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ABSTRACT  
 

Abstract is a synopsis of the work containing the problems studied, 
the purpose of research, information and methods used to solve 
problems, and conclusions. Articles must be submitted in print-
ready format and are limited to a minimum of ten (10) pages and 
a maximum of twelve (12) pages. Abstract is a synopsis of the work 
that contains the issues studied, the research purpose, the 
information and methods used to solve the problem, and the 
research conclusion. Abstracts are limited to 200 words and should 
not contain references, mathematic equations, figures, and tables. 
The font size for abstracts, keywords, and body of article is 11pt. 
Keywords are no more than six (6) words, but the minimum is three 
(3) words. 
 
 
Keywords: Web, Asset Management, CodeIgniter, Bootstrap 
 

 

ABSTRACT  

 

Sex classification is part of forensic anthropological identification 

aimed at determining whether the skeleton belongs to a male or a 

female. This paper exhibits the performance of the Support Vector 

Machine (SVM) in classifying the sex of the sacrum in forensic 

anthropology. Bone data was measured by the metric method based 

on six variables, namely superior breadth, anterior length, mid ventral 

breadth, real height, diameter the base, and max-transverse diameter 

of the base. This study shows performance analysis of SVM using the 

library libSVM with linear, polynomial, and RBF kernel to observe 

the results of the comparison of the accuracy of the kernel used. 

According to the results of the trials, the best accuracy was attained in 

each kernel function, i.e., the RBF kernel is 83.33% with  = 1 and C 

= 1, the polynomial is 85.56% at γ = 2, C = 2 and d =1, and the linear 

kernel obtained best accuracy is 84.44 % with C = 2 and C = 3. In 

conformity with the experimental result, polynomial attained the 

highest accuracy of 85.56% at γ = 2, C = 2, and d =1. 
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I. INTRODUCTION 

 

Forensic anthropology is the discipline of 

skeletal identification, particularly with regard 

to the recovery and analysis of skeletons aimed 

at knowing the biological profile [1]. From 

previous studies, identification of skeletal 

remains can be done using Deoxyribose Nucleic 

Acid (DNA) analysis on laboratory or 

radiological examinations. The most popular 

method of determining the sex of the found 

bones is using DNA analysis [2]. However, in 

some cases, if the skeletal remains are in a burnt, 

dismembered (not intact) or very dry condition, 

DNA analysis fails to provide accurate results 

because DNA proteins cannot be extracted 

under the conditions stated. Thus, important 

parameters present in the bone cannot provide 

information [2, 3]. Based on the disadvantages 

of DNA analysis in this condition, forensic 

anthropology was developed to improve the 

overall identification of important parameters. 

This aims to obtain a more reliable 

characterization of individuals and provide 

more data to confirm the identity of the 

biological profile, particularly in determining 

sex.  

Forensic anthropology can identify 

skeletons that are burnt, dry, or not intact to 

recognize important biological profiles (Figure 

1), including the cause and time of death [1]. 

Forensic anthropology has four important 

parameters in identification of skeleton or 

skeletal remains, namely sex, age, ancestry, and 

stature in which sex determination is a major 

step in identifying the human biological profile 

[1, 4-6].  

Sex classification is aimed at determining 

whether a given skeleton belongs to a male or 

female [3]. Knowledge about the sex of the body 

of an unknown collection is very important to 

make a more accurate estimate of the age [3]. 

Without an accurate sex determination, it will 

not be possible to accurately estimate the age at 

death. Thus, sex determination is necessary for 

further identifying the age, ancestry, and stature 

estimations [2]. 

 

 
Figure 1. Examples of skulls or skeletal 

remains in a burnt condition 

 

In determining sex, bone data were 

analyzed using metric or morphological 

measurement methods [7]. Metric 

measurements relate to sizes (such as weight), 

body proportions as well as the shape of the 

human skeleton (such as pubic angle, pubic 

length). While the morphological measurement 

is related to the observation of visual criteria 

[3]. Some parts of the body skeleton that are 

usually analyzed in determining sex are the 

pelvic [8-11], skull [12-15], mandible [16], 

cranial [17], femur [18-21], and tibia [22].  

The pelvic bones are known as a reliable 

and best part of the skeleton to reach a diagnosis 

in sex determination [7, 18]. The pelvic bones 

consist of a pair of hip bones, the coccyx, and 

the sacrum. The pelvic is another element of the 

skeleton that exhibits sexual differences. Both 

metrically and morphologically, the female 

pelvic is wider than the male [7]. The sacrum 

bones are a part of the pelvic bones that are 

closely related to reproduction and fertility [3]. 

Therefore, if all the required sacrum bone data 

is complete, it can be used as a more accurate 

sex determination indicator up to 100% [3, 7]. 

In this study, the data of the sacrum was used 

with measurement of the metric method which 

became the variable in determining sex. 

In determining sex in previous studies, 

various classification techniques have been 

applied to determine sex with statistical 

certainty measures [22, 23]. Classification 

technique is part of the supervised learning 

approach. Supervised learning is divided into 

classification and regression depending on the 

output. In classification, the training data is 
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labeled in such a way that the input and the 

desired output correspond to each other. 

Classification technique is a technique used to 

solve the classification problem.  

The application of classification 

techniques has been widely applied in forensic 

anthropology, particularly in the case of sex 

determination. In previous studies, the most 

popular classification techniques in determining 

sex were Discriminant Function Analysis 

(DFA) which was studied by [10, 15, 22, 24, 25] 

and Logistic Regression (LR) by [18, 25-27]. In 

contrast, over the last few years there has been 

a trend in forensic anthropology to adopt and 

apply machine learning (ML) approaches [11, 

23]. 

ML approaches are becoming a trend in 

determining the sex of skeletal remains, as 

research conducted by [2, 10, 11, 14, 17, 28, 

29]. ML is a branch of computer science that 

has the ability to learn and predict future 

outcomes with invisible data [11, 28]. The most 

common ML technique used in sex 

determination, such as Support Vector Machine 

(SVM) [2, 5, 23, 30, 31]. 

SVM is consistently used in various 

classification studies because it is known to 

provide high accuracy, strong generalization, 

and high stability [32]. SVM is a binary 

statistical classification method that can 

optimally separate two classes. SVM model is a 

ML method based on statistical learning theory 

with a focus on minimizing structural risk [33]. 

In previous studies, SVM was used to 

determine the sex of the bones, most of which 

came from bone image data. This paper uses 

metric measurements and the application of 

SVM in classifying the sex of the sacrum bone 

which is intended to test the performance of 

SVM based on the test parameters of each 

kernel. 

 

II. METHODOLOGY 

 

This study has several steps, and the first 

step is a literature review conducted relating to 

the classification of sex. The second step is 

collecting data, The third step is pre-processing 

the data. The next step is to divide the data using 

cross-validation models, then process using the 

SVM method and evaluate the model 

performance using a confusion matrix. 

 

 

2.1 Literature review of data measurement 

In the sex classification process, there are 

two methods of measuring data, namely 

morphologic and metric methods. The 

morphologic method is the observation of 

sexual traits on bones. It has the advantage of 

obtaining results quickly with high 

classification accuracy if the bone is available 

and the observer has sufficient experience [3]. 

On the other hand, the metric method is based 

on measurements and statistical analysis [26]. 

Metric focused on linear measurements, 

indices, or angle measurements that primarily 

captured the size differences between females 

and males [22]. Metric measurements are 

preferred because they have high accuracy, are 

easy to perform, and do not require any special 

skills [26]. Hence this metric measurement is 

superior to morphology and can be evaluated 

quantitatively [7, 26]. In this study, metric 

measurements were used to analyze the sacrum 

bone, to obtain more accurate results. 

 

2.2 Data collection 

The sacrum is the part of the pelvic bone 

that is involved with reproductive and fertility 

functions. The data used in this paper included 

91 sacrum bones (34 Females and 57 Males) 

derived from analysis of previous studies, 

namely from [3], which used the BPNN 

method.  

There are six measurements for sacrum 

bones used as indicators variable in determining 

sex, namely real height, mid-ventral breadth, 

superior anterior breadth, anterior length, the 

anterior-posterior diameter of the base, and 

max-transverse diameter of the base. Figure 2 

shows the measurement of the sacrum bones. 

 
Figure 2. The measurement of the sacrum bone 

is based on six variables [3] 

 

Table 1 and Table 2 below show the 

measurement variables of the sacrum bone with 

their respective codes. 
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Table 1. Six variables for sacrum bone 

measurement 

Code Variables in the sacrum bones 

RH Real Height 

MB Mid-ventral Breadth 

AL Anterior Length 

ASB Anterior Superior Breadth 

APDB Anterior Posterior Diameter of 

the Base 

TDB Max-Transverse Diameter of the 

Base 

 

Table 2. Sacrum bone measurement (mm) 

RH AL ASB MB APDB TDB  Sex 

95 120 99 80 21 43 F 

… … … … … … … 

95 108 118 84 29 45 M 

 

2.3 Data pre-processing 

The data that has been measured according 

to the variable indicators (Table 2), is then pre-

processed the data. Data pre-processing is an 

important step to achieve good classification 

performance before evaluating data on machine 

learning [34]. In this paper using the 

transformation process. The data 

transformation carried out is to change the sex 

class into a number (class for female = 1 and 

male = 0), then use the normalization process to 

change the value of the variable so that it has a 

range of values that are not too far apart. Data 

normalization is an important pre-processing 

step that involves transforming features within 

the same range [34]. Normalization is a good 

way to reduce data discrepancy. There are three 

methods of data normalization, namely, z-score, 

min-max, and decimal scaling [34]. The 

normalization used is the min-max 

normalization, which changes the scale of each 

variable to an interval of 0.0 to 1.0 or -1 to +1 

by computing equation (1) below [34]. 

 

𝑣′𝑖 =
𝑣𝑖−𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐴− 𝑚𝑖𝑛𝐴
 (𝑛𝑒𝑤𝑚𝑎𝑥𝐴

− 𝑛𝑒𝑤𝑚𝑖𝑛𝐴
 ) + 𝑛𝑒𝑤𝑚𝑖𝑛𝐴

   

(1) 

The advantage of min-max normalization 

is that it maintains all data value relationships 

exactly. The results of the transformation 

calculations can be seen in Table 3 below. 

 
 

Table 3. Transformed data values  

RH AL ASB MB APDB TDB  Sex 

0.280 0.755 0.194 0.394 0.000 0.222 1 

… … … … … … … 

0.280 0.510 0.806 0.515 0.571 0.333 0 

 

After the transformation (normalization) 

process is carried out, then the bone data is 

divided using 10-cross validation where the 

data is divided into 10 equal-sized partitions. 

Nine partitions are used for the training 

process, while another partition is used for the 

classification testing process. After the data is 

divided, it is continued in the training and 

testing process using the Support Vector 

Machine (SVM). 
 

2.4 Support Vector Machine (SVM) 

SVM is one of the most popular methods 

in the two-class classification in Machine 

Learning (ML) technique. ML techniques are 

divided into three categories, namely 

supervised learning, unsupervised learning, and 

reinforcement learning [35]. SVM aims to find 

a linear separating hyperplane maximizing the 

distance to the nearest individuals of each of the 

two classes, called margins [2]. SVM can be 

used as a classification or regression algorithm 

[36, 37]. The original idea of the SVM method 

is to issue two classes, one above the first class 

vector and the other below the second class 

vector [38].  

SVM algorithms have a good application 

to issue two classes and provide excellent 

classification performance [32, 39]. SVM 

constructs a set of hyperplanes that separates 

data into categories [36]. SVM issues a 

hyperplane (linear boundary) for the two data 

classes [40]. In classification problems, 

particularly regarding gender classification, 

class is retrospectively assigned as a label +1 for 

male and -1 for female outcomes. The SVM 

classification method have kernel parameter, 

namely Linear, Sigmoid, RBF, and Polynomial. 

The RBF kernel is often used because it 

provides fairly accurate classification results 

[41].  

This paper uses LibSVM as a classifier of 

the pelvic bones. LibSVM is a kernel-based 

software library that uses multiclass SVM. The 

classification in LibSVM was performed using 

linear, polynomial, and RBF kernels with 10-

fold cross-validation. Appropriate kernel 

https://doi.org/10.15408/jti.v15i1.25254
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functions can reduce the number of 

calculations, and the experimental data 

increases the recognition rate up to a certain 

limit.  

The selection of kernel functions is key to 

achieving an accurate SVM classification [39]. 

The Confusion Matrix method was used to 

measure SVM performance with accuracy 

parameters. There are several commonly used 

kernel functions, namely RBF, linear, and in 

this paper the following kernel functions are 

used: 

Linear kernel: 𝐾(𝑥𝑖, 𝑥𝑗) =  𝑥𝑖
𝑇 . 𝑥𝑗  (2) 

Polynomial: 𝐾(𝑥𝑖 , 𝑥𝑗) =  (𝛾(𝑥𝑖
𝑇 . 𝑥𝑗) + 𝑟)𝑑 

(3) 

RBF: 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒−(𝛾||xi−xj ||2), 𝛾 > 0   (4) 

where 𝛾, 𝑑, 𝑟 are kernel parameters for each 

kernel function. 

 

III. RESULTS AND DISCUSSION 

 

 The experiment was carried out using 91 

sacrum bones with six variables that have been 

implemented using the Rapid Miner. Sacrum 

bone data is divided using 10 cross-validations 

in which the data is divided into 10 equal-sized 

partitions. Nine partitions are used for the 

training process, while one more partition is 

used for the classification testing. Experiments 

were executed by selecting three different 

kernel functions: RBF, polynomial, and linear 

kernel. The model accuracy is measured using 

the Confusion Matrix. The accuracy results 

obtained from the different SVM kernels can be 

seen in the following Table 4-8. 

Linear SVM Kernel is a good kernel 

function when the data is separated linearly. 

The parameters used are C= 1, 2, and 3. The 

accuracy value obtained can be seen in Table 4. 

 
Table 4. Comparison of the accuracy (%) by Linear 

kernel functions 

Linear Accuracy 

C = 1 82,22 

C = 2 84,44 

C = 3 84,44 

 

RBF Kernel is a popular kernel function 

because it can be used when data is not linearly 

separated. RBF has parameter cost (C) and 

Gamma (γ). The parameters used are C= 1, 2, 

and 3 with γ= 1, 2, and 3. The accuracy results 

obtained can be seen in Table 5 below. 
 

Table 5. Comparison of the accuracy (%) by RBF 

kernel functions 

RBF γ = 1 γ = 2 γ = 3 

C = 1 83,33 82,22 81,11 

C = 2 82,22 81,11 81,11 

C = 3 82,22 81,11 78,89 

 

The polynomial kernel SVM is based on a 

similar approach to the linear kernel. In the 

kernel polynomials depend not only on one 

particular feature of the input sample, but also 

on their combination in determining their 

similarity [42]. Comparison of the accuracy 

results obtained by polynomial kernel with γ=1, 

2, and 3 can be seen in the following Table 6-8. 
 

Table 6. Comparison of the accuracy (%) by 

Polynomial kernel functions with γ = 1 

γ = 1 d =1 d =2 d =3 

C = 1 82,22 80 80 

C = 2 84,44 80 79 

C = 3 84,44 80 80 

 
Table 7.  Comparison of the accuracy (%) by 

Polynomial kernel functions with γ = 2 

γ = 2 d =1 d =2 d =3 

C = 1 84,44 80 76,78 

C = 2 85,56 78,89 74,56 

C = 3 84,44 78,89 72,33 

 

Table 8. Comparison of the accuracy (%) by 

Polynomial kernel functions with γ = 3 

γ = 2 d =1 d =2 d =3 

C = 1 84,44 78,89 72,33 

C = 2 84,44 77,78 70,22 

C = 3 83,33 77,78 68 

Pertaining to the results of the 

experiments that have been executed, the best 

accuracy obtained in each kernel function, i.e., 

the RBF kernel is 83.33% with  = 1 and C = 1, 

the polynomial is 85.56% at γ = 2, C = 2 and d 

=1, and the linear kernel obtained best accuracy 

is 84.44 % with C = 2 and C = 3. Figure 2 

contains the overall accuracy obtained for a 

https://doi.org/10.15408/jti.v15i1.25254
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proposed model with different kernel functions 

for SVM. 

 

 
Figure 3. Comparison of the accuracy results 

of the proposed SVM kernel function 

 

Thus, it can be seen that the selection of 

kernel functions and kernel parameters can 

affect the level of accuracy. 

 

IV. CONCLUSION 

 

Classification approaches have been 

widely used in various areas, including forensic 

anthropology. This study uses sacrum bones for 

sex classification. Data is partitioned using ten 

cross-validations, which divides the data into 

ten equal-sized segments. The training phase 

makes use of nine divisions, whereas the 

classification testing procedure makes use of 

one extra partition. Experiments were 

conducted using RBF, polynomial, and linear 

kernel using three distinct kernel functions. The 

Confusion Matrix is used to assess model 

correctness. 

From the following data presentation 

process, the experiment results revealed the best 

accuracy in each kernel function. The RBF 

kernel is 83.33% with γ = 1 and C = 1, the 

polynomial is 85.56% at γ = 2, C = 2 and d =1, 

and the linear kernel obtained best accuracy is 

84.44 % with C = 2 and C = 3. Within the result 

of 85.56% found, this study is in line with other 

previous findings by [4], [10], which reported 

high accuracy more than 80%.  

Sex classification of the sacrum bones 

using Support Vector Machine (SVM) in 

forensic anthropology has been conducted and 

implemented in this work. In applying SVM to 

sex classification using LibSVM tools. In this 

study, SVM kernel parameters have been 

compared, namely RBF, Polynomial, and 

Linear Kernel. The experimental result shows 

that the kernel function affects the recognition 

rate. Likewise, the kernel function parameters 

can affect the level of accuracy.  

In this study, the polynomial kernel 

obtained the highest accuracy compared to 

linear and RBF kernel, 85.56% at γ = 2, C = 2, 

and d =1. Meanwhile, research conducted by 

[31, 37, 43] states that the use of the RBF kernel 

has higher accuracy than other kernels. The 

kernel function influences this evidence in 

SVM; in other words, the effectiveness of SVM 

depends on the selection of kernel functions and 

parameters of each kernel. Besides, this study 

still has shortcomings in terms of the number of 

bone samples used. 

In future work, sex classification from 

sacrum bones can be improved by applying the 

other techniques specific to improve the 

accuracy and analysis performance of 

classification techniques such as the Hidden 

Markov Model, and the optimization of SVM 

kernel parameters using Particle Swarm 

Optimization. In addition, it can also be 

improved by adding the number of pelvic-bones 

data and calculating the processing time of the 

techniques used. 
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