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Abstract: We developed an optimized system for solving engineering problems according to the 
characteristics of data. Because data analysis includes different variations, the use of common features 
can increase the performance and accuracy of models. Therefore, this study, using a combination 
of optimization techniques (K-means algorithm) and prediction techniques, offers a new system 
and procedure that can identify and analyze data with similarity and close grouping. The system 
developed using the new sparrow search algorithm (SSA) has been updated as a new hybrid solution 
to optimize development engineering problems. The data for proposing the mentioned techniques 
were collected from a series of laboratory works on samples of steel fiber-reinforced concrete (SFRC). 
To investigate the issue, the data were first divided into different clusters, taking into account common 
features. After introducing the top clusters, each cluster was developed using three predictive models,
i.e., multi-layer perceptron (MLP), support vector regression (SVR), and tree-based techniques. This 
process continues until the criteria are met. Accordingly, the K-means-artificial neural network 3 
structure shows the best performance in terms of accuracy and error. The results also showed that 
the structure of hybrid models with cluster numbers 2, 3, and 4 is higher than the baseline models in 
terms of accuracy for assessing the punching shear capacity (PSC) of SFRC. The K-means-ANN3-SSA 
generated a new methodology for optimizing PSC. The new proposed model/procedure can be used 
for a similar situation by combining clustering and prediction methods.

Keywords: cluster; K-means; sparrow search algorithm; artificial neural network; SFRC; PSC

1. Introduction

Reinforced concrete slabs can be used in  different civil engineering projects such as 
office blocks, residential buildings, and parking stations; the structure produced by tw o­
way poured-in-place concrete slabs can offer an econom ical structural system for architects 
and also engineers [1,2]. R ebar as w ell as form w ork can be installed easily  by different 
features of the reinforced concrete slabs such as flat soffit [3] . In  addition, the total height 
of the story can be reduced due to these structures. Several researchers have w orked on 
the reactions of such structures in experim ental and theoretical studies due to the benefits 
of flat slabs produced from  the reinforced concrete [4- 6]. The available literature show s 
that the slab-colum n connections have a striking shear capacity, as the highest strength of 
a reinforced concrete flat slab is usually  determ ined [1]. O n the other hand, a slab has a 
significantly lower residual strength after punching than the punching load. Thus, after the 
slab is punched at one of the colum ns, one can overload the adjacent colum ns rapidly, and
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the failure state can be developed once it is punched, resulting in the increasing breakdown 
of buildings using flat slab com ponents [1]. Several bu ild ing collapses w ere reported 
due to the failure of punching, leading to deaths and also significant econom ic loss. For 
instance, Schousboe [7] reported the collapse of a 24-story  building in 1973 in  Virginia 
once it w as constructed. The investigations of the incident reported that a shear failure in 
the slab com p onent used on  one of the top floors caused the collapse. In  addition, K ing 
and D elatte [8 ] reported that a building com plex w ith  16 stories in the U.S. broke dow n 
due to the very  low  punching shear strength of the flat slab com ponent. These cases of 
collapse can be prevented, as show n in several studies that recently focused on the failure 
m echanism  of such structures for im provem ent of the P SC  of slabs and im provem ent of 
the design process of flat slabs, as show n in the conventional em pirical equations. O n the 
other hand, the popularity of steel fibers has increased in structural engineering [9 ]. Hence, 
the PSC  of concrete flat slabs can be im proved using fibers w ith  such reinforcem ent in 
them  [10- 12]. It is also worth noting that som e experim ental studies (e.g., [3]) have shown 
that the PSC can be improved by using steel fibers to reinforce concrete flat slabs. As a result, 
steel fiber-reinforced concrete flat slabs have been applied w idely in different engineering 
building projects. However, the slab-colum n connection has one im portant issue: the initial 
creation of the design codes w hich  are presently  follow ed for such structures (e.g., the 
ACI 318-11 standard [13]) for conventional concrete buildings. For that reason, the current 
codes should be m odified to com ply w ith  the design process related to the steel fiber- 
reinforced concrete (SFRC) slabs. In this respect, an equation w as proposed by Narayanan 
and D arw ish [14] based  on the strength of the com pressive zone on the sloping cracks. 
The pull-out shear forces w ere applied on the steel fibers along such cracks, and the shear 
forces w ere also applied by  actions of m em brane for determ ination of the PSC  of the 
concrete slabs reinforced by  the steel fiber. In  addition, a design equation w as proposed 
by Harajli et al. [15] using linear regression to analyze the effect of using the concrete and 
the fibers on the total punching shear strength. On the other hand, a theoretical study was 
performed by Choi et al. [16] to evaluate the effectiveness of a design equation based on the 
assumption of the response of tensile reinforcem ent before punching shear failure occurred. 
Furtherm ore, M aya et al. [3 ] acquired the em pirical data in  the literature by  evaluating 
and contrasting three d ifferent prediction equations for the calculation of the punching 
shear capacity. Furtherm ore, an experim ental study by G ouveia et al. [17] focused on 
how the steel fiber-reinforced concrete flat slabs behaved due to failure during the focused 
loading. In addition, a kinem atic theory w as proposed by  Kueres and H egger [18] in 
reinforced concrete slabs w ithout shear reinforcem ent using tw o different param eters for 
the punching shear. E inpaul et al. [19] proposed a new  experim ental approach to record 
how  cracks w ere created and progressed in punching test sam ples. Furtherm ore, the 
m easurem ents w ere analyzed by Sim oes et al. [20] for the crack developm ent and the 
kinem atics corresponding to the punching failures. A  m echanical m odel w as established 
u sing the results obtained from  this analysis to better understand the punching shear 
failures. R eview ing the related literature show s that the P SC  of steel fiber-reinforced 
concrete is predicted using sim ple statistical m ethods and m odified design equations, and 
it is necessary to assess the relationship betw een the PSC  of concrete reinforced by  steel 
fiber and the factors affecting it using theoretical prediction m odels. It is necessary to 
note that a com plex phenom enon, punching shear behavior, necessitates evaluating other 
estim ation and approxim ation m ethods. Since there are several effective variables in the 
dom inant m echanism  of PSC of flat slabs, other sophisticated data-based approaches should 
be investigated to im prove the accuracy of the prediction and contribute significantly to 
the available literature. Since structural and civil engineers m ore com m only use m achine 
learning [21- 41], this sophisticated data analysis approach is proposed in the present study 
to estim ate the shear punching capacity. A n artificial neural netw ork (AN N ) m ethod is a 
highly effective m ethod for nonlinear m odeling [42- 50], but one cannot easily explain and 
understand its configuration as a black-box model.
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It is possible to becom e fam iliar w ith the application of a variety of prediction models

of this research present a novel strategy for data analysis that is based  on the selection 
of dataset attributes. In this w ork, the clustering technique, w hich is one of the data 
selection techniques based  on closely  related features, w as utilized to give a system  for 
the solution of problem s requiring m ore accurate analysis and evaluation. The m achine 
learning models that were discussed earlier can be trained and validated utilizing a dataset 
that contains 140 experim ental data sam ples taken from  the w orks that have com e before 
this one. The dataset contains six features (inputs), nam ely the effective depth of the slab, 
the reinforcem ent ratio, the length of the colum n, the depth of the slab, the fiber volum e, 
and the com pressive strength of the concrete used for the assessm ent of the m easured 
punching shear force. All of these features are used to determ ine the punching shear force 
that w as m easured. This research presents this m ethodology, analyzes it in  com parison 
w ith various models of artificial intelligence, and, as a last step, demonstrates how well the 
m odels function.

2. Experimental Setup
2.1. Governing Equations

The critical shear crack theory can be used to estimate the PSC of SFRC. Slabs w ithout 
any transverse reinforcem ent are considered in [51], and slabs with transverse reinforcem ent 
are described in [52] . Fernandez and M uttoni [52] stated that one can express the PSC for 
reinforced concrete slabs w ithout transverse reinforcem ent as:

w here d represents the effective depth of the slab and Y  denotes the m axim al rotation of
the slab. In addition, bo denotes the control perim eter at a distance of d / 2  from the column 
face. Furtherm ore, dg denotes the aggregate size and dg0 denotes the reference aggregate 
size, set as 16 m m . The follow ing equation can be used to obtain the PSC:

where V R, f denotes the contribution of the fibers while V R, C shows the contribution of the 
concrete. M oreover, a form ulation w as presented by Voo and Foster [53] to quantify  the 
tensile strength of the fibers generated on a plane w ith the unit area. One can express this 
equation as:

w here pf denotes the fiber volum e, Kf represents the factor of global orientation, Tb is the 
bond stress betw een the concrete m ix and the fibers, and finally, to define the aspect ratio 
for the steel fibers, « f is used. The follow ing equation show s that the fibers contribute to 
the total punching shear com puted as follows [3] :

In addition to the concept of the kinem atic assumption and average bridging stress [54],

for data analysis by reading the w orks that cam e before it. On the other hand, the findings

(1)

V R =  V R,C +  V R,f (2)

O-tf =  Kf.Of.pf.Tb (3)

(4)

for com puting the effect of the fiber, the equation presented below  can be used [3 ]:

VRf =  A PO tf( (5)
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A  sim plified equation  w as proposed b y  M aya et al. [3 ] to com pute the contribution 
from  the concrete using tine above equation. One? can express this eequation as follow s by 
considering 1.5 for y c (the partial safety factor of the concrete):

2b0d \/fC 1 (6)

=  3Yc 1 + 2 0  ̂  (6)dg0+dg

2.2. Dataset Study

The m achine learning m odels can be trained and. verified using a dataset with 140 test 
specimens and tix features of the PSC, i.e., the reinforcem ent ratfo (p), the effective depth of 
the slab (d), the dep th ot the sOab (h), the com pretsive strength of the concrete (fct, the fiber 
volum e (pf), and the length of the colum n (bc). A s sum m arized b y  [ t ] , the experim ental 
studiet in the !̂ il:(t;rci described the data points in  Ohis detaset.

Figures l  and 2 provide statistical inform atien antd data dfstribution. The param eters 
p nod pf hove the low est values am ong the data. The sanges of fhese data are p =  [0 — 2] 
and ef =  [0.37 — 2.53]. C hengts iei the data cause dtfferent relationships betw een input and 
output param eters. The m ore varied these changes are, ths m ore com plex it is to derive a 
relationship beSween them  and it is necessary to use appsopriaSe end flexible techniques. 
In the figures, it can be seen that the data dim entions c f  this issue are highfy varied, so we 
tried to create the best perform ance for these data using intelligent m odels.

d (nun) h  (mm) bc (mm) k (M pa) p  (% ) P f  (% ) V(kN)

Figure 1. Boxplot of all data.

0 20 40 60 80 100 120 140

Figure 2. Distribution of data.
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3. Methodology
3.1. K-M eans

In som e datasets, features can be extracted that do not initially have a clear structure, 
w hich can be explored by unsupervised learning. This technique show s that significant 
inform ation can be obtained from  variables w ith  w hich  appropriate structures can be 
designed. O ne of these m ethods is data clustering. C lustering m eans d ividing data into 
groups that are m ost com patible w ith each other so that groups w ith similar characteristics 
can be examined and analyzed together. Clustering is one of the m ost im portant techniques 
in data m ining and is used to group, cluster, or split data using distance functions.

K -m eans has becom e one of the m ost popular m ethods o f unsupervised  learning 
used to cluster data. This technique creates a sim ple path for segm enting the dataset by 
considering a specific num ber of clusters (k  clusters). The m ain goal is to define k centers 
for each cluster that must be determined so that the best performance can be achieved. The 
best perform ance is w hen the centers are the farthest apart. In  the next step, the points 
that are closer to the centers are assigned to that section. O nce all the points have been 
determ ined, this step is com pleted. This process is repeated until the specified criteria are 
reached so that there is no change in  the location of the center k. It should be noted that 
this process does not always need to achieve the best or the most optimal solution, and this 
algorithm  is sensitive to the initial choices o f the centers. The K -m eans algorithm  can be 
sum m arized as follows:

(1) P lacing the points of centers (k) in  the com puting space so that the prim ary centers 
can be determ ined by them.

(2) Assigning the points that have the m ost sim ilarity (in term s of proxim ity or distance) 
to these defined points.

(3) Recalculating the positions of the centers after the end of the point allocation process.
(4) Stages (2) and (3 ) w ill continue until there is no change in the centers. This process 

seeks to find better groups or clusters.

Considering the idea of using the closeness that exists between different features in the 
data, w e attem pted to create a new  analysis to increase the accuracy of predictive m odels. 
Therefore, w e used the three m odels A N N , SV R , and R andom  Tree, w hich  are described 
below, to exam ine the changes in each model.

3.2. M ulti-Layer Perceptron (M LP)

M LP is one of the m ost com m on artificial neural netw orks (A N N s). A N N , inspired 
by  the biological neural netw ork, w as first developed in  1949 [55] . A N N  is prom inently 
superior, relying on the fact that the nonlinear m apping can be perform ed over a dataset 
w hen using it [56] . The M LP neural netw ork has been  successfully  applied in different 
research fields ow ing to its m erit [23,45,57,58]. The im plem entation of an A N N  generally 
uses tw o types of data, i.e., training and testing sets. The training data can be used to fit 
the neural netw orks; after that, the testing data can be used to assess the quality  of the 
neural netw orks. The back-propagation (BP) [59] m ethod is a com m on w ay to carry out 
the training procedure. The m ain role of BP is to m inim ize the predictive errors (i.e., the 
differences betw een the estim ated and actual outputs) through a backw ard propagation 
algorithm . M astering the iterations of A N N  can have its param eters generate a m ore 
com patible output. M oreover, three factors, i.e., activation function, the num ber of epochs, 
and learning law, also control the perform ance of A N N . M ore details of M LP are given 
in [60,61].

3.3. Random  Tree (RT)

The RT approach, first suggested by  Breim an [62], is utilized according to ensem ble 
learning, for exam ple, the random  forest (RF). In the RT approach, several learners w ork 
independently. In order to provide a collection of sam ples, a decision tree is built based on 
the idea of bagging. D ue to the different nod es' splitting, the RF and standard trees differ 
significantly. This splitting in  the R F  is based on  the best predictor am ong a selection of



Sustainability 2022,14 ,12950 6 of 21

predictors. However, the elite split is used in the com m on tree across all variables. The RT 
can deal with classification and regression applications. The input data are delivered to the 
tree classifier as a result of the RT algorithm  being run. Finally, the system  w ill produce 
the h ighest frequency class. The perform ance of the training phase is calculated w ithou t 
the need for bootstraps or cross-validation due to the internal com putation of the training 
error. The results obtained for the output of the m odels of the studied problem s are based 
on the m ean response of all m em bers [63].

3.4. Support Vector Regression (SVR)

Support Vector R egression (SVR) is one of the leading algorithm s in  the field of m a­
chine learning and has various applications in the field of engineering [45,64- 66]. The SVR 
m odel is w idely  used to solve classification and regression problem s. D ata are generally 
m apped for SVR w ith an f(x) function to transform  a low-dim ensional nonlinear dataset to 
a high-dimensional linear problem in feature space. In this research, the SVR model is used 
to solve a regression problem.

A ssum e that a training dataset is T = { ( x 1,y 1), (x2,y 2) , . . . ,  (xk ,yk) } ,  w here y i and xi 
represent the output and input, respectively, then y i £  R and xi £  R n, and k signifies 
the training observations. The SVM  m odel for the regression problem  can be represented 
as follows:

f(x ) =  a.S(x) +  b (7)

where a.S(x) indicates the kernel function. Table 1 contains a set of com m on kernels for the 
SV R  m odel. The task of these kernels is to transform  the data from  the low er d im ension 
to the higher d im ension so that analysis and relationship extraction can be conducted 
m ore effectively.

Table 1. A set of common kernels for SVR models.

Kernel Function Parameter

Linear X, Y -
Polynomial (gX.Y + c)d g, c, d
Radius basis function (RBF) exp (-g  |X — Y|2) g
Sigmoid tanh(gX.Y + c) g, c

Then, the follow ing problem  m ust be solved:

m a x 2 = 1  ^ ( §i — £i ) — n ( £i — £0  — 2  2 = 1  E j = i ( §i — £i ) (  £j — £j )5 (x i,x j ) (8)

Here,
k

iE 1( §i — £i) =  0 (9)
,0  <  £i, £i <  C, i =  1 , 2 , . . .  k

w here the penalty  factor (C ) coefficient is defined to determ ine the m odel w ith  proper 
performance. To map the dataset, the conditions of Karush-Kuhn-Tucker should be met by 
Equation (10) [67] as:

£i(f(xi) — y i — n — ^ i ) =  0

£i (yi — f(x i) — £ — “ >0 =  0 (10)
£i £i =  0; “ i cui =  0 

 ̂(C — £ i)“ i =  0; (C — £i) &>i =  0

Finally, according to the follow ing equations, the SV M  m odel is im plem ented for
regression problem s:

k
f(x ) =  E ( £ i — £ i) .§ (x i,x j) +  b (11)

i=1
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k
b =  Yi +  n -  E ( -  £i ) - ^ xi , x0  +  b (12)

i=1

3.5. Sparrow Search A lgorithm  (SSA)

The idea of this algorithm  is based on sparrow s, w hich  are generally  found in  m ost 
places where hum ans live. This type of bird, w hich has different varieties, uses seeds as its 
m ain source of food. Sparrow s are classified as intelligent birds into two types: dom estic 
producers and scroungers. The first group seeks food sources, and the second group collects 
food identified by  the first group. There is reciprocal behavior betw een these two groups, 
and they alw ays act according to a suitable and flexible strategy.

O btaining a m athem atical pattern betw een these behaviors leads to the developm ent 
of a new  algorithm  to find solutions to various problem s. M athem atical m odels adhere to 
the follow ing basic assum ptions and rules.

(1) The first group (producers), due to their high energy, identify susceptible areas that 
have high food sources for the second group (scroungers). The energy level is determ ined 
according to the specific characteristics of the suitable conditions.

(2) O nce the hunter is identified, the other group is alerted to go to safer areas. A 
criterion is defined for the risk limit.

(3) In  general, the ratio of producers and scroungers in  the w hole process rem ains 
constant. H ow ever, any sparrow  can act as a producer to reach better resources.

(4) A group of producers w ho have higher energy and starving scroungers search for 
food to gain m ore energy.

(5) The scroungers generally  follow  the first group to obtain the best answ ers and 
resources. Som e scroungers m ay just be spectators and com pete w ith  other groups after 
identifying the source. This is to increase the chance of predation.

(6) In general, w hen in danger, the sparrows at the edge of the group m ove quickly to 
safe areas, while the middle members of the group walk random ly to draw closer to others.

Figure 3 summarizes the process that this algorithm performs to find food sources and 
the interactions that exist betw een group m em bers.

Figure 3. Theprocess of SSA for findingfood sources; (A): searching fox' food, (B): when an individual 
detects a predator, gives a chirp to other, (C): entire group files away and get fo od.
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W ith the above rules, the relations to describe this algorithm  are as follows.
First, the position of the sparrow, w hich  is denoted by  the num ber n and the size of 

the variables d, is represented by the follow ing matrix:

X

matrix:

F x :

x 11 x 12 ..............  x 1d
x21 x22 ..............  x2d

xn1 xn2 . . .  . . .  xnd

e of each row of the sparrow

f([ x11 x12 ..............  x1d ])
22x21xf( ..............  x2d ])

(13)

, f([Xn1 Xn2 Xnd ]) .

(14)

In any search, the appropriate iteration (t) is required to run this algorithm  so that 
each p rod u cer's position can be updated for new  responses. Equation (15) provides this 
according to Rules (1) and (2):

x j 1 Xt,i-eXp V a.itermax
+  Q.LXt

if R 2  <  ST 

if R2 >  ST
(15)

w here X ti,j specifies the jth  dim ensions of the ith row, a  is a constant coefficient that is 
selected random ly in the range from 0 to 1, and itermax is known as the m aximum repetition 
lim it. L is a 1 x d m atrix in w hich  each elem ent is equal to 1. Q  random ly follow s the 
norm al distribution and J changes from  1 to d. R 2  and ST, w hich  are used for the alarm  
value and safety limit, are defined as betw een 0 and 1 and betw een 0.5 and 1, respectively. 
Finally, the position of the scrounger and the initial position of the sparrow s are given in 
the follow ing m athem atical formula:

x j 1

/ x 1Q / ''worst
-exp( ----- j2T Xtj

Xp+1 + Xt _  Xt+1 
Xi,j Xp .A + .L

if i >  n /2  

Otherw ise
(16)

X t,!1

Xbest +  P.

X t ,j+  K.

Xt , j -  Xbest
Ix* - X  I \I i,j yvworst1 \
(fi- f w) +  £ I

if f i >  fg 

i f f i =  fg
(17)

4. Simulation

This section describes the various steps taken to develop hybrid  m odels to evaluate 
the punching shear capacity. This research aim s to provide a com m on system  for better 
data analysis by  com bining tw o different system s called K-m eans and intelligent m odels 
(A N N , Tree, and SVR). Each section needs to be developed separately  so that it can be 
w ell developed w ith  greater accuracy. Therefore, each m odel perform s different im ple­
m entations to achieve the desired results. The repetition of trends indicates an increase in 
accuracy and a decrease in computational error performed by various researchers [57,68,69]. 
Finally, to better com pare the m odels, various statistical criteria are used to provide and 
obtain  the perform ance and flexibility of these system s. In this study, three criteria of 
RM SE, M AE, and R2 w ere allocated to study this issue, and are presented in the following 
form ulas [70- 76]:

RM SE =  J  ̂ = 1(FN-  M i^  (18)
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N
M AE =  N  E M  - P P

t= i

R2 1 -
u = 1 (P i  -  Mi )2 

E N = i(M i- M ;y

(19)

(20)

where Ivl i and P i represent the measured and predicted -values of the PSC for this research. 
M oreover, N  and M i signify the num ber of data and average of m easured values. The 
general steps of this reeearch are; illusSrated in Figure 4 .

Figure 4. The general steps of this research.

4.1. Clustering Step

To develop K -m eans-based hybrid  m odels, the inp ut data are evaluated in the first 
step. The data that are introduced to the system  as features are divided into different 
clusters by  K -m eans. C lustering has the advantage o f putting the m ost com patible data 
together to develop m odels that fit the sam e cluster w ith  closely related features. For this 
issue, six features that are introduced as inp ut data to the system  are exam ined in  this 
study. To determ ine different clusters, d ifferent values of k from  tw o to seven clusters 
w ere used for the data of this study. Figure 5  show s the different v iew s obtained based 
on clusters. A ccording to this figure, the range of changes for each cluster and the m ean 
of each are obtained. If the interference area can be expressed less and the changes can 
be expressed m ore simply, the im portance and superiority  of the cluster can be show n. 
It can be seen in all figures that the tw o param eters Pf and p have little change and w ith  
different clusters, they can not be separated w ell. A s the num ber of clusters increases, it 
becom es m ore d ifficult to distinguish betw een them , as can be seen in  clusters 5, 6, and 
7. This m akes the problem  m ore difficult and com plicates the achievem ent of the desired 
result and convergence. F igure 6 also show s a presentation of the d ivision based on the 
heat map. In this figure, it is also clear that the elem entary clusters 2 ,3 , and 4 can provide 
the best segm entation for the data so that they can be analyzed w ith less complexity.
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Figure 5. Cont.
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Figure 5. The investigation of -the cluster effect for determining features. (a) k = 2. (b) k = 3. (c) k = 4. 
(d) k = 5. (e) k = 6. (f) k = 7.
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Figure 6. The investigation of the cluster effect based on the heat map method. (a) k = 2. (b) k = 3. 
(c) k = 4. (d) k = 5. (e) 1< = 6 . (f) k = 7.

The Silhouette analysis m ethod w as used to select the best classes. G iven that the 
value of k  w as exam ined betw een 2 and 7, each cluster has its ow n characteristics. These 
features m ake it easy to divide the features used. W ith Silhouette analysis, it is possible to 
find out how  m uch each p oint or feature is related to its respective cluster and how  w ell 
the clusters are divided. Figure 7 shows the results of this scoring. As can be seen, the best 
perform ance is obtained for the values k =  2, 3, and 4. To determ ine the PSC data of SFRC 
used in this study, these three classes are used to further develop the models. Each of these 
three selected categories divides the data into categories w ith a specified number. Figure 8 
shows how many data points (each caCegory contains for model developm ent. The num ber 
of data poidte in each category varies in responses and analysis. Aa can be seen, in  the 
Cl ass 3 secti on, the; third eategory c f  data is obtained from ehe second c ategory in the Class
2 section. The sam e thing occurs in C lass 4, w here category 4  is produced frdm the first 
category  in C lass 2 or 3. Thi s creates a correlation in (data segm entation, w h k h  indicates 
that the data are divided into appropriate segm ents w ith the least complexity.
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Figure 7. Scoring different classes based on Silhouette analysis.
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Figure 8. The numberof divided parameters based on classes 2 ,3  f and 4.

4.2. K-M eans M odels

This section develops predictive models to determine the PSC of SFRC. As mentioned 
earlier, the three basic m odels as the prim ary system  for this research are Tree, SVR, and 
A N N . Ini the first step of designing this system , the data, w hich  included six; d ifferent 
features, were divided into different clusters by k-means and scored. Tire top) three clusters 
for these data w ere k =  2, 3, and 4. (Scoring; show ed that the d ats  for these three item s 
huve the highest leuei o f  coordination; thus, these threu m o dels w ere used to evalu tfe  the 
param eters oS the m odels. Attur thts step, each of these clusters w as entered into tire base 
m odels, and the prediction m odel w as deveioped separately. This process continues until 
tho best perform ance of each m odel is achieved. Thesefors, the process w as subjected to 
num erical tnalysis to find the model w ith high accuracy and less error. Table 2 provides the 
output of tire developed hybrid modpls, w hich are diuided into Kam eans-Tree, K -m eans- 
SVR, and K -m eans-A N N  categories. As can be observed in  this eable, the m odels w ere 
develuped based on the pum ber of slueters antt tUeir subdivisions.
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Table 2. Results of various hybrid K-means models.

Number of Class Sub-Section Models R2 MAE RMSE

Tree 0.959 14.836 18.638
1 SVR 0.916 18.61 26.584

ANN 0.973 9.327 15.118
2 Tree 0.979 9.156 12.371

2 SVR 0.98 7.933 12.123
ANN 0.992 4.893 7.416

Tree 0.851 19.424 21.643
1 SVR 0.98 5.454 7.951

ANN 1 0.014 0.018
Tree 0.956 6.091 8.292

3 2 SVR 0.977 3.779 5.989
ANN 0.999 0.689 1.418
Tree 0.959 14.836 18.638

3 SVR 0.916 18.61 26.584
ANN 0.973 9.327 15.118

Tree 0.959 14.259 17.677
1 SVR 0.928 14.585 23.343

ANN 0.994 3.038 6.458
Tree 0.966 12.757 17.56

2 SVR 0.934 14.665 24.52
ANN 0.975 10.321 15.134

4 Tree 0.851 19.424 21.643
3 SVR 0.98 5.454 7.951

ANN 1 0.014 0.018
Tree 0.956 6.091 8.292

4 SVR 0.977 3.779 5.989
ANN 0.999 0.689 1.418

The results show  that the perform ance of the m odels is generally  acceptable for 
determ ining the PSC of SFRC. The ranges are presented in Table 3 as the average for each 
cluster. In general, K -m eans-A N N  hybrid m odels provide higher performance for all three 
clusters. Follow ing are the K -m eans-SV R  and K -m eans-Tree m odels. C luster 3, for the 
K -m eans-A N N  m odel, is less accurate than C luster 4, bu t the error results show  that it 
perform ed better. The M A E and RM SE error values of the K -m eans-A N N  m odels for 
Cluster 3 w ere 3.343 and 5.518, respectively, w hich are less than the K -m eans-A N N  model 
for Cluster 4 w ith M AE =  3.516 and RMSE =  5.757. This indicates that these conditions can 
a lm ost be accepted and coordinated w ith  the scoring of the previous step to determ ine 
the clusters and their effect on obtaining predictive m odels for m ore accurate evaluation 
and w ith  less error for PSC  of SFRC. U sing the sam e dataset and the sam e inp ut data, 
H oang [77] developed sequential p iecew ise m ultiple linear regression (SPM LR) m odels 
to predict PSC  of SFRC. The results of the best m odel are R 2 =  0.96, M A E =  15.76, and 
RMSE =  20.78. By com paring this research, we can point out the acceptable results and the 
im provem ent of PSC prediction.
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Table 3. Average results of various hybrid K-means models.

Class Models
Average

R2 MAE RMSE

Tree 0.969 11.996 15.505
2 SVR 0.948 13.272 19.354

ANN 0.983 7.11 11.267

Tree 0.922 13.450 16.191
3 SVR 0.958 9.281 13.508

ANN 0.991 3.343 5.518

Tree 0.933 13.133 16.293
4 SVR 0.955 9.621 15.451

ANN 0.992 3.516 5.757

4.3. Comparison Step

H ybrid m odels based on K -m eans clusters have been  show n to provide acceptable 
and accurate PSC of SFRC for forecasting and evaluation. For com parison, the three base 
models, Tree, SVR, and ANN, were developed based on similar data as in the previous step. 
These m odels w ere com pared based on three criteria, R2, M A E, and RM SE, to determ ine 
their perform ance in forecasting and their capabilities. Figures 9- 11 present the results of 
six m odels, w hich include three basic m odels and three hybrid  m odels developed in this 
research. All m odels show adequate perform ance for these data in general. Using the data 
clustering process, acceptable grow th is seen in the results of A N N  and SV R m odels. The 
b iggest im pact on SV R  hybrid  m odels is that the results of the base m odel for R 2 =  0.905 
increased to m ore than R2 =  0.95. A ccording to Figures 9 and 10, it can be concluded that 
in  all hybrid  m odels that used clusters, the error w as reduced. In addition, A N N  hybrid 
m odels have undergone the m ost changes and have been able, for exam ple, to reduce the 
base m odel M AE from 9.034 to 3.34. This suggests that the perform ance of hybrid m odels 
that have used K -m eans to evaluate the PSC  of SFRC  is acceptable and can be used in a  
variety of other ways.

0.990666667

Figure 9. Comparison of 6 models based on R2.
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Figure 10. Comparison of 6 models based on MAE.
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Figure 11. Comparison of 6 models based on RMSE.

Finally, Figure 12 show s a graph of the im pact of param eter changes on  hybrid 
m odels. For exam ple, the K -m eans-A N N 3 m odel w as used to investigate the changes. 
To significantly investigate this issue, the effect of each of the input param eters on  the 
result w as changed betw een 0 and 1. U sing this d iagram , the im pact o f each param eter, 
the num ber of changes, and im portant ranges can be identified. For exam ple, the three 
param eters Pf, fc, and d are alm ost linearly  effective in the m odel, w hile the other three 
param eters have nonlinear changes in the m odel. This can help provide the best design 
conditions according to the developed m odel and input param eters for the PSC of SFRC.
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Figure 12. Investigating the effect of input parameters on the structure of the selected K-means- 
ANN3 model.

4.4. Optimization Step

In this section, the SSA  optim ization algorithm  is connected to the K -m eans-A N N 3 
m odel, and the optim al results and corresponding param eters are identified. For this 
process, the K -m eans-A N N 3 m odel is perform ed as a function, and then, according to 
the initial param eters, the res u lts are searched by  SSA  tc  find the optim al points. To use 
SSA , param etric analysis w as perform ed to obtain  the best structure for SdA . The tw o 
m ain param eters o f this algorithm , nam ely the num ber of iterations a cd  the num ber of 
population, w ere obtained by trial and error. This process is perform ed for the initial 
optim ization of the algorilhm  . For this problem s ehe num ber of iterations w as 800 and 
the optim al num ber o f population w as 60. The d im ensisns of this problem  Cave six 
d ifferent variables, determ ined in the SSA  algorithm , w hich  seeks the best conditions by 
considering all of them  sim ultaneously. O ther im portant coefficients w ere fixed: ST =  0.8 
and SD =  15%. The optimal values for PSC of SFRC w ere determ ined according to Table 4 . 
As can be seen, this table contains the best of the PSC  of the SFR C  and the param eters 
considered in accordance w ith  the K -m eans-A N N 3 function. By increasing the accuracy 
of the previous step function, m ire  accurate resu lti can be achieved by tine optim ization 
algorithm . U sing th if m ethodology to optim ize engineering issues can reduce costs and 
increase design accuracy.

Table 4. The optimum result of SFRC.

Optimum Parameters

h

74.2078

d

130.1)232

bc

109.6579

fc

50.2084
P

1.7756
Pf

1.6347

Optimum
Function

854.7517

5. Conclusions

We preeented here a new snstem combining clustering m ethods adO intelligent models. 
The purpose of this work; -was to increase accuracy and reduce errors to solve engineering 
problem s. In this study, a data set consisting of 140 data points and six feaOures (inputs) 
w as used to evaluate the punching shear capacity  (PSC) of steel fiber-reinforced concrete 
(SFRC). I c  the first step of this system , the K -m eans algorithm  divided the studied date
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into clusters w ith  the m ost sim ilar features. The clusters that had the best perform ance 
w ere selected. The selected clusters in the next step acted as filters for intelligent m odels 
(AN N , SVR, and Tree), and various structures w ere used to predict the param eters. Each 
structure w as trained separately so that the sub-sections could be w ell represented for the 
perform ance of the m odels. The m ain results of this research are as follows:

— The performance of all hybrid m odels im plementing clusters 2 ,3 , and 4 were improved. 
M oreover, K -m ean-A N N  structures obtained accuracy up to R 2 =  0.992 to predict 
SFRC flat slabs.

— The error of the models was significantly reduced compared to the base m odels, w hich 
confirm s that the com m on data perform  better w ith each other.

— Finally, a diagram  w as presented show ing the effect of input param eters on the K- 
m ean-A N N 3 structure that performed the best among all models. Using it, the effects 
of linearity and nonlinearity  of the data on the structure of this selected m odel w ere 
determ ined.

— This study presents a new m ethodology for a specific engineering problem. Different 
m ethods of clustering, classification, and basic predictive m odels including deep 
learning can be used to develop this m ethodology in future research.
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