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Abstract: Today, introducing useful and practical solutions to residential load disaggregation as 
subsets of energy management has created numerous challenges. In this study, an intelligence hybrid 
solution based on manifold learning and deep learning applications is presented. The proposed 
solution presents a combined structure of Laplacian eigenmaps (LE), a convolutional neural network 
(CNN), and a recurrent neural network (RNN), called LE-CRNN. In the proposed model architecture, 
LE, with its high ability in dimensional reduction, transfers the salient features and specific values of 
power consumption curves (PCCs) of household electrical appliances (HEAs) to a low-dimensional 
space. Then, the combined model of CRNN significantly improves the structure of CNN in fully 
connected layers so that the process of identification and separation of the HEA type can be performed 
without overfitting problems and with very high accuracy. In order to implement the suggested model, 
two real-world databases have been used. In a separate scenario, a conventional CNN is applied 
to the data for comparing the performance of the suggested model with the CNN. The designed 
networks are trained and validated using the PCCs of HEAs. Then, the whole energy consumption 
of the building obtained from the smart meter is used for load disaggregation. The trained networks, 
which contain features extracted from PCCs of HEAs, prove that they can disaggregate the total 
power consumption for houses intended for the Reference Energy Disaggregation Data Set (REDD) 
and Almanac of Minutely Power Dataset (AMPds) with average accuracies (Acc) of 97.59% and 
97.03%, respectively. Finally, in order to show the accuracy of the developed hybrid model, the 
obtained results in this study are compared with the results of similar works for the same datasets.

Keywords: non-intrusive load monitoring; residential load disaggregation; Laplacian eigenmaps; 
convolutional neural network; bidirectional long short-term memory

1. Introduction

In a global scenario, energy is one of the m ost im portant needs of daily  hum an life 
and the rational use of energy resources is of the utm ost im portance. Accordingly, energy 
m anagem ent and saving have posed m any challenges w orldw ide. D ue to the increasing 
costs of energy production and consumption, and its environmental effects, the importance 
of energy saving planning is grow ing significantly [1- 3 ]. Based on this, future energy 
systems m ust have the ability to guarantee sustainable and affordable energy development 
for consum ers. Therefore, the processes related to p lanning to save and m onitor energy 
consum ption in buildings are considered as an energy m anagem ent program  in line w ith 
sustainable energy developm ent. Today, energy dem and is grow ing significantly and is 
expected to double by 2030. Based on this, it can be seen that several kinds of research have 
been conducted in the field of effective m anagem ent of energy supply and dem and [4,5].
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R ecent studies have show n that: today a large percentage of the w orld 's energy is 
consumed in residential and commercial buildings. Nowadays, smart electricity meters are 
w idely  om ployed in all types of residential and com m ercial buildings around ihe w orld. 
Based on  various studies, ih w as estim ated thaC sm art electricity  m eters w ill ba insCalled 
in approxim ately 72%. of European hom es tty the end of 2020 [6]. A dding salient features 
sush as power/energy consum ption onto the surface of HEAs makes them "sm art" energy 
uaers. By im proving this process, consumers will be able to monitor nnd manage the energy 
consum ption of (each HEA in addition to m onitoring the energy coneumption of the whole 
hom e [e]. Therefore, m anaging and im proving energy effi ciency in buildings can play an 
im portant role in potential energy savingf [8,9].

Residential load m onitaring and providing real and direct feedback on the am ount of 
electrical equipm ent consum ption in buiidings to consumens can have h igh potential in 
various beneffcial applicafions auch as awareness nf energy consumption and conservation, 
controllable load quantitative assessment, provedmg accurate planning of eneryy consum p­
tion, and, finally, lea d in , to minimizing tire m ism anagem ent ot energy consumpti on [acid  1]. 
This can alsn facilitaVe interactions betw een energy users and producers th ro u g f load 
m anagem ent program s, so Cheat energy prodwcers w ill be able to form nlate energy saving 
policies for the use of individual appliances and consum ers, based on the feedback from the 
producers, w ill be consciously able to do s aving options [ f t , l t ]  . A  custom ao's aw areness 
of the m ean consum ption of each of their household electrical appliances (HEAs) enables 
them  to save on the use of inefficient appliances and be able to control their consumption at 
peak hours to avoid penalties. These data provide a great opportunity for the application 
ot dara-driven m ethods in resM ential energy sectors. For exam ple, by  m onitoring the 
energy consum ption treod of a specific device, the partial faults of that device can bo 
diagnosed. Load m onitoring can be ancomplished in two types, intrusive load m enitoring 
(ILM ) and non-intrusive load m onitoring (N ]LM ) [14]. ILM  points to tne u te  of a large 
num ber of s ensoes and intelligent sockets to d irectly  m onitor the pow er consum ption of 
HEAs. Encroaching on family privacy and b e ia ° costly are tin  most im portant problems of 
this m ethod. The N ILM  m ethod hns been  suggested to elim inate the ILM  problem s end 
reduce costs. In general, N ILM  can disaggregate electrical appliance-level d ata using g uta 
cajshured by a sm art electric m eter [M dS] . Figuoe s shows the difference betw een the two 
m ethods of ILM  and N ILM  in residential load disaggregation.

Pltotllll = lP f

Figure 1. Principle architecture of load disaggregation.

N ILM  w as first proposed in 1992 by  H art as a process for analyzing residential loads 
and d isaggregating the pow er consum ption of H EA s [16 ]. The m ain idea of N ILM  is to 
extract the energy consum ption of H E A  using the original readings in  the sm art electric
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meter. R esearch has show n that N ILM  could em pow er residential consum ers to reduce 
energy consum ption by  15% [10]. In  addition, fault detection in the hom e appliance 
motor, and a variety  of program s for energy-efficient hom es (i.e., autom atic hom e energy 
m anagem ent and end-use diagnostics and troubleshooting) are im portant applications 
of N ILM  [17]. The use of N ILM  has flourished in recent years due to the grow ing use of 
sm art electric m eters and the availability  o f accurate m easurem ents of the consum ption 
of H EA s. H ow ever, energy disaggregation and m anagem ent are very challenging issues 
and research in this field is still in its infancy and needs to elim inate m any technical and 
practical problems.

So far, several review  studies have introduced N ILM , described its applications, and 
categorized  various N ILM  m ethods [18- 21]. Reference [18], considering the application 
areas and studies performed on NILM , has categorized its various methods. A thorough re­
view of the conventional and advanced methods of the NILM  approach has been performed 
in [19]. This study, in addition to introducing various N ILM  m ethods, also reviewed vari­
ous m etrics for evaluating m ethods, w hich finally introduces hybrid deep learning-based 
m ethods as leading m odels in this field. In [20], by introducing the im portant applications 
of N ILM  in different fields, a com prehensive review  of the types of algorithm s used to 
develop N ILM  in  the field of energy m anagem ent has been  perform ed. A  com prehen­
sive review  of the 42 N ILM  datasets has been perform ed in  [21], addressing their various 
features and finally providing a com parison of the perform ance o f each data. This pa­
per provides an overview  of the perform ance of various N ILM  algorithm s in  processing 
various data for N ILM  researchers. A dditionally, m uch research has proposed various 
approaches to address these problem s of N ILM  and im prove it. In som e of them , the 
hidden M arkov m odels (H M M ) [22] are used to im prove the N ILM  and disaggregate the 
residential load. A  finite-state m achine m ethod based on fuzzy transitions is proposed 
in [23] to the N ILM  of H EA s. In order for N ILM  developm ent, a new  appliance detection 
solution based on an im balance classification for electrical appliances sw itching O N/OFF 
has been  utilized in  [14]. In  [24,25], load disaggregation has been  perform ed based on 
a w ell-know n regression-based m ethod called W aveN ILM . In  [26], the im provem ent of 
the N ILM  process has been  perform ed established on the introduction of an event-based 
approach. The proposed m odel accurately  detects all events by  filtering the pow er sig­
nals. A dditionally, it extracts the features related to each of the H EA s from  their pow er 
signals in the training dataset. In [24], the process of im plem enting the proposed approach 
w as perform ed in tw o states using deferred loads and u sing all inp ut features, w here 
the netw ork accuracy for each state w as 94.70%  and 88.40% , respectively. R esidential 
load d isaggregation and recognizing the pow er consum ption of H EA s in  [27] have been 
perform ed using a tw o-stage optim ization m odel based on M ixed-Integer N onlinear Pro­
gram m ing. In som e studies [10,28,29], unsupervised m ethods have been used to im prove 
N ILM . In [10], a dim ension reduction-based m ethod called principal com ponent analysis 
(PCA ) has been  used to im prove N ILM  perform ance by  extracting  pow er consum ption 
patterns from  H EA s and disaggregating them  in a low -dim ensional space. The additive 
factorial approxim ate m axim um  a posteriori (AFAMAP) m ethod has been utilized in [28] 
for load disaggregation. The problem s related to load disaggregation in [30 ] have been 
overcome by proposing a new NILM  model based on alternating optimization that is called 
NILM -AO. The proposed model in this study was compared with m ethods based on graph 
signal processing and the presented results show  the superiority of the N ILM -A O  m odel. 
Som e other studies have benefited from  supervised m ethods such as deep learning and 
m achine learning applications for N ILM  and im proved residential load disaggregation 
problem s. The im provem ent of the N ILM  process in [29] has been achieved by presenting 
a hybrid unsupervised approach based on the joint adaptation network and the adversarial 
netw ork. In this study, the perform ance of the developed m odel w ith other m odels based 
on machine learning was evaluated and the results show the high accuracy of the developed 
m odel. In [31], various m achine learning solutions such as label power-set, support vector 
m achine (SVM ), and decision tree are used for d isaggregating the pow er consum ption
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of each electrical appliance via m onitored data. In [32], the SV M  has been  em ployed as 
one of the m ost w idely  used m achine learning m odels to disaggregate the consum ption 
of H EA s. In  this study, the load disaggregation process has been perform ed based on the 
classification of the amount of consumption associated w ith each HEA at different hours of 
the day and night. D eep learning m ethods are utilized dram atically  in all scientific and 
industrial fields due to their capabilities. D eep learning applications over the past few  
years have increasingly solved m any load disaggregation problem s and becom e a viable 
solution for utilization in N ILM . A  deep learning-based procedure called long short-term  
m em ory (LSTM ) has been used in [33] for residential load disaggregation and classifying 
the types of electrical appliances. Estim ating the energy consum ption of each electrical 
appliance from  obtained sm art m eter data has been  perform ed in [34] via a C N N  and an 
auto-encoder. In  [35], the identification of residential electric loads has been  perform ed 
via a C N N -based N ILM  technique. In this study, the lack of a need for double processing 
and the reduction of calculation tim e for the sim ultaneous detection and classification of 
events are considered as obvious advantages of the proposed m odel. R esidential load 
disaggregation has been performed in [36] by developing one of the deep learning solutions 
called adversarial autoencoder. The im provem ent of the NILM  process has been performed 
based on the computational costs reduction and the optimization of feature spaces in [37] by 
presenting a trimming feature selection model for a microcontroller unit (MCU)-based Edge 
N ILM . In [38], various hybrid  structures of intelligence procedures, including recurrent 
neural netw ork (RN N ) architectures and CN N s, have been  adopted for residential load 
disaggregation. A practical approach based on the CNN method has been presented in [39] 
to im prove the N ILM  process and separate the load consum ption of household electrical 
appliances. In [40], load disaggregation and estim ating the pow er consum ption of H EA s 
w ere accom plished via deep transform  learning and deep dictionary learning techniques. 
In [41], NILM  has been performed to extract the pattern of HEA power consum ption using 
deep learning applications called conditional generative adversarial netw orks. In that 
study, in  order to present a com parative approach and evaluate the perform ance o f the 
proposed m odel, other conventional m odels such as U -N et and Instance N orm alization 
have been  utilized for load disaggregation. In [42], residential load d isaggregation has 
been  perform ed by  developing a deep learning-based  m odel called deep sparse coding, 
in w hich the perform ance of the proposed m odel w as evaluated by  applying it to various 
data. A  deep learning-based architecture called bidirectional encoder representation from 
transform ers and a m odified objective function have been proposed in [43] for load disag­
gregation. In this study, the m ain focus is on adapting the architecture of the bidirectional 
transform er to the field of load disaggregation.

A  review  of the literature show s that residential load d isaggregations as an energy 
m anagem ent approach have long been  perform ed based on various techniques. A  look 
at recent studies confirm s the capability  of intelligent techniques, as it can be seen that 
today deep learning-based solutions have been  able to significantly im prove the process 
of N ILM  and solve problem s related to other previous m ethods. H ow ever, conventional 
deep learning m ethods such as C N N , LSTM , etc., also suffer from  high-dim ensional data 
processing and tim e-series m odeling of pow er consum ption data. In addition, processing 
N ILM -related data, w hich  typically  contains sam pling noise at different frequencies and 
user-patterned consum ption discrepancies, is a difficult task for conventional techniques. 
In general, based on achievements in recent studies, the shortcomings of conventional deep 
learning m odels can be pointed out as follows:

>■ In  the face of noisy data, they need a pre-processing step so that the accuracy of the 
results does not decrease.

>■ They suffer significantly from overfitting, vanishing, and gradient explosion problems. 
>■ The training process is very  tim e-consum ing and requires a high m em ory in the 

used system.
>■ In time-series data where the features are sequential, it is difficult and even impossible 

to m odel and extract the input features.
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^  The choice of m odel param eters has a significant effect on the feature extraction 
process, w hich is a tedious task and requires experienced people.

In this paper, to solve this problem  and prevent overfitting, based on the idea of 
com bining m odels, a hybrid structure of Laplacian eigenm aps (LE), a C N N , and an im ­
proved R N N  is developed that is called LE-C RN N . In this structure, the L E  technique 
eliminates the extra data and noise associated w ith the input data, preparing a dimensional 
reduced version of the pow er consum ption curves (PCCs) as the input to the hybrid deep 
learning netw ork. The deep learning-based hybrid  m odel is a com bined architecture of 
C N N  and bidirectional LSTM  (Bi-LSTM ) techniques. This architecture w as developed by 
rem oving fully connected layers of the C N N  structure and replacing them  w ith Bi-LSTM . 
After designing the presented hybrid model, the Reference Energy Disaggregation Data Set 
(REDD) [25] and Alm anac of M inutely Power dataset (AMPds) [44] as two freely available 
data sets are used to apply the proposed m ethod. The PCCs of each electrical appliance 
in the m entioned data sets w ere used as the designed netw ork inputs to train and extract 
the pow er consum ption features of each electrical appliance. Finally, the PCCs of total 
hom es obtained from  sm art electric m eters w ere used to test the designed m odel and 
recognize the type of each residential electrical appliance. It should be noted that the 
em ployed L E-C R N N  technique can be considered a strong structure for solutions that 
are w ell com patible w ith  the practical m odels. In addition, since the suggested technique 
perform s the load disaggregation operation based on the extraction of features related to 
the pow er consum ption of each household electrical appliance accordingly, it can also be 
utilized for unseen households. In general, the paper contribution is listed as follow s:

>■ Introducing a novel hybrid model based on manifold learning and deep learning that
is utilized for the first tim e for NILM .

>■ Feature extraction from input data and im plem entation of the training process based
on the extracted features and behavioral patterns of each H E A  to process large vol­
um es of data and avoid overfitting problem s.

>■ G eneralizability of the developed m odel for NILM  in residential buildings for w hich
no data are available from electrical appliances.

>■ The ability of the proposed model to disaggregate the consumption of different types of
H EAs, even residential cooling and heating loads, based on their consumption pattern. 

^  R educing the volum e of data to extract features from  the input data so that none of
the behavior patterns related to each H EA  are lost.

>■ Rem oving noises related to data to im prove the perform ance of the proposed hybrid
m odel in the process of training and disaggregating the consum ption of each HEA. 

>■ Presenting a model that has the ability to disaggregate the power consum ption of the
entire building a t d ifferent hours of the day and night and allow s the consum er to 
control the power consum ption of any H EA at any m om ent of time in addition to the 
consum ption of the entire building.

>■ Providing a m ore accurate m odel for d isaggregating residential loads to inform
consum ers about the consum ption of each H E A  for energy m anagem ent and to 
prevent excessive consum ption during peak hours.

The organization of the paper in the following sections is presented as follows: Section 2 
explains the architecture and design of LE-CRN N . Section 3  illustrates the results. The 
com parison of the results obtained in this paper w ith other sim ilar studies is presented in 
Section 4 . Finally, Section 5 concludes the paper.

2. Architecture and Design of Hybrid LE and CRNN
2.1. Laplacian Eigenmaps (LE) Structure

Linear and non-linear dim ensionality reduction m ethods are the two m ain groups of 
dim ensionality reduction techniques. Each of these dim ensional reduction techniques has 
m any applications in solving problem s related to high-dim ensional data [45]. H ow ever, 
since real-w orld data are often hidden on a com plex non-linear m anifold , the use of non­
linear dimensional reduction techniques is recommended to discover the intrinsic structure
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of such data [46]. In recent years, m anifold  learning has been  developed and utilized 
as a non-linear d im ensionality  reduction application. A  sam pling of data points in a 
high d im ensional observation space in  a m anifold  form ed in a low  observation space is 
the principal idea of m anifold  learning. M anifold  learning transfers data from  a h igh­
dim ensional space to a low -dim ensional space by  preserving m axim um  variance and the 
inherent nature of the data.

LE is one of the m ost efficient m anifold learning algorithm s, presented by Belkin and 
N iyogi in 2003. LE provides a graph-based dim ensionality-reduction procedure in order 
to m aintain the distance graph of the inp ut data points and extract a low -dim ensional 
m anifold figure from  the original data space. LE accom plishes dim ensional reduction for 
the inp ut space of X =  { x 1, x2, . . . ,  x T},  Xi €  R M, 1 <  i <  T  to obtain  output m atrix 
Y =  {y i ,  y2, . . . ,  yT } ,  yi €  Rn , 1 <  i <  T  by m inim izing the follow ing function [46]:

12 
\2Wi,j

i,j
£  II (y *,i — y *,j) ll2Wi,j (1)

w here M  represents the dim ensions of the input space, N  dem onstrates the dim ensions of 
the output space so that the N  ^  M  condition is alw ays present, * , i and * , j  are colum n 
vectors o f Y  corresponding to N -dim ensional output points at edges i and j ,  respectively. 
Wj,j is an elem ent of the data's dependency matrix W  by a w eight inversely proportional to 
the distance betw een points xi and x j . LE attem pts to m ap analogous points as closely as 
possible. The distance m etric selection based on the heat kernel is expressed according to 
the follow ing objective function [47]:

xj l l 2

W ij =  I e a f o r  II x i — xj I I 2<£ (2)
0  otherw ise ,

w here £ denotes a threshold value and a is a fixed scale param eter. The role of heat kernel 

function e —Ixi—xjl2/a is heavy penalizing points x i and x j , if they are m apped far apart in 
the low -dim ensional space. A ssum e a suitable constraint as follows [46]:

(3)

£ ( y i — yj ) Wij =  £ (y2 +  yj  — 2yiyj )W ij 
ij ij

=  & 2 D n +  & 2Dj j — z Y y w W  =  2y TLy  
i j  ij 

w here D is a degree m atrix and Da is a diagonal m atrix that is defined as:

D tl =  £  W jL  (4)
j

w here L is the Laplacian m atrix that is a sym m etric positive sem idefinite m atrix and
defined as:

L =  D — W  (5)

From  Equation (3), the optim ization problem  turns to m inim ization of the follow ing 
function [47]:

m in  tr y TLy s .t . y TD y =  1  (6)

y  )

where the ith row of y  is y j . The optim ization problem  can be diminished to a generalized
eigenvalue problem  as [48]:

Lyn,* =  ^ D yn,* (7)
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where yn,* shows the nth row of Y  and is the eigenvector corresponding to the nth nonzero 
eigenvalue A. The structure of a non-linear polar-m etric m anifold can be obtained using 
low -dim ensional delegation and can be utilized for classification.

2.2. Convolutional Recurrent N eural N etw ork (CRNN) Structure

The proposed CRNN m odel is a com bination of CNN and Bi-LSTM  techniques. Each of 
the CNN and Bi-LSTM  techniques are w ell-known applications of deep learning procedures. 
As Figure 2 shows, the proposed CRNN network architecture consists of three components, 
including convolutional layers, recurrent layers, and a classification layer. In the first step 
of the C RN N  architecture, convolutional layers autom atically extract a feature m ap from 
the inp ut data. A  convolution layer has a num ber of independent filters in structures to 
extract the features [49]. The convolution operation occurs w hen the input data passes 
through filters. The features in the input sam ples are extracted by these filters and becom e 
a feature space [50]. Each filter consists of kernels that split im ages or input data into small 
pieces. D ividing the inputs into sm all pieces facilitates the feature extraction process from 
the data. The process of kernel perform ance in  each convolutional layer is expressed as 
follows [51]:

f l (^ q ) = EE ic ^ , y )̂ e\(u v) (8)
c x,y

w here, c is the index of the channel, (x, y) show s the im age coordinates, and (u, v) repre­
sents the row  and colum n u nder consideration. ic (x , y) dem onstrate an elem ent related 
to the inp ut data/im age tensor IC. A fter perform ing the convolution operation, one of 
the m ost im portant stages is selecting and pooling  the m ost features extracted from  the 
data. This is perform ed by the pooling  layer. The average pooling and m ax pooling  are 
two types of pooling operations. The m ax pooling takes the highest values of the features 
extracted and transfers them  to the next convolution layer. Accordingly, in CN N  typically, 
m ax pooling is utilized. The type of pooling that is also used in this paper divides the 
input im age into a set of non-overlapping rectangles and transfers the m axim um  value of 
features for each subsequent convolution layer [39]. The pooling layer is param eterized as 
the follow ing equation [50]:

xj =  f  ^ p o o l i n g  ( x j- 1 )  +  bj )  (9)

w here p oo lin g  () show s the pooling operation and represents the pooling kernel. E lim i­
nating the unusable variables and achieving a low-dim ension space, w hich ensures the loss 
of prom inent features and invariances to shift and distortion, are the prom inent features of 
pooling layers. A fter extracting the features of the input data (PCCs in this study) during 
several layer-to-layer convolution and pooling processes, the main feature map is generated.

Figure 2. Architecture of the proposed hybrid LE—CRNN technique.

D ue to the structure of C N N , after the form ation of the final feature m ap in the last 
convolutional layer, the fully connected layers Eire utilized. Receiving the output of the last 
convolution layer as input, these layers perform  the training process and determ ine the 
w eight and bias of the data based on a feed-forward neural network. These layers compute
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the w eight and biases related to the extracted features until they reach the h ighest scores 
for identifying and classifying the features for each class [38,39]. The num ber of hidden 
neurons in the fully connected layers by default is always set to 1024 or 2048. This makes it 
more difficult to categorize small samples. Additionally, fully connected layers, despite the 
strength of the tim e sequence, cannot m aintain  h igh classification accuracy and stability, 
and in m ost cases suffer from  the problem  of overfitting, w hich leads to tim e-consum ing 
and reduced netw ork accuracy. In  this paper, these problem s are solved by  presenting a 
new  hybrid  structure called CRN N . As show n in Figure 2 , in the proposed structure, the 
fully connected layer, w hich  contains m ore redundancy, is rem oved and replaced w ith  a 
Bi-LSTM  structure.

The Bi-LSTM  network as an RNN structure and improved LSTM  network is a powerful 
tool for m odeling a general-purpose sequence w ith tim e-series dependencies. G iven that 
the PC C s collected from  H EA s are a tim e-based sequence, their current state is strongly 
related to the previous state. Accordingly, the Bi-LSTM  m odel is the best tool for solving 
this problem  and m odeling them . As show n in Figure 2 , the structural schem atic for 
Bi-LSTM , the training process of this netw ork is based on a forward layer and a backward 
layer by  u tilizing the hidden state [52]. This structure enables the B i-LSTM  netw ork to 
m odel the time series mode of the data and use the m axim um  extracted features to estimate 
the final output. A t tim e t , the hidden layer and the output layer are com puted in tw o 
directions as follows [52]:

h t =  a(W iX t +  V ih t- i  +  V) (10)

h t  =  a(W iX t +  Viht+1 +  b ) 

yt =  a ( U [ h t ;  h t ] +  c)

(11)

(12)

where h t is the hidden state and ct depicts the current memory cell. a  denotes the activation 
function. x t and ht-1  dem onstrate the inp ut value at tim e t and the hidden state at the 
previous tim e step, respectively. Wi and b show s the w eight m atrix associated w ith  the 
input gate and bias values, respectively. yt is the output of the last Bi-LSTM  layer. Finally, 
at the last layer of the C RN N  structure, the classification of features is perform ed via  a 
Softm ax function as follows [39]:

Oj

' P (y  =  1)lx ; 9 '
"exp(91 x )

P (y  = 2)|x; 9 1 ex p (9 1x)

_ P (y  =  c)|x; 9 _

^ k= 1 exp (9 h )
_exp(9cx)_

(13)

w here P  is the output related to each input and 9^x show s the factors of the classifica­
tion layer.

2.3. LE + CRN N  Structure

In the proposed LE-C R N N  structure (as seen in Figure 2 ), the m ain purpose is to 
extract the m axim um  feature from  the PC C s and to disaggregate the load of the entire 
building based on the extracted features. The high volume of data and the tim e-series state 
of PCCs data related to HEAs cause some major problems in this process that conventional 
techniques are not easily  able to solve. H ow ever, the step-by-step im plem entation of 
the proposed m ethod can easily  solve these problem s and provide ideal results of load 
disaggregation related to the buildings studied. In the first stage, LE transfers the PCCs to a 
low -dim ensional space w ith a high resolution based on a dim ensional reduction approach. 
D uring this process, the m ain inform ation and the m ost significant behavioral pattern 
related to PCCs are extracted. Then, the deep learning-based hybrid CRN N  architecture is 
developed to categorize and disaggregate the building load. The features extracted from  
the LE technique are considered as the input of the suggested C RN N  structure.
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3. Experimental Results

In this paper, two distinct real-world REDD [25] and AM Pds [44] datasets are utilized 
to show  the accuracy of the proposed solution. The R ED D  d ataset includes real energy 
consum ption for six houses in M assachusetts, USA. This dataset is the result of monitoring 
for two w eeks at 3 s sam pling intervals. The AM Pds dataset includes the pow er consum p­
tion of a one-unit house in  Vancouver, C anada. The A M Pds dataset w as collected over 
tw o years from  2012 to 2014 and at one-m inute sam pling intervals. Both datasets include 
the low -frequency real pow er consum ption of H EA s. In this study, for the R ED D  dataset, 
the pow er consum ption data of H EA s in  R ED D  house 1, R ED D  house 2, R ED D  house 3, 
and REDD house 4 are used. In the AM Pds dataset, all available data are used to sim ulate 
and apply the proposed m odel. Im proving the N ILM  and residential load disaggregation 
in  order to know  the pow er consum ption of H EA s requires the identification of the con­
sum ption patterns of electrical appliances and extraction of the features available in their 
PCCs. In this paper, this goal is achieved via the hybrid model of LE-CRN N . Im plem enting 
the proposed solution requires a d ataset including the PCCs of H EA s as the input. Each 
appliance whose power consumption curve is used as the input m ust have a target number. 
The target num bers of HEAs for each of the R EED  and AM Pds datasets w hen their PCCs 
are used as the inp ut for the designed netw ork are assigned based on the targets labeled 
in [39].

From each of the introduced HEAs, seven-day power consum ption is selected as input. 
So, one-day (24 h) power consumption was assumed as a signal and a total of seven one-day 
PCC s of each electrical appliance constitute the inp ut data. F igure 3 show s exam ples of 
electrical appliance PCCs from RED D  and AM Pds hom es that are considered as inputs. It 
can be seen that the pow er consum ption of each H E A  is different at various hours of the 
day and night. The param eters related to the tuning of the structure of the hybrid C RN N  
m odel are presented in  Table 1. A fter designing the netw ork m odels and determ ining 
the input dataset for each of them , each netw ork can be trained and tested. To do this, in 
each dataset, w e select 70%  of the data as training data and the rest of the data to test for 
each network.

Figure 3. Examples of PCCs for the electrical appliances from REDD and AMPds houses.

It should be noted that despite the selection of the amount of data for training and test 
stages by users, the network itself random ly performs the selection of data for training and 
test. Each designed network is trained using; training; data. N etwork tests and validation are 
performed using test data. In a conventional CNN structure, after applying the convolution 
and pooling layers, the extracted feature m aps are transferred to the fully connected layers 
to determ ine the w eight and bias. H ow ever, in the hybrid  LE-C RN N  m odel, feature 
m aps are used as Bi-LSTM  layer inputs to calculate w eights and biases for transfer to the 
classification layer. The extracted features from the PCCs in the; LE layer are presented for



Sustainability 2 0 2 2 ,14,14898 10 of 16

som e exam ples of input delta in Figure 4 . These features are passed as inputs to the hybrid 
C RN N  architecture.

Table 1. CRNN model parameters.

Model Layer (Type) Parameter

No. filters in first convolutional layer 3
No. filters in second convolutional layer 16
No. filters in third convolutional layer 20
Filter size in first convolutional layer 4 x 4

CNN Filter size in second convolutional layer 3 x 3
Filter size in third convolutional layer 3 x 3

Stride in convolutional layers 1
Window sizs in each max p o lin g  layer a x  2

Stride in max pooling layers 2

Biddirectional_1 44
Dropout_1 (Dropout) 0.4

Flattsn_1 (Flatten) 22
IB i-LSTM Dense_1 (Dense) 12

Sequence length 1
Hidden layer 4
Hidden unit 100

Figure 4. Examples of extracted features from household electrical appliances of utilized datasets 
via LE.

Performance appraisal of classification results of each network for data related to each 
hom e w as perform ed u sing a perform ance m etric called accuracy (Acc). This m etric is 
calculated according to the follow ing equations:

Acc
TI

TI +  FI
(14)

w here TI indicates the num ber of sam ples that have been  correctly detected and FI rep­
resents the num ber of sam ples that have been  m isdiagnosed. G iven that the num ber of 
sam ples belonging to each class is equal, the Acc m etric can be useful for perform ance 
analysis of the netw ork classification.

Table 2 shows the results of the accuracy coefficient of each of the CN N  and LE-CRNN 
netw orks in the training and initial test stages for each house. The presented results in 
Table 2 show  the high correlation betw een LE-C RN N  prediction and target data in the 
classification of HEA types based on their power consum ption patterns in all houses. W hen 
the netw ork passes the training stage w ith  good accuracy, it m eans that it has been  able 
to extract the inherent features of data and identify  pow er consum ption patterns related 
to H EA s. Therefore, the trained netw orks w ill be able to identify  test data. The reported 
results for the initial test stage show the accuracy and precision of the trained netw orks in 
classifying test data. Each netw ork is saved after training and contains extracted features 
from the data. These networks can also identify and categorize new and unknown data. At 
another stage of the test, we considered the new  and unknow n PCCs of H EA s as inputs to 
the saved netw orks in order to perform  the test operation, this tim e w ith  the data of our
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selection. To do this, 25  sam ples of PCCs of each electrical appliance from each RED D  and 
A M Pds houses w ere considered for four hours.

Table 2. Accuracy coefficient of each network in the training and initial test stages.

Training Test

Models CNN LE-CRNN CNN LE-CRNN

REDD house 1 0.9682 0.9751 0.9259 0.9499
REDD house 2 0.9642 0.9861 0.9583 0.9721
REDD house 3 0.9610 0.9803 0.9410 0.9770
REDD house 4 0.9714 0.9911 0.9609 0.9827

AMPds 0.9642 0.9798 0.9518 0.9716

Figure 5 shows the confusion matrices for the networks for the new test data of REDD 
house 1, REDD house 2, REDD house 3, REDD house 4, and the AM Pds dataset, respectively. 
In these figures, the level of accuracy of each netw ork in recognizing and classifying each 
of the PCC corresponding to each HEA at different hours is shown. In order to confirm the 
accuracy and efficiency of the developed solution com pared to a conventional C N N , the 
desired tests w ere perform ed once using the C N N  m ethod. Table 3  com pares the Acc of 
the tw o m odels for the sam e test data. The presented results in Table 3  show s the ability 
of the proposed solution com pared to a conventional C N N . In  the presented results, it 
can be seen that the LE-C R N N  for all cases had the highest Acc. The LE-C R N N  for the 
REDD dataset had an Acc value of 0.9842 and for the AMPds dataset it had an Acc value of 
0.9850, while the CNN had Acc values of 0.9716 and 0.9700 for REDD and AM Pds datasets, 
respectively. A t present, the pow er consum ption patterns of H EA s have been  identified 
using the hybrid  m odel of LE-C R N N  and their features have been  extracted. The m ost 
im portant step in residential load disaggregation and im proving the NILM  is to use these 
features to disaggregate the total home power consumption in order to identify and predict 
the level of consum ption of each electrical appliance at any given time.

Table 3. Performance evaluation of two models CNN and LE-CRNN for identifying the HEAs types.

Houses CNN LE-CRNN

REDD house 1 0.9688 0.9733
REDD house 2 0.9750 0.9900
REDD house 3 0.9709 0.9854
REDD house 4 0.9720 0.9881

AMPds 0.9700 0.9850

In  this paper, to achieve this goal, sam ples o f the total pow er consum ption of each 
house w ere selected as the input to each network. For each house, 135 sam ples of the PCC 
obtained by the sm art electricity  meter, each related to four hours, w ere considered. At 
this stage, in  order to com pare the results and assess the accuracy of the proposed hybrid 
m ethod, both CNN and LE-CRN N m odels were applied to the same data. Table 4 presents 
the results of the identification of PCCs of the total hom e pow er consum ption via trained 
networks for load disaggregation in selected houses. In a way, at this stage of the work, the 
im provem ent of the N ILM  process has been presented, in that each designed netw ork can 
disaggregate and categorize the behavior pattern and the am ount of pow er consum ption 
related to each H EA  from  the am ount of consum ption of the w hole house. The results 
presented in Table 4  show  that the design of C N N  netw orks has a significant im pact on 
their perform ance and results. It can be seen that the designed hybrid m odel of LE-CRN N  
w ith  a high accuracy com pared to conventional C N N s w as able to im prove the N ILM  
and load disaggregation in both utilized datasets. It is notew orthy that the reduction of 
the com putational costs of data m easurem ent and the absence of the need for com plex 
calculations in diagnostic operations are the m ost im portant advantages of using transient
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state signals from the power consumption of HEAs and the suggested method in this paper.
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Figure 5. Confusion matrices for the network's testing stages via the new testing data. 

Table 4. The results of identifying the total home power consumption via trained networks.

CNN LE-CRNN

House Number of Samples TI FI Acc TI FI Acc

REDD 1 135 127 8 0.9408 131 4 0.9703
REDD 2 135 130 5 0.9629 132 3 0.9777
REDD 3 135 129 5 0.9629 131 4 0.9703
REDD 4 135 131 4 0.9703 133 2 0.9851
General 540 518 22 0.9596 527 13 0.9759
AMPds 135 129 6 0.9555 1 31 4 0 .9703

4. Comparis on of Solutions

To evaluate the effectiveness of the m ethods, it is necessary to com pare the results of 
the used m ethods to im prove the! NICM. A  com parison of the results should be performed 
in accordance w ith the principles of using; the sam e data. Therefore, the average accuracy 
obtained for all H EA s studied in this study ie com pered w ith  the results gained in other 
studies, so that all com parisons are perform ed for the; sam e data. How ever, g iven that in 
each of the perform e d studies in this regard, the div Isi on of the dataset is not the sam e for 
the training, test, and -validation oaerations, d irect com parisons musk be perform ed w ith 
caution. Tabie 5 com pares the results of the utilized m ethods in this paper w ith the results 
presented in other studies.
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Table 5. Comparison of the accuracy of various solutions using the REDD and AMPds datasets and 
the number of categorized HEAs types.

REDD Dataset AMPds Dataset

Appliance 
Identification Method Remarks Acc (%) Appliance 

Identification Method Remarks Acc (%)

LE-CRNN
Utilizing all HEAs 
from REDD houses 

1, 2, 3, and 4
97.59 LE-CRNN

Using eight 
appliances selected 

from the AMPds
97.03

CNN
Utilizing all HEAs 
from REDD houses 

1, 2, 3, and 4
95.96 CNN

Using eight 
appliances selected 

from the AMPds
95.55

AANNs [15]
Using 7 appliances 

selected from 
the REDD

95.40 AFAMAP [28]
Using six 

appliances selected 
from the AMPds

74.90

PCA [10]
Utilizing all HEAs 
from REDD houses 

1, 2, and 3
94.68 HMM [53] Utilizing all HEAs 

from AMPds 71

CNN [34]
Utilizing all HEAs 
from REDD houses 

1, 2, 3, 4, and 5
93.80 Combinatorial 

Optimization (CO) [53]
Utilizing all HEAs 

from AMPds 55

CNN [39]
Utilizing all HEAs 
from REDD houses 

1,2, 3, and 4
96.17

PBN [54] Utilizing all HEAs 
from REDD 85.50

C onsidering that, in this study, the proposed m odel w as perform ed on tw o different 
datasets, R ED D  and A M Pds, the results w ere com pared separately  for both  datasets. As 
can be seen, Table 5 is divided into two parts, each part representing the results of different 
m ethods im plem ented on each of the datasets. The evaluation of the results show s that 
the proposed hybrid  m odel has been able to perform  better than other previous m ethods 
under the sam e conditions and significantly im prove the process of NILM .

5. Conclusions

Residential load disaggregation and know ing the pow er consum ption of H EAs is the 
m ost effective solution for energy m anagem ent in  residential consum ption. The pattern 
recognition of pow er consum ption tim e series is an efficient w ay to im prove NILM . To do 
this, in this paper, the hybrid  applications of m anifold  learning and deep learning, as an 
effective approach of pattern recognition, have been em ployed to extract obvious features 
from  pow er consum ption data to identify  the type of consum er. The proposed m odel 
encompasses the hybrid of the LE, CNN, and Bi-LSTM  so that, in order to accurately extract 
the features and prevent overfitting, a layer o f Bi-LSTM  w as used in  the structure of the 
C N N  instead of the fully connected layers. To test the suggested m ethod and com pare its 
results w ith the conventional CNN, low-frequency sam pling data from REDD and AMPds 
were used. The PCCs received from  HEAs at various times w ere selected as input data for 
the training and validation of C N N  and LE-C RN N  netw orks. A fter training, the pow er 
consum ption patterns of H EA s are saved as a b lack  box m odel in  the netw ork. Then, in 
order to total the hom e load disaggregation, the saved netw orks w ere im plem ented to the 
pow er consum ption sam ples of the total hom e. Finally, the pow er consum ption of H EA s 
was disaggregated and predicted from the total home power consumption at various times. 
Predicting the consumption of HEAs w ith the Acc values of 97.59% and 97.03%, respectively, 
for the R ED D  and A M Pds datasets u sing the LE-C R N N  and com paring the results w ith  
the presented results in other studies m akes the suggested hybrid  m odel desirable. It
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should be noted that despite the proposed m odel being utilized for energy m anagem ent 
in  residential buildings, it can be selected in com m ercial buildings and industrial plants 
w here the m anagem ent of pow er consum ption is of great im portance.

A  significant p oint raised today w ith  the advent o f in telligent energy system s and 
In ternet of Things-based equipm ent is data security, w hich is especially  im portant in 
industrial applications and operational areas. Accordingly, the m odels proposed to solve 
N ILM -related problems m ust be secure against cyber-attacks and protect the privacy of the 
data; this issue can be considered a lim itation of the proposed model. Solving this problem 
and presenting a cyber-resilient m odel is an im portant issue that should be addressed in 
the future. Additionally, d isaggregating the residential and industrial loads in a pow er 
system  and then m onitoring the industrial loads and extracting their consum ption pattern 
can be considered valuable w ork for future studies.
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