(
∂Ni
∂x

)(
∂Ni
∂y

)
+ Niwi

(
∂Ni
∂y

)]
dxdy = 0,

∂Ie

∂vi
=
∫

Ωe

[
vi

(
∂Ni
∂x

)(
∂Ni
∂x

)
+ vi

(
∂Ni
∂y

)(
∂Ni
∂y

)
− ui

(
∂Ni
∂x

)(
∂Ni
∂y

)
+ui

(
∂Ni
∂y

)(
∂Ni
∂x

)
− Niwi

(
∂Ni
∂x

)]
dxdy = 0,

∂Ie

∂pi
=
∫

Ωe

[(
∂Ni
∂x

)(
∂Ni
∂x

)
+ pi

(
∂Ni
∂y

)(
∂Ni
∂y

)
+ wi

(
∂Ni
∂x

)(
∂Ni
∂y

)
−wi

(
∂Ni
∂y

)(
∂Ni
∂x

)
−MH ∂H

∂x
∂Ni
∂x −MH ∂H

∂y
∂Ni
∂y

]
dxdy = 0,

∂Ie

∂wi
=
∫

Ωe

[
Niui

∂Ni
∂y − Nivi

∂Ni
∂x + wi

(
∂Ni
∂y

)(
∂Ni
∂y

)
+wi

(
∂Ni
∂x

)(
∂Ni
∂x

)
+ N2

i wi −MH ∂H
∂x

(
∂Ni
∂y

)
+ MH ∂H

∂y

(
∂Ni
∂x

)]
dxdy = 0.

The resulting finite element equations are given in matrix form as follows:
[
Sij

11 + Sij
22] [

Sij
12 − Sij

21] [0]
[
Sij

20][
Sij

21 − Sij
12] [

Sij
11 + Sij

22] [0] −
[
Sij

10]
[0] [0]

[
Sij

11 + Sij
22] [

Sij
12 − Sij

21][
Sij

02] −
[
Sij

01] [
Sij

21 − Sij
12] [

Sij
11 + Sij

22]+ [Sij
00]




ui
vi
pi
wi

 =


Fi

1

Fi
2

Fi
3

Fi
4

 (30)

where coefficient matrices are defined by

S00
ij =

∫
Ωe Ni Nj dxdy, S01

ij =
∫

Ωe Ni
∂Nj
∂x dxdy, S02

ij =
∫

Ωe Ni
∂Nj
∂y dxdy,

S10
ij =

∫
Ωe

∂Ni
∂x Nj dxdy, S20

ij =
∫

Ωe
∂Ni
∂y Nj dxdy, S11

ij =
∫

Ωe
∂Ni
∂x

∂Nj
∂x dxdy,

S22
ij =

∫
Ωe

∂Ni
∂y

∂Nj
∂y dxdy, S12

ij =
∫

Ωe
∂Ni
∂x

∂Nj
∂y dxdy, S21

ij =
∫

Ωe
∂Ni
∂y

∂Nj
∂x dxdy,

F1
i =

∫
Ωe 0 dxdy, F2

i =
∫

Ωe 0 dxdy, F3
i =

∫
Ωe

(
∂Ni
∂x MH ∂H

∂x + ∂Ni
∂y MH ∂H

∂y

)
dxdy,

F4
i =

∫
Ωe

(
∂Ni
∂y MH ∂H

∂x −
∂Ni
∂x MH ∂H

∂y

)
dxdy.

The Gaussian quadrature is applied to integrate a function over a rectangular master
element ΩR. The Gaussian quadrature over a function in a normalised coordinate (ξ, η)
can be expressed as∫

ΩR
F(ξ, η) dξdη =

∫ 1
−1

[∫ 1
−1 F(ξ, η)dη

]
dξ ≈

∫ 1
−1

[
N
∑

J=1
F(ξi, ηj)wj

]
dξ

≈
M
∑

i=1

N
∑

j=1
F(ξi, ηj)wiwj,

(31)

where M and N are the number of quadrature points in the ξ and η directions, respectively,
(ξi, ηj) is Gaussian points, and wi and wj denote the corresponding Gaussian weight. The
number of Gaussian points was selected on the basis of the largest-degree polynomial when
the integrand was of different degrees in ξ and η. In most cases, interpolation functions are
of the same degree in both ξ and η; thus, M = N.

3.4. Solution of Linear Equation

Stokes governing equations only have the linear term in the momentum equation;
thus, they are easier to solve compared to governing equations that have nonlinear terms.
The system of governing equations can be written in matrix form as

[K(U)]U = {F}, (32)
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where K is the stiffness matrix, U represents the vector of the degree of freedom, and F is
the force vector. The Gaussian elimination method is used to solve the linear equations.
For the system in (32), this algorithm is given by

K
(

Ui
)

Ui+1 = F
(

Ui
)

, (33)

where superscripts i indicate the iteration number. Then, the solution can be calculated by

Ui+1 =
[
K
(

Ui
)]−1

F
(

Ui
)

. (34)

4. MATLAB Code Validation

MATLAB was used to create the least-squares formulation source code. The source
code was checked for reliability and appropriate operation using a benchmark problem.
The lid-driven cavity problem was selected as a benchmark in this work since it is a common
benchmark for verifying stable Stokes equations.

4.1. Stokes Flow without Magnetic Effect

The domain of the problem was discretized into the uniform rectangular element as
shown in Figure 2a, while the boundary conditions are shown in Figure 2b. The top lid
moved with a horizontal velocity of u = 1 in the positive x-direction, and a no-slip condition
was imposed on the remaining walls. Pressure was applied on the bottom left corner of the
cavity. The solution of the system was computed for comparison with the literature.
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Figure 2. (a) Mesh; (b) boundary conditions for the lid driven cavity flow.

The mesh shown in Figure 2a was generated using Gmsh, which is external software
that can easily create geometries, mesh, and element nodes. This software can directly
export the mesh to MATLAB software using a postprocessor. Hence, Gmsh is an alternative
tool in creating meshing, and can help to simplify the work in MATLAB.

The first verification of the Stokes flow problem against the benchmark problem was
computed using a low-order node number, a 4-node rectangular element. The computed
components of velocity along horizontal and vertical lines through the central cavity were
compared with the study by [26].

The comparison for the different node rectangular element in LSFEM and [26] is
shown in Figure 3. The results for the LSFEM using a 4-node element were inaccurate
when compared with [26]. This proves that low-order nodes in LSFEM have a lock issue, as
stated in [25]. This means that the accuracy of the solution tended to lock if we attempted
to refine the meshing. Then, we computed the solution of the problem using higher-order
rectangular element nodes, namely, 8 and 12-node. Results from the LSFEM for 8 and
12 nodes agreed well with those computed by [26].
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4.2. Stokes Flow with Magnetic Effect

The source code of Stokes flow subjected to the point-source magnetic field problem
was also validated with the simulation obtained from COMSOL Multiphysics 5.2. The
problem domain and boundary conditions are shown in Figure 4. The magnetic source was
located very close to the bottom of the cavity and below.
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For Stokes flow under the effect of the point-source magnetic field, the magnetic
number was set to be M = 10,000. Results of the present study were compared with those of
COMSOL Multiphysics software 5.2, and are shown in Figure 5. Figure 5 shows that there
was a slight difference between the 8 and 12-node serendipity element. However, the 12-
node element showed excellent agreement with COMSOL compared to the 8-node element.
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Figure 5. Comparison of (a) u-central velocity and (b) v-central velocity for M = 10,000 between
COMSOL Multiphysics and present study.

Results of the streamline pattern are demonstrated in Figure 6 to compare the 12-node
element with COMSOL Multiphysics. The streamline that was formed from this source
code had a similar pattern to that of COMSOL Multiphysics. Hence, to solve the locking
problem of a low-order nodal in LSFEM, a 12-node serendipity element was used here for
solving the Stokes flow under the point magnetic source.
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5. Results and Discussion

Two-dimensional Stokes flow in a straight rectangular channel subjected to a point-
source magnetic field was solved by using LSFEM. The same assumption as in the previous
simulation prevailed, where it was assumed that the Stokes flow was fully developed,
steady, laminar, incompressible, electrically nonconducting, and under the effect of the
point-source magnetic field. In this channel, a spatially varying magnetic field was gener-
ated by placing the magnetic source below the lower wall of the channel at the location
(x, y) = (2.5,−0.2). Different magnetic numbers M (150, 250, 350, 600) were studied.
From the simulation, the flow characteristics are discussed.

Figure 7a displays the computational domain and boundary conditions. Entrance
velocity was assumed to be a fully developed flow, whereas the Neumann boundary
condition for the exit velocity was set as zero. A no-slip condition was imposed on the
upper and bottom walls of the channel, and a zero-pressure boundary is imposed at the
lower right corner of the channel. The mesh for the computational domain is shown in
Figure 7b. Structured rectangular mesh with a 12-node serendipity element was used for
the computational domain.
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The velocity contour and streamline pattern for the Stokes flow subjected to various
magnetic field numbers are presented in Figure 8. When the magnetic field was not
imposed (M = 0), fluid flow moved in parallel. When the magnetic source was applied
at the lower wall, a small vortex formed at the area where the point-source magnetic field
was located. Starting from M = 150, the applied point-source magnetic field disturbed the
flow. When the magnetic number increased to 250, a new vortex formed at the upper wall
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of the channel, while the vortex at the lower wall grew. Starting with M = 250, the height
and length of the vortex at both the lower and upper walls of the channel increased with
the increment of magnetic number.
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Figure 9 presents the u-velocity profiles along y for different magnetic numbers. The
velocity profile changed form when a magnetic field was applied, as can be seen here. Due
to the magnetic field action, a vortex formed on the bottom wall. Additionally, when the
number of magnetic fields grew, maximal velocity also increased.
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The comparison of the v-velocity profile along the channel at y = 0.5 for different
magnetic numbers is shown in Figure 10, where the axial velocity took the same shape for
all cases except for flow without a magnetic field. Flow with a magnetic field showed that
velocity flow retained a constant value at the beginning of the flow; then, velocity dropped
before the point of the magnetic source was applied. As the flow approached the source
of the magnetic field, velocity increased to the maximum. Maximal velocity for all cases
of flow with a magnetic field was observed at x = 2.5 where the point-source magnetic
field was located. Velocity dropped again after passing through the magnetic field source
and then remained constant until the exit. Axial velocity for flow under the effect of the
point-source magnetic field demonstrated that the minimal velocity values before and after
the magnetic field source were the same.
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6. Conclusions

This work effectively modelled the Stokes equation with a point-source magnetic field
using the least-squares finite element method. Governing equations were recast into an
analogous first-order system by introducing an extra independent variable, vorticity. As
a result, researchers concentrate on first-order systems that employ the velocity–vorticity
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formulation. The Stokes problem can be easily solved using the least-squares approach.
The development of MATLAB source code is indirectly simplified. The LSFEM, on the
other hand, has a problem with locking nodal expansions at low orders. The present study
proposed a solution for this problem where the domain of the problem is discretized using
higher-order element nodes without applying the reduced integration technique. Thus, the
12-node serendipity element must be used to obtain acceptable numerical results.

The numerical simulation of Stokes flow in a straight rectangular channel under a
point-source magnetic field was carried out, and the findings of the velocity contour and
streamlines pattern were observed and analysed. Incorporating a magnetic field alters
the flow behaviour. After applying a magnetic field, a single vortex could be seen on the
lower wall. In response to an increase in magnetic number, a new vortex formed at the
channel’s upper wall. As the number of magnetic fields rose, vortices dramatically grew.
Results signify the use of LSFEM as an alternative for modelling Stokes flow problems.
This work is considered to be the first implementation of the least-squares finite element
method on solving Stokes flow in the straight rectangular channel under a point-source
magnetic effect. No study has investigated the magnetic effect for Stokes flow in a straight
channel. The closest study is by [27], where the magnetic effect was investigated on the
basis of the Navier–Stokes equation using a finite difference method. The current study
focused on solving the Stokes flow with a magnetic effect using LSFEM. Observed results
by this study and by [27] in terms of magnetic strength had a similar effect on the lower
wall of the channel.

The LSFEM was successfully employed for the solution of Stokes equations; hence, the
LSFEM is proposed for solving the Navier–Stokes equation with and without a magnetic
effect for future work. This would allow for the inclusion of convection acceleration and
nonlinearity of the solution.
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