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 The excellent quality of color fundus photograph is crucial for the 

ophthalmologist to process the correct diagnosis and for convolutional 
neural network (CNN) models to optimize output classification. As a result 

of main causes as acquire devises efficiency and experience of a physician 

most fundus photographs can have uneven illuminance, blur, and bad 

contrast, in addition to micro-features of retinal diseases, which need to 
force their contrast. Fundus photograph quality assessment method is 

proposed to find out the perfect enhanced color fundus Technique in 

fundoscopy photographs-based CNN model. Five photograph quality 

measurements, in addition to five CNN metrics, were used as standard in this 
study. In this research innovative approach combining photograph quality 

measurement and CNN metrics analysis is proposed to find out the best 

enhance method that is set for the multiclass CNN model. The contrast 

enhancement techniques are evaluated using 267 color fundus photographs 
divided into three retina diseases cases were downloaded from the open-

source database “FIGSHARE”. The study outcome showed that the 

presented system (single-CNN) can determine well the contrast enhancement 

method, as well as the low-quality fundus photograph then it can boost CNN 
metrics to achieve superior. 
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1. INTRODUCTION  

Fundus photographs are one of the most shared eye ailments photographs that are used for 

diagnosis, identification, and classification of retina illness conditions [1]. Retinal tomography is extensively 

used in the medical judgment of visual illnesses, for instance, diabetic retinopathy, cataract, age-related 

degeneration, and glaucoma. Especially the fundus photographs of diabetic retinopathy are used for 

identifying the onset symptoms of illness conditions such as (hard-exudates, red-lesions, and cotton-wool 

spots) that may lead to blindness [2]. In 2015, 0.4 million patients are partially blind while 2.6 million 

patients suffered from critical vision weakness because of diabetic retinopathy [3]. Furthermore, diabetic 

retinopathy is the main reason for vision loss among patients whose age range is 20–74 years [4] in third 

https://creativecommons.org/licenses/by-sa/4.0/
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world countries such as Malaysia, Indonesia, and Iraq. It has gained the interest of researchers to develop 

different artificial intelligence (AI) models to identify the retinopathy symptoms and classify them accurately 

[5]-[12]. Both ophthalmologists and the AI model require good quality fundus photographs to produce 

accurate diagnosis results. However, several factors could affect the fundus photograph's quality during the 

acquiring process, such as reflection, diffusion, and refraction of light in eye lenses, artifacts of camera noise 

that is caused by the unstable power supply, and movement of the camera [13]. Therefore, it is required to 

preprocess those fundus photographs which include contrast-enhancing to solve the aforementioned problems 

before conducting further analysis. Various contrast enhancement techniques for medical photographs have 

been presented depending on the domain requirement such as median filter, sharpening, and filters-based 

histogram equalization [14]-[19]. Diabetic retinopathy could damage the fine retina vessels, cause bleeding, 

form blood spots on the retina with a variety of sizes along the illness period and eventually cause blurring 

vision. It is crucial to develop a very impressive method to enhance contrast visuality on those fine details to 

help the ophthalmologist or the AI for accurate diagnosis [20], [21]. In this study, many contrast 

enhancement methods have been compared. Their performance in improving the classification accuracy by 

the convolutional neural networks (CNN) was studied. The procedure started with pre-selections of the best 

contrast enhancement methods in the image quality assessments. The enhancement techniques with decent 

performance would be applied to understand their contributions in improving the classification by the CNN 

model. Generally, this study is designed to study the relevance of various contrast enhancements in boosting 

the CNN in classifying the diseased photographs into their respective cluster. 

Levels and low levels. Moreover, pre-processing the contrast between the vessels and the 

background of the retina can boost the segmentation of the vessels in the following stage [22]. Image 

enhancement is a stage to map the distribution of the pixels to a new level to achieve the desired contrast 

level. Nonetheless, not all the enhancement techniques deliver pleasant enhancement. As the accuracy of 

CNN classification of the fundus image strongly depends on the quality of the resulting image, the choice of 

enhancement technique is crucial.  

Histogram equalization is a simple and easy method but tends to over-enhance the image [23]. Pizer 

et al. [24] uses histogram equalization and data augmentation in a CNN-based emotion recognition system 

and achieve an accuracy of 78.52%. An improvement of histogram equalization, namely adaptive histogram 

equalization (AHE), was introduced by Wang et al. [25]. AHE divides the image into specified tiles and 

computes them respectively so that the lightness value of the image can be redistributed evenly at its 

respective tiles. AHE-based hybrid CNN model is widely utilized in digital dental X-ray position 

classification [26]. However, AHE is susceptible to noise amplification, typically in relatively homogeneous 

regions in an image. Pizer later improved the AHE by limiting the amplification, hence it was called contrast-

limited adaptive histogram equalization (CLAHE) [27]. The implementations of CLAHE in CNN models 

include the classification of mammograms [28], improved facial expression [29], and early detection of skin 

cancer [30]. A novel CLHAE called upgraded CLAHE that is adaptive clip limit-CLAHE (ACL_CLAHE), 

through solving the drawbacks of (CLAHE) which is belong to predefined clip limit value that either cause 

intensive enhancement leads to adding more artifacts or weak enhancement, the author proposed to replace 

the predefine climb limit value with global thresholding dividing by 80 constant [21]. These according to the 

writer shows a big improvement in fine details of fundus photographs and boost the CNN performance better 

than the conventional (CLAHE).  

In 1997, Kim [30] introduced the preservation of the mean brightness of the phtotgraph method, bi-

histogram equalization (BBHE) that provides a natural look of the image. In 1999, Wang et al. [31]. 

proposed an extension of BBHE, equal area dualistic sub-image histogram equalization (DSIHE), which 

partitions the histogram based on the median threshold value. The minimum mean brightness error Bi-

histogram equalization (MMBEBHE) attempted to output the enhanced image which gave the lowest 

absolute mean brightness error [32]. However, its application in processing medical photographs remained 

unknown. Turgay proposed to consider the contextual information in transformation curve generation [33]. 

Therefore, a 2-dimensional histogram, which consisted of the original mapping curve and its mutual 

relationship between the targeted pixel and the surrounding pixels, was generated instead of single 

distribution as applied in the other state- of-arts methods. The amount of contextual information relied on the 

window size where more information would be referred to when the bigger window was applied.  

According to Yin et al. [33] introduced Bi-histogram bezier curve contrast enhancement (BBCCE) 

in magnetic resonance imaging (MRI) knee photographs that aims to improve the contrast between the knee 

cartilage and tissue background. Later, Teh et al. [34] introduced an extension of BBCCE, namely prominent 

region of interest contrast enhancement (PROICE), which is an explicitly designed technique to process the 

knee MRI. Therefore, PROICE attempted to improve the distinctiveness of the cartilages instead of the whole 

image. Despite BBCCE and PROICE, several techniques are being introduced to enhance medical 

photographs while retaining the important details in the photographs, such as gamma correction adaptive 
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extreme-level eliminating with weighting distribution (GCAELEWD) [35], tuned single-scale retinex (TSSR) 

[36], and tuned brightness controlled single-scale retinex (TBCSSR) [37]. GCAELEWD was created to 

improve brain CT images by removing the extreme intensity levels, and the degree of augmentation was 

determined by the weight of the intensities. The local HE method was prone to cause blocking effect thus 

required additional interpolation to eliminate the effect between the sub-tile. Meanwhile, TSSR and TBCSSR 

were kernel-based methods that could improve the photographs promptly. The kernels were designed 

experimentally and statistically. These techniques altered the image brightness with a controllable parameter, 

lambda. Generally, a higher lambda value tends to adjust the image to a higher degree, and vice versa. 

However, the author claimed that TBCSSR offered greater flexibility in improving photographs at a higher 

degree of enhancement without causing saturation effect, which could be expected in TSSR. 

According to the results of both the traditional image quality assessment (IQA) and the eye vision 

evaluation, the previous studies showed evidence on enhancing image contrast while also showing weakness. 

However, just because you get a strong quality score with traditional IQA doesn't indicate you'll get better 

computer vision. As a result, unveiling a new picture quality evaluation approach that can suggest the best 

image quality and improve CNN output prediction is critical, as is establishing the best enhancement method 

for the CNN model. To address the flaws in previous research, In comparison to standard IQA, this study 

shows how to employ deep learning to build single-CNN as an image quality evaluation. In addition, test the 

proposed CNN-IQA on a multiclass fundus detection system by identifying which images with poor quality 

should be enhanced and comparing them to traditional full enhancement techniques to show that it can boost 

CNN performance. 

 

 

2. METHOD  

The present study proposed a single-CNN model for comparing various contrast enhancement 

methods and the techniques with good achievements in assessments will be applied to improve the fundus 

photographs of three diabetic retinopathy diseases. The enhanced photographs were input into a trained CNN 

model to evaluate their performance and their contributions in classification improvement were identified. 

The main dataset used in this study was collected from the FIGSHARE database that provides photographs 

for the valuation and comparison [36]. A total of 267 samples for three classes (hard-exudates, red-lesions, 

and cotton-wool spots) were collected and then grouped into the respective cluster according to the 

annotation conducted by experienced specialists. Figure 1 shows the overall framework of the proposed 

study. 
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Figure 1. The workflow of the proposed system is identifying the best contrast enhancement techniques to 

assist the CNN model 
 

 

2.1.  Pre-processing contrast enhancement methods 

A color retinal fundus photographs are commonly influenced by various factors, for instance, the 

blurring effect initiated by the cataract [36], [37], noises caused by electrical switching from neighborhood 

equipment [3]. The selected fundus photographs were enhanced with contrast enhancement techniques [38], 

such as TBCSSR, TSSR, MMBEBHE, CLAHE, BBHE, DSIHE, and 2DHE. The performance of the 

techniques was evaluated with image quality assessments (IQA), such as enhancement measure (EME), peak 

signal-to-noise ratio (PSNR), root mean square error (RMSE), image quality indicator (IQI), and minimum 

absolute error (MAE). The enhancement methods are comprised of TBCSSR, TSSR, BBHE, DSIHE, 

BBCCE, 2DHE, MMBEBHE, CLAHE, and ACL-CLAHE. The result of the compared contrast enhancement 

methods was summarized in Tables 1-5. 
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Table 1. Different contrast enhancement approaches yielded EME values 

Photographs 
Contrast enhancement techniques 

TBCSSR  TSSR  MMBEBHE CLAHE BBHE DSIHE 2DHE 

 Normal 4.29 3.15 19.758 17.73 23.27 20.42 28.27 

 Cotton-wool spot 3.58 2.13 17.676 15.69 18.14 18.82 27.39 

 Hard exudate 3.92 2.46 12.385 16.62 17.16 13.07 25.43 

 

 

Table 2. PSNR (dB) values for various contrast enhancement methods as a result 

Samples 
Contrast enhancement techniques 

TBCSSR  TSSR MMBEBHE CLAHE BBHE DSIHE 2DHE BBCCE 

 Normal 20.19 22.48 14.82 24.25 12.76 17.43 13.43 17.84 

 Cotton-wool spot 16.331 23.86 15.12 26.58 13.02 16.89 13.27 18.26 

 Hard exudate 15.070 27.58 16.25 26.36 13.57 17.26 13.84 18.07 

 

 

Table 3. RMSE values are achieved by different contrast enhancement techniques 

Samples 
Contrast enhancement techniques 

TBCSSR TSSR MMBEBHE CLAHE BBHE DSIHE 2DHE BBCCE 

Normal 127 2.61 42.13 12.77 21.59 66.62 2.89 0.06 

Cotton-wool spot 127 2.47 46.45 12.47 22.29 67.70 3.86 0.03 

Hard exudate 128 4.24 50.68 22.48 22.38 64.82 3.60 0.03 

 

 

Table 4. IQI measurements were obtained using various contrast enhancement techniques 

Samples 
Contrast enhancement techniques 

TBCSSR TSSR MMBEBHE CLAHE BBHE DSIHE 2DHE BBCCE 

Normal 0.44 0.49 0.71 0.61 0.44 0.61 0.44 0.76 

Cotton-wool spot 0.34 0.50 0.70 0.62 0.44 0.69 0.45 0.78 

Hard exudate 0.30 0.51 0.70 0.62 0.46 0.60 0.46 0.78 

 

 

Table 5. MAE values as a result of various contrast enhancement techniques 

Samples 
Contrast enhancement techniques 

TBCSSR TSSR MMBEBHE CLAHE BBHE DSIHE 2DHE BBCCE 

Normal 18.269 1.058 8.505 1.222 2.061 14.07 0.34 0.012 

Cotton-wool spot 28.099 1.022 9.812 1.253 2.433 15.30 0.42 0.005 

Hard exudate 32.362 1.262 10.511 2.239 2.238 14.25 0.42 0.007 

 

 

The MATLAB program was used to calculate the data in Tables 1-5. The superior contrast 

enhancement approaches can be identified with their achievements in different assessments, based on the 

value of these methods that have good scores the enhancement approach has been selected. The chosen 

techniques, namely TBCSSR, MMBEBHE, BBCCE, DSIHE, and 2DHE, according to their performance 

derived from Tables 1-5. The ACL-CLAHE, which is a novel filter, is an improved algorithm from the 

conventional CLAHE by replacing the fixed clip limit with an adaptive clipping mechanism that utilizes a 

global threshold method.  

 

2.2.  Enhancement based on single CNN 

In this section, a CNN model was established to classify the diseased fundus photographs, including 

raw photographs and enhanced photographs [39]. The CNN model applied in this study comprised of 

convolution layers with a depth of 4, the kernel filter’s size (3*3), the max-pooling layer with a scope of 2*2. 

The last layer was a fully connected dense layer, which attempted to convert the soft-max activation into 1×6 

vectors in the base model and was finally suited to 1×2 vectors. CNN performance can be evaluated with the 

three metrics, which are output classification accuracy (ACC), precision, sensitivity (Sen), specificity (Spe), 

and F-Score. According to (1)-(5) calculate these CNN metrics [4]: 

 

𝐴𝐶𝐶 =
(𝑇𝑁+𝑇𝑃)

(𝑇𝑁+𝐹𝑃+𝑇𝑃+𝐹𝑁)
 (1) 

 

𝑃𝑟𝑒𝑐 =
𝑇𝑝

(𝑇𝑝+𝐹𝑃)
 (2) 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Convolution neural network model for fundus photograph quality assessment (Sinan S. Mohammed Sheet) 

919 

𝑆𝑒𝑛 =
𝑇𝑃

(𝑇𝑃+𝑇𝑁)
 (3) 

 

𝑆𝑝𝑒 =
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
 (4) 

 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)

 (5) 

 

Table 6 presented the comparison of single CNN performance values based on using or not the 

enhancement method. besides, it can be seen that using an elective enhancement approach could boost the 

CNN performance. The output value 93% has been chosen as a median value among the values (89, 92, 93, 

95, 89), so the enhancement process will apply to the two classes only (cotton-wool spots, and hard-

exudates). Finally, the choice to apply enhancements corresponding to weaker classes resulted in a profit for 

them. 

 

 

Table 6. Single CNN classification accuracy comparison table 
Dataset class Note:1 for enhanced,0 for raw 

Cotton-wool spots 0 1 0 1 0 1 0 1 

Hard-exudates 0 0 1 1 0 0 1 1 

Red-lesions 0 0 0 0 1 1 1 1 

Average of output classification % 65 98 94 93 1st chosen value 95 89 92 72 

 

 

2.3.  Transfer learning 

When huge data samples (i.e., photographs) are involved, there will be some parameters in CNN 

layers to be considered [40], [41]. However, small datasets will cause overfitting [40]. To overcome both 

the overfitting problem and fine-tune the pre-trained CNN models, the deep transfer learning concept was 

used. Transfer method can be mathematically expressed as A field and D field, which entails the feature 

zone, X, and peripheral probability, P(Χ), where Χ is a sample data point. Thus, the domain can be 

expressed mathematically as D=(X, P(X)). Hence, transfer learning is defined as shown in: 

 

𝑇 = {γ, 𝑝(𝑌|𝑋)} = {𝛾, 𝜂 } (6) 

 

 𝑌 = {𝑦1,..,𝑦𝑛}, 𝑦𝑖𝜖 𝛾 (7) 

 

where 𝛾 is a label space, 𝜂 is the predictive label learned from feature weights vector (𝑥𝑖, 𝑦𝑖). 
Undeniably, training a network from scratch was beneficial in terms of their ability to distinguish 

multiclass fundus photographs [42], [43]. Nonetheless, a transfer learning approach has been applied to 

determine the fitting number of classification layers that greatly shorten the training time and allow the 

CNN to attain a strong performance of fundus classification [42], [44], [45]. The deep fully connected layer 

was modified from 1000 classes to classify the photographs into three classes (with diabetic retinopathy 

symptoms) as mentioned above. In this study, For the suggested multiclass retinal diagnostic model, the 

VGG19 network was used. The choice was made due to the previous studies that reported that the VGG19 

net could optimize the classification and detection of diseases from the medical photographs and ECG 

waveform [18], [46], [47]. 

 

 

3. RESULTS AND DISCUSSION  

Photograph enhancement is crucial to highlight fine details, eliminate noise and elevate overall 

brightness. These contributions potentially boost CNN performance. The constructed system was thoroughly 

evaluated employing a variety of statistical assessment measures, including output classification accuracy 

(ACC), precision (pre), sensitivity (Sen), and specificity (Spe), as well as the F-factor. The full method is 

employing the contrast models on the fundus of the three classes while the selecting enhancement method is 

on the determined fundus classes. 

Table 7 presented the experimental results obtained by the proposed multiclass model using the pre-

trained VGG19 net that was fed with the pre-processed dataset, which shows that the classification finding in 

terms of accuracy, sensitivity, specificity, precision, and F-score, despite all classes had been enhanced with 

the best-chosen contrast-enhancing techniques according to results of quality test algorithms but still in range 

of 60%. Finally, using ACL-CLAHE shows the highest CNN metrics overall. 
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Based on the outcomes presented in Table 8, we have also determined the accuracy, sensitivity, 

specificity, precision, and F-score values for the presence of diabetic retinopathy (cotton-wool spots, red-

lesions, and hard-exudates), and they are found to be 80% for TBCSSR and 90.3% for both DSIHE and 

BBCCE, respectively. Furthermore, 93.1% for 2DHE, and 100% for both MMBEBHE and ACL-CLAHE. It 

is expected that the presented scheme would produce the best results if it tested using photographs enhanced 

according to the comparison enhance Table 6, in another word the contrast enhancement procedure will apply 

only for the dataset that proves their needing for enhancement based on single CNN performance. To 

evaluate the performance of the produced system and allow the user to engage with its features, a simulation 

was conducted. 

 

 

Table 7. CNN metrics with applying enhancing process on the three classes (full enhance) 
Enhancement model ACC Pre Sen  Spe F-score  

TBCSSR 33.33% 51.11% 25.83% 67.66% 28.72% 

DSIHE 45.83% 53.70% 45.08% 73.11% 45.44% 

BBCCE 51.39% 51.85% 51.38% 75.78% 50.59% 

MMBEBHE 54.55% 59.09% 54.13% 77.36% 54.17% 

2DHE 45.83% 52.78% 46.66% 72.72% 46.21% 

CLAHE 57.58% 60.10% 56.85% 79.02% 56.77% 

ACL_CLAHE 60.61% 65.66% 60.56% 80.33% 60.52% 

 

 

Table 8. CNN metrics using dataset enhanced based on selecting method (only the class with fair quality had 

been enhanced) 
Enhancement model ACC.  Pre.  Sen.  Spe.  F-score.  

TBCSSR 80.00% 80.00% 80.56% 90.24% 79.80% 

DSIHE 90.28% 90.28% 90.65% 95.25% 90.24% 

BBCCE 90.28% 90.28% 92.47% 95.76% 90.07% 

MMBEBHE 100% 100% 100% 100% 100% 

2DHE 93.06% 93.06% 93.10% 96.54% 93.05% 

CLAHE 100% 100% 100% 100% 100% 

ACL-CLAHE 100% 100% 100% 100% 100% 

 

 

Furthermore, as shown in Table 8, the superior results were for MMBEBHE, CLAHE, ACL-

CLAHE, and 2DHE, demonstrating that contrast enhancement algorithms based on histogram equalization 

performed better than the other contrast enhancement approaches. In addition, Table 8 shows that 

MMBEBHE, CLAHE, and ACL-CLAHE achieved the highest performance values equal to 100%. Finally, 

Table 7 reveals that for the ACL-CLAHE CNN measure, TBCSSR performance is the best using the full 

enhance method (the entire dataset has been improved), however, Table 8 shows that the TBCSSR enhancing 

strategy failed to improve CNN performance when using the select enhance method (only the selected classes 

had been enhanced). 

 

 

4. CONCLUSION  

Algorithms using the convolution neural network model for fundus photograph quality detection and 

contrast enhancement of diabetic retinopathy for the three cases (hard-exudates, red-lesions, and cotton-wool 

spots) from color fundus photographs have been proposed. A decision-support model for choosing the best 

contrast-enhancing technique with determining who is the disease class to enhance has been designed based 

on the quality of output photograph and single CNN performance. Finally, a contrast enhancement method 

derived from histogram equalization proved their excellent ability to boost the CNN performance compared 

with other methods. Moreover, the improved CLAHE filter achieved superior results in improving the 

performance multiclass CNN system, compared with previous procedures of contrast-enhancing color fundus 

photographs. The presented system can further be employed to additional medical photographs with different 

acquired methods. 
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