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Mikhlin's integral equation is a classical integral equation for solving boundary value problems for Laplace's equation. The kernel 
of the integral equation is known as the Neumann kernel. Recently, an integral equation for solving the Riemann-Hilbert problem 
was derived. The kernel of the new integral equation is a generalization of the Neumann kernel, and hence, it is called the 
generalized Neumann kernel. The objective of this paper is to present a detailed comparison between these two integral 
equations with emphasis on their similarities and differences. This comparison is done through applying both equations to 
solve Laplace's equation with Dirichlet boundary conditions in simply connected domains with smooth and piecewise smooth 
boundaries.

1. Introduction

Fredholm integral equations o f the second kind provide an 
important and useful tool for solving linear boundary value 
problems o f the elliptic type [1]. Numerical methods based 
on these equations have a variety o f applications ranging 
from mathematical physics to electrostatics, materials sci­
ence, and electromagnetism (see, e.g., [1- 4 ]). In the context 
o f solving the Dirichlet problem for 2D Laplace's equation, 
a standard boundary integral equation method is to represent 
the solution as a double-layer potential [1- 5]. The integral 
equation that arises in this method is equivalent to the inte­
gral equation o f M ikhlin whose kernel is referred to as the 
Neumann kernel [6 , p. 282]. In the latter method, the solu­
tion is represented as the real part o f a Cauchy-type integral 
with a real density [2 , §29]. Indeed, Mikhlin's integral equa­
tion can be seen as the complex counterpart o f the integral 
equation where the solution is sought as a double-layer 
potential, since the real part o f a Cauchy-type integral is the 
equivalent complex representation o f the logarithmic 
double-layer potential [3 , p. 74]. Integral equations o f Mikh-

lin type have been used to solve the interior and exterior 
Dirichlet problem for Laplace's equation both in simply 
and multiply connected domains (see, e.g., [2 , 5 , 7]). Other 
applications o f Mikhlin's integral equation include solving 
Cauchy problems [8 ] and computing conformal map­
pings [6 ].

Recently, an integral equation for solving the Rie- 
m ann-H ilbert boundary value problem was derived in [9, 
10]. The kernel o f the derived integral equation is a gener­
alization o f the classical Neumann kernel. Solvability has 
been studied for simply connected domains in [10] and 
for multiply connected domains in [11]. The integral 
equation with the generalized Neumann kernel (briefly, 
gNk) has been used to solve Laplace's equation in simply 
and multiply connected domains [12, 13]. Other applica­
tions include computing conformal mappings [14], the 
logarithmic capacity o f compact sets [15], and the capacity 
o f generalized condensers [16].

It may seem that the integral equation with the gNk 
approach might be equivalent to Mikhlin's integral equation 
approach with no additional advantage. The purpose o f this
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paper is to compare both integral equations through solving 
Laplace’s equation with Dirichlet boundary condition. The 
main motive behind that is twofold. First, to show the close 
connection between the two integral equations. Second, to 
give numerical evidence that the integral equation with the 
gNk is not only as accurate as M ikhlin’s integral equation 
for smooth and piecewise smooth boundaries but also con­
verges faster in many cases.

Depending on the domain, our results show that there is 
a difference with respect to their efficiency as measured by 
the number of discretization points required to attain the 
same level of accuracy. This is very important from a numer­
ical point o f view and reflects directly on the convergence 
rate. In this sense and for a given level o f accuracy, M ikhlin’s 
integral equation method is more efficient particularly for 
elongated ellipses. The integral equation with the gNk 
method is more efficient for boundaries with highly varying 
curvature and domains with several corners.

The paper is organized as follows. Section 2 contains 
some preliminary material and known solvability conditions 
for both integral equations. Section 3 is devoted to the Mikh- 
lin’s integral equation method. A  detailed numerical treat­
m ent from derivation to discretization is presented. The 
details for numerically computing the solution at interior 
points are also highlighted. Section 4 covers the method 
based on the integral equation with the gNk. A  simpler setup 
for deriving the integral equation is presented. Both methods 
are applied to solve the Dirichlet problem in domains 
bounded by ellipses in Section 5, and comparison o f the 
numerical results o f two test cases is presented. Section 6 
treats domains with rapidly changing curvature. Further 
numerical test cases are compared. Domains with corners 
are treated in Section 7. The paper ends with some conclud­
ing remarks and a discussion in Section 8 .

2. Notation and Preliminaries

In this section, we recall some preliminary material and 
establish solvability conditions.

2.1. The D om ain  an d  the Boundary. W e consider in our 
study both smooth and piecewise smooth planar domains 
in the complex plane. Let G be a bounded simply connected 
boundary domain with smooth bounding Jordan curve r  
■- dG. The boundary r  is parameterized by a 2n-periodic 

twice continuously differentiable complex function q (t ) ,  0 

< t < 2n, with q  (t) -  d q ( t ) /d t  + 0 which traverses r  in the 
positive orientation, i.e., q  : [0,2n] — — C  and r  -  { q ( t ) :  t 
€ [0 ,2 n ]}. The positive orientation in this context is that 

for which G is on the left. W e let G-  denote the domain exte­
rior to r ,  i.e., G-  -  C\G , where G ~  G U r  and C  -  C  U { r o } .  
W e assume for convenience that the origin o f the coordi­
nates is interior to r .  See Figure 1 for an illustration.

W e denote by H  the space o f Holder continuous 2n 
-periodic functions on the boundary r .  A Holder continuous 
function defined on r  can be viewed both as a function of 
position and a function o f parameter depending on the argu­
ment. In this respect, no distinction shall be made between a 
function o f position $ (q ( t ) )  defined on the boundary r  and

a function o f parameterization $ (t)  o f the same boundary 
defined on [0 ,2n]. The case where r  is piecewise smooth will 
be discussed in Section 7.

2.2. C auchy-Type Integrals an d  the Sokhotski-P lem elj 
Form ulae. An analytic function in a domain can be uniquely 
expressed with the help o f an integral over the boundary of 
the domain. I f  f  (z) is an analytic function in G and contin­
uous in the closure G, then according to the Cauchy integral 
formula [3, 17]

1

2 ni
' f ( ql  
r  q  -  z d q - { r

z  € G ,

z € G :
( i )

If, however, f  (z) is analytic in G and continuous in the 
closure G ~  G-  U r ,  then

1

2 ni
' f M .
r  q  -  z

d q  -
f  M >

- f  (z ) + f

z  € G ,

z € G .
(2 )

The integral on the left-hand sides o f ( 1) and (2 ) is 
known as Cauchy’s integral. For a Holder continuous func­
tion h  on r ,  the Cauchy-type integral

2 ni
h (q)
q  -  z

dq, z€T, (3)

defines a function W that is analytic in G and in G- , i.e., sec­
tionally analytic [3, 17, 18]. It is well known from the theory 
o f analytic functions [3] that the boundary values W+ from 
inside and W-  from outside can be determined by the 
Sokhotski-Plemelj formulae

n o - ± 2  m h (q) 

q  -  z
dq, Z € r , (4)

where the Cauchy integral in (4 ) exists as a Cauchy principal 
value. The boundary functions W± are both Holder continu­
ous on r  [3 , 18].

2.3. The G eneralized  N eum ann  Kernel. Let A (£) be a given 
continuously differentiable complex function on the bound­
ary r  such that A(Z) # 0 everywhere. The gNk N (s, t) is

1

r
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defined for (s, t) € [0 , 2n] x [0 , 2n] by [10]

N (s, t) =  A im  s # t.
n  q (t) -  q (s)J (5)

The kernel N (s, t) is a generalization o f the well-known 
Neumann kernel which is a classical kernel in potential the­
ory obtained by setting A - 1  [6 , p. 282]. Remarkably, the 
kernel N (s, t) is in fact continuous [10], although the 
denominator looks problematic. W e have

, 1 ( l  q " ( t )  A  ( t )
N (t, t) -  - I m  1 1 v J -  w (6 )

n  \2 q ' (t) A (t) J  

Consequently, the integral operator N  defined on H  by

N (s, t )p (t )d t , s € [0 , 2n], (7)

is compact. W e consider also the following kernel:

M(s, t) =  1  Re | , (s, t) € [0, 2n] x [0, 2n],
[ J n  [ A ( t ) q ( t ) -  q (s ) J  [ J 1 1 1  1

s # t, 

(8)

which is singular and its singular part involves the cotangent 
function [10]. The kernel M (s, t) can be split as

M (s, t) -  -K ( s ,  t) + M (s, t), (9)

where K (s, t) is Hilbert’s singular kernel ([3 , p. 46]; [2 , p. 
118]) known also as the conjugation kernel [19]

K  (s' f)  ^ cot ( V )  ■
( 10)

The kernel M (s, t) is continuous and takes on the diago­
nal the values

M (t, t) -  1  f 1  Re -  Re A-( t l
n \2 q  (t) A (t)  ,

The integral operator M  defined on H  by

( 11)

M (s, t )p (t)d t , s € [0,2n], (12)

is bounded on H  [10].
The possibility o f X - ±  1 being eigenvalues o f the gNk 

depends on the index o f the function A , which is defined 
as the winding number of A  with respect to 0,

K ■■= ind(A) =  —  arg (A) 
2 n

(13)

i.e., the change o f the argument o f A over one period divided 
by 2n  [3, 18].

In this paper, we consider two special cases o f the gNk, 
namely, the gNk N 1 (s, t) formed with

A 1(t) := 1,

and the gNk N 2(s, t) formed with

a 2 ( -) ~  q ( t).

(14)

(15)

The kernel N 1 (s, t) is the classical Neumann kernel (see 
[6 , p. 282], and [19, p. 371]). Ultimately, we define the ker­
nels M 1(s, t) and M 2(s, t) from (8 ) with A (t)  replaced by 
A 1(t) -  1 and A 2(t) -  q (t ) ,  respectively.

W e consider two integral equations. The first integral 
equation is M ikhlin’s integral equation whose kernel is N 1 ( 
s, t) [2 ]. The kernel o f the second integral equation is N 2 (s 
, t), and this integral equation is known as the boundary 
integral equation with the gNk [10, 20 ].

Note that k1 -  ind (A1) -  0 and k2 -  ind (A2) -  1. Thus, 
we have the following theorem (see, e.g., [1, p. 255], [12]).

Theorem  1 . (a) X -  - 1  is n ot an  eigenvalue o f  N j an d  X -  1 is 
a  sim ple eigenvalue o f  N 1 with the constant fu n ction  as the 
corresponding eigenfunction.

(b) X -  1 is n ot an  eigenvalue o f  N 2 an d  X - - 1  is a  sim ple 
eigenvalue o f  N 2 with the constant fu n ction  as the corre­
sponding eigenfunction.

W e have also the following theorem from [10, 12].

Theorem  2 . (a) I f  X is an  eigenvalue o f  N 1, then X € ( -1 ,1 ] .
(b) I f  X is an  eigenvalue o f  N 2, then X € [-1 ,1 ) .
(c) I f  X # 1(X # - 1) is an  eigenvalue o f  N 1(N2), then -X  

(-X ) is an  eigenvalue o f  N 1(N2).

The following theorem follows from [12] (Theorem 8).

Theorem  3. I f  X # ±1, then X is an  eigenvalue o f  the kernel 
N 2 i f  an d  only i f  X is an  eigenvalue o f  N 1.

2.4. The D irichlet Problem . The interior Dirichlet problem 
for Laplace’s equation is to find a harm onic function u(z) 
which satisfies

Au -  0, in G,

u -  y, on r ,

(16a)

(16b)

where A is the Laplacian operator Au -  (d 2u /dx2) + (d2u/d 
y 2). The boundary data y  is a prescribed Holder continuous 
real-valued function on the boundary r .  The Dirichlet prob­
lem has a unique solution u ( [17], p. 93) which can be 
regarded as the real part o f a single-valued function F, ana­
lytic in G and continuous up to the boundary r  ([2 ], p. 137),
i.e.,

u(z) - R e  [F (z )], in G U r . (17)

r

r

0
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To ensure uniqueness o f the function F (z ) ,  we assume 
that [3, p. 208]

Im [F (0 )] -  0 . (18)

It follows from ( 16b) that F (z )  satisfies the boundary 
condition

Re [F+(Z)] -  y (Z) for (  € r , (19)

where the kernel N 1 is the classical Neumann kernel defined 
in Section 2.3. By Theorem  1, X -  - 1  is not an eigenvalue of 
the kernel N 1 . Consequently, by the Fredholm alternative, 
the integral equation (25) is uniquely solvable. Since J0 " N 1 

(s, t)d t  -  1, using regularization, the integral equation (25) 
can be written as

2h(s) + N  1(s, t) [h (t) -  h (s))d t - 2 y ( s ) .  (26)

where F+ is the restriction o f the function F  on r .  The prob­
lem ( 19) is known in [3] as Schwarz problem. In the follow­
ing two sections, we discuss two integral equation methods 
for solving the Dirichlet problem.

3. Mikhlin’s Integral Equation
3.1. The In tegral E quation . In this section, we review the 
well-known M ikhlin’s integral equation which is used to 
compute the values o f the analytic function F  (z). W e seek 
the function F (z )  in the form o f a Cauchy-type integral [2 , 
§29]

•

r  q  -  z
d q , z € G , (2 0 )

where h (q )  is an unknown Holder continuous real-valued 
density function defined on the boundary r .  The task is 
now reduced to find the density h (q ) . Using the Sokhotski- 
Plemelj formulae (4 ), we obtain

F * « ) - 1  h(Z) + 2 5
h (q) d q :

r  q  -  z

Using the boundary condition ( 19), we get

R e l i h(Z) + 2n
h (q) 

r q  -  C

Further simplification yields

d q\  -  Y (0  ■ (2 2 )

dq
h (q ) -  y (0 - (23)

The resulting integral equation (23) is a Fredholm inte­
gral equation o f the second kind known as M ikhlin’s integral 
equation [2 , §29].

W e use the parameterization q  -  q (t ) ,  0 < t < 2n, o f the 
boundary and set Z -  q (s), 0 < s < 2 n  to obtain

h (q (s)) + N 1 (q (s) , q ( t) ) h (q ( t) ) dt -  2Y (q(s)■  (24)

Equation (24) can be written as

h(s) + N 1 (s, t )h (t )d t  -  2 y(s), (25)

In particular, using regularization before discretization 
into a system of linear equations is advantageous and pro­
vides an alternative to using limits for the diagonal elements 
(formula (6 )), since the entire integrand in equation (9) van­
ishes for s -  t ([2 1 , p. 101]).

3.2. The N ystrom M ethod. The integral equation (26) is dis­
cretized into a linear system Sx -  y, where S is a square 
matrix, by means of the Nystrom method and the trapezoi­
dal quadrature rule. Note that since the integrand is smooth 
and periodic, the trapezoidal rule is an optimal choice [2 2 ]. 
The Nystrom method has the property o f preserving both 
the stability o f the original integral equation ( [17, p. 282]) 
( [ 1, p. 383]) and the convergence order o f the underlying 
quadrature rule ( [ 17, p. 282]).

Given a positive integer n, the integral in (26) is discre­
tized using the trapezoidal rule with equal weights Wj -  2n/ 
n and equally spaced nodes tj -  ( j  -  1 )(2n /n ), j  - 1, — , n. 
W e obtain the semidiscrete equation

2n  n
(21) 2h(s) + n  ^  N  ̂ s, tj ^ h ( t^ -  h ( s )  - 2 y (s), s € [° , 2 n ]-

j -1

(27)

To get a fully discrete equation, we require that (27 ) 
should hold at the quadrature points. W e set s -  tk, k - 1 ,  
•••, n. This results in the system o f equations

2n
2h ( t k ) + —  X N1 ( t b  j i H t j ) - h ( t k ) ] - 2 Y t t k ) , k n,

j ' 1j+k

(28)

where the term under the summation sign is zero when k  -  j  
since the kernel N 1 is continuous. Hence, (28) can be written 
as

( \
In n  ,

2  -  n  X N1 ’ t>- 

j=1 
\ j+k

h ( t k)  +  n  £ N1(tk.tj M ti )  = 2 Y ( t k ) , k =i. 
j=k

W e can write (29 ) in matrix form as 

Sx -  y,

(29)

(30)

0

n

n

0

0
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where S == 2 I -  diag (B 1) + B , ( t )k = tk, k  = 1, •••, n, x  = h (t), 
y = 2y (t), I is the n x n identity matrix, 1 is an n x  1 vector of 
ones, diag (B 1) is a diagonal matrix whose diagonal ele­
ments are the elements of the vector B 1, and

ten as

F+(Z(s)) = Y ( s ) - M 1(s, t ) [h (t) -  h(s)\dt. (36)

0 , k  = j ,

B kj = 2 n
—  N ^ tk , t, ) , k  + j .

(31)

Note that matrix B  has zeros in the main diagonal. 
M atrix S o f the linear system (30) is nonsymmetric, invert­
ible, and dense.

3.3. C om puting the Function u (z). Once we solve the linear 
system (30) and obtain an approximation of the density 
function h, we use it to compute F (z ) ,  according to

F  (z) = 2 n

2n h (t)  

o n (t) -  z

h ( tk)n  ' ( tk) 

n ik=1 n(tk) -  z
(32)

The solution u in the domain G can be evaluated as u( 
z) = Re [F(z)].

It is worth m entioning that as long as z does not lie on r ,  
the integrand in the middle o f equation (32) is a smooth 
periodic function on [0 ,2n]. However, when z gets closer 
to the boundary r ,  the integrand in (32) is nearly singular 
and the accuracy o f the quadrature in (32) is lost [23]. There 
are several techniques to overcome such loss (see, e.g., [5 , 
23 - 25]). An accurate method has been presented in [5]. 
The idea in this method is to use the numerical solution of 
the integral equation to first approximate the boundary 
values F+ (Z) o f the analytic function F (z )  and then use the 
Cauchy integral formula with singularity subtraction to 
compute the values o f F  (z) for z € G. This method gives 
accurate results even when z  is very close to the boundary 
r  [5 , 26 ].

For convenience, we present here the details o f the 
method. Let us first split the second term on the right- 
hand side in (2 1 ) into real and imaginary parts as

no - i  m dn ) + ilm ( —  
1 1 \2m r h n  dn

(33)

which in view of (2 2 ) can be written as

F+(Z) = Y(Z) + iIm 2ni
h (n) 

n -  C
dn  . (34)

Setting Z = n(s) in (34) and using the definition o f M 1 (s 
, t), we get

F +(Z(s)) = Y( s ) -  2 M 1 (s, t)h (t)d t . (35)

Note that the kernel M 1 is singular. As in (9), it can be 
split as

M 1 (s, t) = - K ( s ,  t) + M 1 (s, t), (37)

where M 1 (s, t) is continuous and K (s, t) is the Hilbert kernel 
given by ( 10).

Equation (34) is the same as equation (24) in [5] (Eq. 
(24)). In [5], the values o f F+(Z(s)) are approximated by dis­
cretization of the integral in (35) by the trapezoidal rule 
where the integrand is rewritten such that it is continuous 
even when t =  s . However, for t =  s , the integrand involves 
the derivative o f h (t)  which is computed numerically via n 
-point polynomial interpolation ([5, p. 2904]). In this paper, 
we follow the approach used in [2 0 ] which is based on using 
W ittich’s method and does not require the computation of 
the derivative o f the function h (t).

W e substitute s = tk, k  = 1 , •••, n, to obtain

F  +(tk) = Y(tk) + 2

•2n
[K ( ^ t) -  M 1 ( ^  0 ] [h ( t) -  h ( tk)\d t .

(38)

W e proceed by discretizing the continuous kernel M 1 
using the trapezoidal rule and the Hilbert kernel K  by W it- 
tich’s method [19] to get the fully discrete scheme for assem­

bling F +(tk), ^

i n

F + ( t k ) = Y ^ k )  + 2  X [Kk,- C k}] [ h ( t j )  -  h ( t k ) ] , k - 1 , - , n,
j =1
j+k

(39)

where the term under the summation sign is zero when k  = j  
since K k,, = 0 whenever k  = j  and the kernel M 1 is continu­
ous. The matrices C  and K  are given by

0 ,

Ck,  = > 2  Re

k  = j ,

n ' (tk)

Kn (tk ) -  n ( tj ) )  n

1 (k -  j ) n
+ -  cot --------— , k  + ,.

0 , k  -  j  even,

2 (k -  , ) n
-  cot ------- — , k  -  ,  odd.
n n

(40)

Or

0

0

n

0

Since J0 " M 1(s, t)d t  = 0 [12], equation (35) can be writ- - K k, + C kj = L kj + D kj, (41)
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where

0 ,

Lkj =
( - 1)k j -  cot

0 ,

(k  -  j ) n

k  = j , 

, k  + j,

k  = j ,

= < 2 n
— M 1 ( tk, j , k + j -

(42)

(43)

In light o f (41), (42 ), and (43), equation (39) can be writ­
ten as

i n

F + ( tk ) = y ( tk ) -  2Z - h ( tk ) ]  -  2 X D k A H f^  -  h ( tk)]j-1 j
(44)

or equivalently in matrix form as

F+= JK -  2  [(L + D ) -  (diag (L1) + diag (D 1))]x , (45)

where F+ = F+ (t), x  = h (t) , y = Y(t), and 1 is a n x 1 vector of 
ones.

Now that we have accurately computed an approxima­
tion o f the boundary values F+, the function F (z )  can be 
evaluated at any point z  in the domain G via the Cauchy 
integral formula

F (z )  -
F+(Z)
Z -  z

dZ, z € G. (46)

The integrand in (46) has a pole at z = Z. This singularity 
can be removed by dividing the usual Cauchy integral for­
mula for F  by the same formula for 1, i.e., ( 1/2 m ) Jr  (1/(Z 
-  z))dZ  = 1, and rearranging to obtain [5, 26 , 27 ]

F +(Z) -  F  (z) 
Z -  z

dZ = 0, z € G. (47)

Contrary to the integrand in (46), the integrand in (47) 
has no pole at z = Z and is by consequence an analytic func­
tion of z  € G whose Cauchy integral must be equal to zero 
[26]. Using the trapezoidal rule to discretize this integral 
yields

-  F + (n (  j ) -  F  (z) .
X  n ( tj )  - 0 ,  z € G. (48)
j =1 n tj -

Solving for F (z )  in (48 ) results in the barycentric for­
mula [5, 26 , 27 ]

ation point z approaches the boundary r  arbitrarily closely 
(see [5, 26 ]). It is referred to in [26] as discrete Cauchy inte­
gral of the second kind.

The above method for the numerical solution of the 
Dirichlet problem can be summarized in the following 
algorithm:

4. The Integral Equation with the gNk

The integral equation with the gNk has been derived for 
solving the Riem ann-H ilbert problem in simply and multi­
ply connected domains (see, e.g., [9- 11]). As stated in [10] 
(Theorem 11), the Dirichlet problem in simply connected 
domains can be solved using the integral equation with the 
gNk. However, as the objective o f this paper is to compare 
both integral equation methods, we proceed, for complete­
ness, with deriving the integral equation first. The approach 
used here is slightly different, but simpler than the one used 
in [10].

4.1. The R iem an n -H ilbert Problem . Since we are interested 
in computing u(z) = Re [F(z)], we can assume, without loss 
o f generality, that F (0 ) = c for some real constant c. We 
define a function f  in G as

f (z) =
F  (z) -  c

so that

F  (z) = z f  (z) + c.

(50)

(51)

The function f  (z) is analytic in G and its boundary 
values satisfy the boundary condition

Re [A 2 ( t)f + (n (t))\ = y ( -) -  c fo r n (t) € ^, (52)

with the function A2 (t) = n(t). The problem (52) is a Rie­
m ann-H ilbert problem with the coefficient A 2(t) = n(t) 
which has the index k2 = 1. This problem is solvable only if 
the right-hand side satisfies one solvability condition [10]. 
If this condition is satisfied, then the problem has a unique 
solution. The undetermined real constant c will be chosen 
so that the solvability condition is satisfied.

4.2. D erivation  o f  the In tegral E quation . Let f  (z) be the 
unique solution of the Riem ann-H ilbert problem (52) and

p(n ) ~  im [ M n ) f  +(n) ] for n € r - (53)

Thus, the boundary values o f the function f  (z) satisfy

A 2 (n)f + (n) = Y (n )-  c + H n ) for n € r - (54)

F  (z) =
j  ( f  +(n( j ) n ' t ) ) /(n( j  -  z

(49)
2 -=1 (n  ' ( tj ) ) / {n {  j  -  z)

Formula (49) is numerically stable even when the evalu-

Let z € G , since f  (z) is analytic in G, then by the Cauchy 
integral formula ( 1)

1

2 ni
• r n
r  n -  z

dn  = 0 : (55)

r

r
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Solving (54) for f + and substituting in (55) yields (51) and (54), we have

1

2 ni
Y (n )-  c + H n )  d n

A2(n) n - z
= 0 ,

which implies

1

2 ni
Y(n) + iH(n) dn = c J _  

r  A 2 (n) n -  z  2 ni

• s m

r  n -  z

(56)

dn- (57)

Since the function g (z )  = 1/z in the numerator o f the 
right-hand side in (57) is analytic for z € G-  and r  is coun­
terclockwise oriented, then using the Cauchy integral for­
mula (2 ) yields

1

2 ni
Y(n) + iH(n) d n = -  £ 

A 2 (n) n -  z  z ’
z € G- : (58)

W e proceed by taking the limit G-  9 z — — Z € r  on both 
sides o f equation (58) and applying the Sokhotski-Plemelj 
formula (4 ) to the left-hand side to obtain

- 1  y (z) + H Z )  + ± _  Y(n) + H n )  d n = -  £  r59^

2 a 2(z) 2 n i J  r  A 2(n) n -  Z Z '

Since A 2(Z) = Z, multiplying (59) by -2 A 2(Z) = -2Z  gives

Y(Z) + H Z ) -  —ni r  (Y (n )+ H n ) )  A D  i f k = 2 (6 0 )

Using the parameterization n = n ( t ) ,0 <  t < 2n, and Z = 
n(s), 0  < s < 2 n, we get

Y(s) + H s) -  j
■In

1 A 2(s) n ' ( 0
0 (Y(t) + 1H(t)) n a 2 (-) n (t) -  n(s) d t  = 2c. 

(61)

Then, using the definitions of the kernels N 2 and M 2 (see 
Section 2.3), we obtain

( In
l-^ ^  i)H(i) -  N2(s, t)Y(t) + i(M2 t)Y(t) -  N2(s, t)H(t))]dt = 2c•

0

(62)

Taking the imaginary parts o f both sides in (62) yields

H( s ) - N 2 (s, t)H (t)dt  = - M 2(s, t)Y (t)d t, (63)

which is the integral equation in [10] (Eq. (98)). This equa­
tion is known as the integral equation with the gNk. The 
integral equation (63) is uniquely solvable (Theorem 1). 
Note that the integral equation (63) does not involve the 
undetermined real constant c . Manifestly, computing the 
boundary values of F  requires only computing the function 
H, the solution o f the integral equation (63). Indeed, from

F+(Z) = Y(Z) + ’H Z ) ,  Z € r . (64)

The values o f F (z )  for z € G can be computed using (49). 
Note that the boundary values in formulas (34) and (64) can 
differ from each other only by an imaginary constant [2 ].

4.3. D iscretization o f  the In tegral E quation . The regularized 
form o f the integral equation with the gNk (63) is discretized 
by the Nystrom method and the trapezoidal quadrature rule 
which gives the linear system [2 0 ]

SX = -y , (65)

where S  = 2 I + diag (B 1) -  B , X = ^ (t) , and matrix B  is 
defined by

0 , k  = j ,

B  kj = 2 n
—  N 2 ( tk, j  , k  + j .

(66)

The right-hand side in (65) is given by [20]

y = (i3 -  diag (iS 1) + (67)

where y  = Y(t), the matrix L  is defined in equation (42), 1 is 
a n x 1 vector o f ones, and matrix D  is defined by

0 , k  = j ,

D  kj = 2 n
—  M 2 ( tk, tj)  , k  + j .

(68)

W e om it the details here and refer the reader to [20] for 
a thorough description of the method.

In [20], the linear system (65) was solved by the GMRES 
iterative method accelerated by the Fast Multipole Method 
(FM M ). Since our objective here is the comparison between 
the two integral equations, we shall solve both linear systems 
using the MATLAB \ operator.

5. Domains Bounded by Ellipses

In this section, we consider the simply connected domain G 
interior to the ellipse r  with the parameterization

n(t) = a  cos (t) + i sin (t), 0 < t < 2n, (69)

for a  > 0 , i.e., the m inor radius is 1 and the m ajor radius is a 
(see Figure 2 for a  = 5). W e present in the following subsec­
tions a comparison between M ikhlin’s integral equation 
method and the integral equation with the gNk method in 
domains bounded by the ellipse in (69). W e start by compar­
ing the eigenvalues of the coefficient matrices.

5.1. Eigenvalues. For the ellipse (69), the explicit form of the 
eigenvalues of the Neumann kernel are known and are given

r

r

0 0
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by (see [28], Lemma 1.1, and [1, p. 255])

b 0 = 1 , b 2k-1 = - 8 k, b 2k = 8k, k  = 1 ,2 ,3 ,

where

0  =
a -  1

a  + 1
0 < 0  < 1 .

(70)

(71)

This is in agreement with Theorem  2 (c). Further, since 
0k — — 0  as k  — — to , the point 0 is an accumulated point 
of the eigenvalues of the Neumann kernel. In view of Theo­
rems 1 and 3, the eigenvalues of the gNk are

~0 = - 1, A 2k-1 = 0 k, A 2k = - 0 k, k  = 1 ,2 ,3 , (72)

Consequently, in light of Theorem 2 , the coefficient 
matrix (2I -  diag (B 1) + B ) of M ikhlin’s integral equation 
(25) and the coefficient matrix (2I + diag (B 1) -  B ) o f the 
integral equation with the gNk (63) have the same eigen­
values and these eigenvalues lie in the interval (0 , 2 ] for suf­
ficiently large values of n . The n approximate eigenvalues of 
the coefficient matrices, sorted decreasingly, are given by

A1 = 2 , A2 = 1 + 0, A3 = 1 + 0 2, • ,  An-1 = 1 -  02, An = 1  -  0.

(73)

Since 0k ~ 0 for small 0  and large k, these eigenvalues are 
clustered in a remarkably symmetric way around 1 . In fact, 
for small 0  and for sufficiently large values of n , most of 
these eigenvalues are equal to 1. For elongated domains, 
for which a  > > 1  or a  < < 1  and hence 0  near to 1, we can 
notice that more eigenvalues are different from 1. In all 
cases, the largest eigenvalue of the coefficient matrices is 
Amax a  2 and the smallest eigenvalue is Amin a  1 -  0. For a 
= 1.5, we have 0  = 0.2 and the eigenvalues are too accumu­

lated around 1 (see Figure 3 (a)), where the computed smal­
lest eigenvalue is Amin = 0.799999999999999. For the 
elongated ellipse with a  = 1 9 , the computed eigenvalues are 
shown in Figure 3 (b). In this case, 0  = 0.9, and hence, we 
have several eigenvalues slightly away from 1 where the 
computed smallest eigenvalue is Amin = 0 1 .

In Figure 3, we present only the eigenvalues o f the matrix 
(2I + diag (B 1) -  B ). However, we chose the values of n 
such that the maximum norm  between the approximate 
eigenvalues o f the two matrices (2I -  diag (B 1) + B ) and ( 
2 I + diag (B 1) -  B ) is less than 10- 13.

5.2. C losed-Form  Expressions f o r  the Kernels N 1, M lt N 2, an d  
M 2. In the case o f the ellipse (69), it is well known that the 
Neumann kernel can be expressed in closed form as (see 
[21 , p. 135-136])

1 t n' (0N  1(s, t) ■■=- I m 1
n { n i t ) -  n ( )  n  1 + a 2 + (1 -  a2) cos (s + t)

(74)

The explicit closed-form expressions for the kernels M 1, 
N 2, and M 2 defined in Section 2.3 are given in the following 
theorem.

Theorem  4. L et r  be the ellipse p aram eter iz ed  by n (t) '■= a 
cos (t) + i sin (t), w here 0 < t < 2n  an d  a  > 0. The closed- 

fo r m  expressions f o r  the kernels M 1, N 2, an d  M 2 are, respec­
tively, given by 

(a)

Mi (s, t) = - 1  CGt i~2

(b)

A 1 (l -  a2) sin (t + s)
2n 1 + a2 + (1 -  a2) cos (t + s)

(75)

N2(S, t) = - -
2a

n 1 + a2 -  (1 -  a2) cos (2t) n 1 + a2 + (1 -  a2) cos (t + s)

(76)

(c)

- -  1 ^ ( s -  _ 1 0 -  a2 ) sin (2t)M Js , t) = - —  co t, . . , N
2n y 2 J  n  1 + a2 -  (1 -  a2) cos (2t)

1 (1 -  a2) sin (t + s)
(77)

2n 1 + a2 + (1 -  a2) cos (t + s 

Proof, (a) For s + t, we have

n ' (t) - a  sin (t) + i cos (t)

n (t) -  n(s) a(cos (t) -  cos (s)) + i(sin (t) -  sin (s))

(78)

Applying the sum-to-product trigonometric identities 
cos (t) -  cos (s) = - 2  sin (( t  + s)/2 ) sin (( t  -  s)/2 )  and sin (t 
) -  sin (s) = 2  cos (( t  + s)/2) sin (( t  -  s)/2), (78) becomes

J

a

1 a

n' (0 a sin (t) -  i cos (t) a2 sin (t) sin ((t + s)/2) +cos (t) cos ((t + s)/2) + ia[sin (t) cos ((t + s)/2) -  cos (t) sin ((t + s)/2)
nst) -  n(s) 2 sin ((t -  s)/2) [a sin ((t + s)/2) -  i cos ((t + s)/2)] 2 sin ((t -  s)/2) [a2 sin2((t + s)/2) + cos2((t + s)/2)]

(79)
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Applying the half-angle identities sin2 (0/2) = (1 -  cos ( 
0 ))/2  and cos2(0 /2 ) = (1 + cos (0 ))/2  to the bracket term in 
the denominator and taking the real parts yields

Re
n'(t) \ a2 sin (t) sin ((t + s)/2) + cos (t) cos ((t + s)/2)

n {t)-  vis sin i i i  -  s)/2) [1 + a2 + (1 -  a2) cos (t + s)]

(80)

Applying the product-to-sum trigonometric identities 2 
sin A  sin B  = -co s  (A  + B) + cos (A -  B) and 2 cos A  cos B  
= cos (A  + B) + cos (A -  B) to the numerator part o f (80) 

and rearranging, we get Figure 2: The ellipse with parameterization in equation (69) with 
a = 5.

Re n'(t) \ (1/2)[(1 + a2) cos -  s)/2) + (1 -  a2) cos ((3t + s)/2)\
n^)-  n(s. sin -  s)/2)[1 + a2 + (1 -  a2) cos (t + s)]

(81)

However,

(3t + s\ ft  -  s \ ft  -  s\ ft  -  s\cos | —;— ] = cos I----+ (t + s) = cos I ----- cos (t + s) -  sin I ----  sin (  + s).

(82)

Substituting this result into (71) and rearranging gives

o (  n ' (t) \ ( 1/2) cos (( t  -  s)/2 ) [1 + a 2 + ( 1 -  a 2) cos (t + s^ -  ( 1/2) ( 1 -  a2) sin (( t  -  s)/2 )  sin (t + s)

Re \n(t) -  n ( s ) j  sin (( t  -  s )/2) [ 1 + a2 + ( 1 -  a 2) cos (t  + s)] .

Finally, multiplying both sides o f (83) by 1/n  and simpli­
fying gives (75).

(b) For s + t, we have

n (s) n ' (t)  =  n ( s ) -  n (t)  +  n(t) n ' (t)  =  -  n i t )  +  n ' (t)
n( - ) n( -) -  n ( )  n(- ) n( -) -  n(s) n( -) n( -) -  n ( )  '

(84)

(c) For s + t, we have

m , (s, o= n Re

= - 1  Re ( m )  + — Re
n  \ n (t) n  W -) -  n( s ) ,

Observe that

n ’ (t) (1 -  a 2) sin (2t) + 2 ia

n(t) 1 + a2 -  (1 -  a2) cos (2t)
(85

So

N2(s, t) = i i m  (nM n' ( t ) , ,  ^ = - i l ^ n-̂ H) + ^ i j  n '(t)
n \ n ( -) n(-) - n(s)J n \ n ( -) )  n vnM- n (

(86

In light of (74) and (85), we get

N2 (s, -) = -  - 1  n 1
2a

n 1 + a2 -  (1 -  a2) cos (2-) n 1 + a2 + (1 -  a2 ) cos (t + s )

(87

Applying (85) and the result in (a) yields

, 1 ( s  -  t\ 1 (1 -  a2) sin (2t)
M 2(s, t) = - —  cot ------  ------------^ ^  ^

2n  \ 2 J  n  1 + a2 -  (1 -  a2) cos (2t)

1 (1 -  a2) sin (t + s)

2n  1 + a2 + (1 -  a2) cos (t + s)'

(89

□

E xam ple 5. To illustrate the accuracy of the two methods, 
consider the Dirichlet problem inside a domain with a 
boundary curve parameterized by the ellipse (69) and 
boundary condition

u (n (t)) =  Y(t) ~  Re \Za + 1  + n(t) for n(-) € r . (90 )

1 a
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K K

(a) (b)

Figure 3: The eigenvalues of the coefficient matrices for (a) a = 15  and (b) a = 19.

Note that - a  is outside the domain and we can always 
choose any analytic branch o f the function V a  + 1 + z.

For the sake of comparison, we first solve M ikhlin’s inte­
gral equation (25) using the method described in Section 3.2, 
and then, for a  = 1 5  and a  + i/ € G with real numbers a  and 
/, we use formula (32) to compute the values at a  + i/ (i.e., 
without computing F + and without using the barycentric 
formula (49)). Table 1 shows the estimated relative error 
\\u„ -  u \\m/||u||TO o f the approximate solution un at two 
given interior points. W e observe that accurate results are 
obtained for a  = /  = 0 even for small values o f n (see 
Table 1). For a  = 0 and /  = 0 .999, the point a  + i/  is close 
to the boundary and the obtained results are very inaccurate 
even for large values of n . To get an accurate approximation, 
we compute the boundary values F + according to equation 
(35) and then compute the solution at a  = 0 and /  = 
0,0 . 999 as described in Section 3.3. The values o f the relative 
error of the computed solution un are presented also in 
Table 1. It is observed that accurate results are obtained for 
both cases of / even for small values of n .

W e solve Example 5 using the integral equation with the 
gNk method, as described in Section 4.3 and summarized in 
Algorithm 2 . The estimated relative error of the approximate 
solutions at a  + /  for a  = 0 and /  = 0,0 .999 is presented in 
Table 1. These results are also highly accurate at both points.

In Figure 4 (a), the relative error o f the approximate solu­
tion at 1000  random interior points is plotted against the 
number o f discretization points for a  = 2. Both methods 
achieve high accuracy, exhibit good efficiency, and converge 
equally fast. However, in the case of the elongated ellipse 
with a  = 1 9  (see Figure 4 (b)), although both methods achieve 
the same accuracy, there is a difference in terms of the cost. 
M ikhlin’s integral equation method converges faster and 
achieves high accuracy at half the number of discretization 
points needed using the integral equation with the gNk 
method. This computational advantage in favour of Mikh-

lin’s integral equation method has been noticed for other 
values of a  for which the ellipse (69) is elongated.

6. Domains with Complex Geometry

In this section, we perform numerical experiments, aiming 
to compare the two methods and highlight the differences 
in their accuracy in case the boundary of the simply con­
nected domain G has a complex geometry. Using M ikhlin’s 
integral equation method, we follow the steps described in 
Algorithm 1, i.e., we solve the integral equation (25) first. 
Next, we use the computed approximate solution to find 
the boundary values F + according to (35) and then we eval­
uate the solution according to (49). For the integral equation 
with the gNk method, we follow the steps described in Algo­
rithm 2, i.e., we solve the integral equation (63). Then, we 
evaluate the solution according to (49).

W e consider two smooth Jordan curves, namely, the 
boundary r 1 parameterized by (see Figure 5 (a))

r 1 : n (t) = (ecos - cos2( 8 t) + esm - sin2( 8 t ) ) e lt, 0 < t < 2n,

(91)

and the boundary r 2 with the parameterization (see 
Figure 5 (b))

r 2 : n(t) = ( 1 + 0  .5 cos 301) ei-, 0 < t < 2 n . (92)

E xam ple 6. Let G1 and G2 be the two simply connected 
domains bounded by the two smooth Jordan curves r 1 and 
r 2, respectively. The Dirichlet boundary conditions are con­
structed from a closed-form reference solution given by

u (z ) = l°g  Iz -  z0  ̂ (93  )

where z  is an interior point and z0 is an exterior point. W e 
fix z0 = 2  + 1 .5i for r  = r 1 and z0 = 1 .5 + i for r  = r 2.



Computational and Mathematical Methods 11

Table 1: The relative error \\u„ -  u|\ra/|\u|\ra of the approximate solution u„ of the Dirichlet problem for a = 1. 5 at the points z = a  + i/ with 
a  = 0 and two values of /  for different values of n using Mikhlin’s integral equation and the integral equation with the gNk (IE with the gNk).

Mikhlin (CIF with h) Mikhlin (CIF with F+) IE with the gNk
/  = 0 /  = 0.999 p  = 0 p  = 0.999 /  = 0 /  = 0999

8 3 .58 x 10-°3 1 92 x 10+02 8 .65 x 10-°5 8 . 20 x 10-°7 1 .25 x 10-04 1.10 x 10-06

16 5 . 71 x 10-06 9 . 59 x 10+01 1 . 00 x 10-07 2 . 64 x 10-08 1 . 62 x 10-07 2 . 76 x 10-08

32 1. 45 x 10-11 4 . 77 x 10+01 2 .25 x 10-13 6 .14 x 10-11 3 . 84 x 10-13 6 .14 x 10-11

64 2 .22 x 10-16 2 . 36 x 10+01 1 . 40 x 10-16 5 . 51 x 10-16 2 .22 x 10-16 5 . 51 x 10-16

128 1 . 40 x 10-16 1.15 x 10+01 1 . 40 x 10-16 1. 38 x 10-16 1 . 40 x 10-16 1. 38 x 10-16

Step 1. Solve the integral equation (25) for h.
Step 2 . Find the boundary values of F  given in equation (35).
Step 3. Compute the values of F(z) for z € G using (49).
Step 4. Finally, evaluate the solution u(z) through u(z) =Re [F(z)].

Algorithm 1: Solving the Dirichlet problem with Mikhlin’s integral equation method

Step 1. Solve the integral equation (63) for h

Step 2. Compute the values of F(z) for z € G using formula (49), where the boundary values of F  are given by (64). 
Step 3. Finally, evaluate the solution u(z) as u(z) = Re [F(z)].

Algorithm 2: Solving the Dirichlet problem using the integral equation with the gNk method

Number of discretization points: n Number of discretization points: n

—e— Mikhlin —e— Mikhlin -----0.1 x l.ll2 -n
gNk gNk ----- 0.1 x 1.055-n

----- 0.01 x 1.3875-n

Figure 4: The relative error \\u„ -  u|\ra/|\u|\ra of the approximate solution u„ of the Dirichlet problem at 1000 interior points as a function of 
the number of discretization points for (a) a = 2 and (b) a = 19.

The approximate solution un is computed for several 
values of n at one million randomly chosen interior points 
using both methods for r 1 and r 2. The estimated relative 
error \\u„ -  u\|TO/\|u\|TO is shown in Figure 6 . For the curve 
r 1, getting a relative error in the order o f 10- 14 requires

around 1000  discretization points using the integral equa­
tion with the gNk method and around 1500 using M ikhlin’s 
integral equation method. For r 2, reaching a relative error in 
the order o f 10- 14 requires around 1800 discretization points 
using the integral equation with the gNk method and around
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(a) (b)

Figure 5: The boundary r 1 parameterized by (91) (a) and r 2 parameterized by (92) (b).

Number of discretization points: n Number of discretization points: n

—e— Mikhlim
gNK

----  1.1x1.0208"”
---- 0.5x1.0315-”

Figure 6 : The relative error \\u„ -  u|\ra/|\u|\ra of the approximate solution u„ of the Dirichlet problem as a function of the number of 
discretization points n in Example 6 for (a) r 1 and (b) r 2 using both methods.

4600 discretization points using M ikhlin’s integral equation 
method. The method based on the integral equation with 
the gNk is more efficient in both cases.

E xam ple 7. Let G1 and G2 be the two domains described in 
Example 6 . W e assume that the exact solution is given by 
the harm onic function

u(z) = Re X —
z -  z-

(94)

where z  is an interior point and the poles z j are located out­
side the domain, with z 1 = 2.5 -  1 .5i, z2 = 2 . 5 + 1 .5i, and z3 
= - 1  . 5 + 2 .5i for r  = r 1 and z1 = 1 . 5 + 1 .5i, z2 = - 1  .5 -  1 .5i 

, and z3 = - 1  . 5 + 1 . 5i for r  = r 2.
Both methods are applied to find the approximate solu­

tion u„ for different values o f n at one million randomly cho­
sen points in each interior domain for r 1 and r 2. The values

of the relative error norm - u\\m /\\u\\m  with the number 
of discretization points are plotted in Figure 7. Here again, 
we see that the integral equation with the gNk method 
requires less discretization points than M ikhlin’s integral 
equation method would require for the same level of 
accuracy.

The results of Examples 6 and 7 show clearly that the 
method based on the integral equation with the gNk is more 
efficient for these types of curves with highly varying curva­
ture. The convergence is faster, and the required number of 
discretization points for an accurate approximation of the 
solution is less.

7. Domains with Piecewise Smooth Boundaries

W e consider in this section domains bounded by piecewise 
smooth curves. Now, in addition to the fact that the integral 
operators N 1 and N 2 are no longer compact, additional dif­
ficulties arise: the solutions of the associated integral
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Number of discretization points : n

-© - Mikhlin 
gNk

----  4.55x 1.0205-n
-  2.55x 1.0265-n

Number of discretization points : n

—e— Mikhlin
gNk

----- 2.2 x 1..0067-n
----- 6 x 1.0239-n

Figure 7: The relative error \\u„  -  u|\ra/|\u|\ra of the computed solution un of the Dirichlet problem versus the number of discretization 
points using both methods in Example 7 for (a) T1 and (b) r 2.

equations exhibit a singular behaviour in the neighbourhood 
of the corner points, the trapezoidal quadrature rule with 
equidistant nodes looses its accuracy, and the Nystrom 
method produces ill-conditioned linear systems [29 , 30]. 
There are many successful approaches to overcome difficul­
ties associated with corner points (see, e.g., [2 9 - 33]).

7.1. A G raded  M esh Q uadrature. Since we are using the trap­
ezoidal quadrature rule, we use the approach suggested by 
Kress in [29] which is based on replacing the equidistant 
nodes by a graded mesh with the same number of nodes 
constructed by a new variable substitution. This substitution 
has the particularity of making the derivatives of the new 
integrand vanish at the extremities of the integration inter­
val. In particular, using this substitution in the parameteriza­
tion of the curve renders the new transformed 
parameterization many times continuously differentiable 
along the whole curve. Kress [29 ] introduced a typical sub­
stitution based on the bijective and strictly monotonically 
increasing rational function w (s) : [0 , 2n] — — [0 , 2n] defined
as

w (s) = K s) )p

K s) Y + [v(2n -  s) ]
(95

where p  > 2 is the grading parameter and v is a cubic polyno­
mial given by

/1 1\ f n  - s\3 1 s -  n  1

v(s) -  ( p - , ) ( — )  + p —  + r  (9 6 )

Notice that v(0 ) = 0 and v(2n) = 1 and that w  is infinitely 
differentiable.

Assume that the boundary r  parameterized by n(t) has „ 
corner points. These corner points are at

n (0 ) , n (2 n /n ) , n (4 n /n ) , •-, n (2 („  -  1)n /n ). 

Define the function w as [34]

(97

' w(ns)In,

(w(ns -  2n) + 2n)/n, 

w ()  = (w(ns -  4n) + 4n)/n,

s € [0 , 2n/n ), 

s € [2n—, 4n/n), 

s € [4n/n, 6rdn),

(w(ns -  2(n -  1)n) + 2(n -  1)n)/n, s € [2 (n -  1)n/n, 2n] .

(98

Since w  has a zero o f order p  at s = 0 and s = 2n  ([29 ], 
Thm .2 .1), then w € Cp .W e  substitute t = w(s) in the param­
eterization of the boundary and consequently obtain

n (t) = n (w (s)) , n ' (t ) d t = w '(s) n ' (w (s)) d s . (99)

This substitution in the parameterization of the bound­
ary eliminates the complexity arising from corner regions 
and the integral equations can be solved as in the case of 
smooth domains.

7.2. N um erical Experim ents. W e are now in a position to 
concretely use the described substitution technique in 
numerical examples for solving (2 .12) in domains with cor­
ners. W e consider four examples. The first example is a fam ­
ily of curves with one outward-pointing corner. The second 
example is a family of curves with one reentrant corner. The 
third example is a curve with 20  corners, half of them are 
inward-pointing and the other half are outward-pointing. 
The fourth example consists of two polygonal domains.
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Figure 8 : The curves (a) Tn/2 and (b) f n/20 in Example 8.

Number of discretization points: n

-  Mikhlin 
gNk

Number of discretization points: n

Mikhlin
gNk

10-2 x .043510-"

Figure 9: The relative error \\u„ -  u|\ra/|\u|\ra of the computed solution u„ of the Dirichlet problem versus the number of discretization 
points using both methods in Example 8 with p  = 7 for (a) Tn/2 and (b) f n/20.

Figure 10: The curves (a) r 3n/2 and (b) r 2n_n/10 in Example 9.
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Number of discretization points: n Number of discretization points: n

Mikhlin
gNk
5.10-2 x 1.125-n

a- Mikhlin
-  gNk
■- 5.10-2 x 1.0208-" 
-■ 10-3 x 1.0208-n

Figure 11: The relative error \\u„  -  u|\ra/|\u|\ra of the computed solution u„ of the Dirichlet problem versus the number of discretization 
points using both methods in Example 9 with p  = 7 for (a) r 3n/2 and p  = 6 for (b) r 2n_n/10.

Number of discretization points: n

p = 3, M — p = 3, gNk
p = 4, M —a— p = 4, gNk
p = 5, M —i— p = 5, gNk
p = 6, M —v— p = 6, gNk
p = 7, M —k— p = 7, gNk

Figure 12: The quadrature nodes used to discretize the boundary in Example 10 and the 1000 randomly chosen interior points (a). The 
relative error \\u„ -  u|\ra/|\u|\ra of the computed solution u„ of the Dirichlet problem versus the number of discretization points using 
both methods with different values of the grading parameter p  in Example 10 (b).

E xam ple 8. Let Ge be the domain bounded by the curve r 9 
parameterized by [33, §4.2]

n(t) = 2 sin (t/2 ) -  i tan (9/2) cos (t) -  1, t € [0 , 2n], (100  )

where 0 <  9  < n. The boundary r 9 has a corner at t = 0, with 
interior angle 9. The boundary data are constructed from the 
harm onic function (93), where z0 is a point outside G9. We

consider two instances o f r 9, more precisely, F n/2 and r n/20 
(see Figure 8 ). W e set z 0 = - 2  and use both methods to com ­
pute the solution o f the Dirichlet problem at z = 0 for differ­
ent values of n . Figure 9 compares the convergence results 
for both methods. For T n/2, the two methods are almost 
equivalent. For r n/20, the difference is remarkable, the gNk 
method is more efficient, and the convergence rate decays 
linearly. It is similar to convergence rates seen in smooth
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Figure 13: Two polygonal domains, a hexagon (a) and a five-armed star (b), in Example 11.

Number of discretization points: n

Mikhlin
gNk

Number of discretization points: n

Figure 14: The relative error \\u„  -  u|\ra/|\u|\ra of the computed solution u„ of the Dirichlet problem versus the number of discretization 
points using both methods in Example 11 for the hexagon (a) and the five-armed star (b).

boundaries. The convergence rate of M ikhlin’s integral 
equation on the other hand follows a nonlinear and slow 
pattern.

E xam ple 9. Let r^  denote the family o f curves parameterized 
by [33, §4.3]

n(t) = - 2  sin (3t/2 ) + i tan (0/2 ) sin (t) -  1/2, (101)

W e notice that both methods are equally efficient for r 3n/2 
with comparable accuracy.

E xam ple 10. W e consider the boundary curve parameterized 
by ([33] §4.2)

n (-) = eu (4  + 2 cos ( 1 0 ( - -  2 0 ) )  sin ( 10 ( - -  20

(102  )

where n  < 0  < 2 n  is the interior angle. The boundary data 
are prescribed using the function (93) with z0 = - 3  .5. W e 
consider in this example the two curves r 3n/2 and r 2n-n/10 
(see Figure 10). W e use both methods to compute the solu­
tion o f the Dirichlet problem at z  = 0 for different values of „

The relative error of the obtained solution is computed 
for different values o f n. The results appear in Figure 11.

The boundary data are constructed from the function 
(93) with z0 = - 6 . Both methods are used to compute the 
solution of the Dirichlet problem at 1000 randomly chosen 
interior points (see Figure 12(a)).

Figure 12(a) compares the convergence results using 
both methods with different values o f the grading parameter 
p  and different numbers of discretization points n. As we 
clearly see, for all values of p , M ikhlin’s integral equation
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method stagnates at a lower accuracy. The gNk method is 
more efficient and accurate at, substantially, any given num­
ber of discretization points.

E xam ple 11. In the last example, we consider two polygonal 
domains, namely, a hexagon and a five-armed star (see 
Figure 13). The two polygonal domains were generated 
using PlgCirMap (see [14]). The Dirichlet boundary condi­
tions are constructed from the harm onic function (93) with 
z 0 = - 2  for the hexagon and z0 = - 1  5 for the five-armed 
star. The value o f the grading parameter used is p  = 9. 
Figure 14 shows the estimated relative error o f the computed 
solution at z = 0 for different values o f n.

In both polygonal domains, the method based on the 
integral equation with the gNk is effectively more efficient, 
reaching highly accurate results in both domains. The differ­
ence between the two methods is more remarkable in the 
case o f the five-armed star (see Figure 14).

8. Concluding Remarks and Discussion

In this work, we considered the comparison of two integral 
equation methods for solving the Dirichlet problem for 
Laplace’s equation in simply connected domains, namely, 
M ikhlin’s integral equation method and the integral equa­
tion with the gNk method. Both integral equations were dis­
cretized using the Nystrom method and the trapezoidal rule. 
The resulting linear systems were solved using the MATLAB 
\ operator. The two integral equation methods are stable 
and highly accurate and have the same computational 
complexity.

Solving the Dirichlet problem with both methods 
requires finding the boundary values F + of the analytic func­
tion F  where the unique solution of the Dirichlet problem in 
the domain G is u (z ) = Re [F (z)] for z € G. In both methods, 
once the boundary values F + are determined, we use the 
barycentric formula (49) to evaluate the solution at given 
interior points. The main difference between the two 
methods though is how we calculate the boundary values 
F +. For M ikhlin’s integral equation, note that computing 
F+ by (35) requires computing M 1h, where h  is an approxi­
mate solution o f the integral equation (25). On the other 
hand, solving the integral equation with the gNk provides 
us directly with the boundary values F + without any extra 
calculations. However, the right-hand side o f the integral 
equation with the gNk is - M 2y and needs to be computed 
first, i.e., we have only a computed approximation of the 
right-hand side o f the integral equation, in contrast to Mikh- 
lin’s integral equation where the right-hand side is given 
explicitly.

To sum up, the two methods are computationally equiv­
alent for computing F +. Both require solving a linear system 
and both require computing a singular integral M k0 (k  = 1 
or 2). However, the function 0  is a known function (= -y )  
for the integral equation with the gNk and 0  is a computed 
approximate solution (= h ) for M ikhlin’s integral equation.

In conclusion, for simply connected domains, the two 
methods based on these two integral equations are equiva­
lent in terms of computational complexity and accuracy.

The numerical examples show that for domains with simple 
geometry, both methods are highly accurate and exhibit 
good performance. The method based on M ikhlin’s integral 
equation is more efficient particularly for elongated ellipses 
(see Figure 4 ). However, for boundary curves with rapidly 
varying curvature, the integral equation with the gNk 
method is more efficient (see Figures 6 and 7). In domains 
with corners, both methods have shown comparable accu­
racy (see Figures 9 and 11). However, for domains with sev­
eral corners, the integral equation with the gNk method has 
shown better efficiency (see Figures 12 and 14).

It is natural to devote further investigation on the com ­
parison between the two integral equations for multiply con­
nected domains. There are, actually, significant differences 
between the two integral equation methods in multiply con­
nected domains. The integral equation with the gNk (63) is 
still uniquely solvable as it is [12]. In contrast, M ikhlin’s 
integral equation (25) is not uniquely solvable [27 ]. Other 
reformulations need to be considered in order to make it 
uniquely solvable (see [2 , §31], [7]). A comparison between 
the two integral equation methods in both bounded and 
unbounded multiply connected domains will be the subject 
of a future work. This comparison will include the applica­
tion of both integral equations in solving some other prob­
lems such as the computation of the Dirichlet-to-Neumann 
map and numerical conformal mappings.
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