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 Data-driven fault detection and diagnosis system (FDD) has been proven as 

simple yet powerful to identify soft and abrupt faults in the air conditioning 

system, leading to energy saving. However, the challenge is to obtain 

reliable operation data from the actual building. Therefore, a lab-scaled 

centralized chilled water air conditioning system was successfully developed 

in this paper. All necessary sensors were installed to generate reliable 

operation data for the data-driven FDD. Nevertheless, if a practical system is 

considered, the number of sensors required would be extensive as it depends 

on the number of rooms in the building. Hence, parameters impact in the 

dataset were also investigated to identify critical parameters for fault 

classifications. The analysis results had identified four critical parameters for 

data-driven FDD: the rooms' temperature (TTCx), supplied chilled water 

temperature (TCHWS), supplied chilled water flow rate (VCHWS) and supplied 

cooled water temperature (TCWS). Results showed that the data-driven FDD 

successfully diagnosed all six conditions correctly with the proposed 

parameters for more than 92.3% accuracy; only 0.6-3.4% differed from the 

original dataset's accuracy. Therefore, the proposed parameters can reduce 

the number of sensors used for practical buildings, thus reducing installation 

costs without compromising the FDD accuracy. 
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1. INTRODUCTION  

Faults in air conditioning systems, especially soft faults, are hard to detect. Even a regularly 

maintained building may suffer from soft faults without realising it [1]. Therefore, fault detection and 

diagnosis (FDD) plays an important role in building energy savings. Successful FDD can save up to 40% of 

air conditioning energy consumption [2]. One of the FDD methods is model-based FDD, which relies on 

mathematical modelling to represent the system. The detailed physical modelling derived using the first 

principle method is the most accurate way to describe the air conditioning system as proposed in [3]-[5]. 

However, since the system itself is a complex and dynamic system, the development of mathematical 

modelling is complex and requires detailed information regarding the system and is challenging to derive [6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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In contrast, simplified mathematical modelling using a lumped parameter approach developed in [7], [8] are 

simpler to derive. However, the number of available fault models of air conditioning systems is still limited [9]. 

One of the reasons was that most of the modellings are developed for a specific system. Thus, some 

adjustment needs to be made to use in other types of air conditioning system. 

Recently, researchers are exploring more on data-driven FDD due to its simple yet reliable method. This 

method has gained much interest among researchers in many areas, such as in air conditioning systems [10]-[14], 

power generation systems [15]-[19] and motor drive systems [20], [21]. The method is simple to develop 

because it only requires historical data to train and validate its operational data. Thus, it is easy to develop, 

but it requires fault-free training data to classify other faults. Otherwise, the classifier model would recognize 

faults as the standard operating performance. 

Current FDD trends for air conditioning systems only focus on individual component, such as the 

chiller as in [10], [14], [22], and air handling unit (AHU) as in [23]-[27]. However, no FDD research 

considers faults across the entire air-conditioning system even though all components are interconnected [9]. 

Thus, faults in one component may affect other components' parameters. Therefore, by combining faults 

across the entire system, the ability of the FDD system to diagnose with correct faults can be analysed. To fill 

up this gap, Chen [28] has proposed data-driven FDD using the Bayesian network (BN) for the whole 

building fault, including faults across chiller, AHU, and operation schedule. However, this research does not 

cover faults across the cooling tower, which is also one of the air conditioning system components. One of 

the limitations of his research is that some faults may not be identified under certain weather, operation, or 

internal load conditions. Indeed, it is one of the biggest challenges for data-driven FDD in the actual building. 

There are many challenges to obtaining reliable fault-free and faults operation data in the actual 

building. Firstly, the initial building operation data might differ from those applied later in the building's 

lifetime. Furthermore, the external factors, such as environment and usage patterns, may vary the results as  

in [28]. It is also a challenge to simulate faults in actual buildings as it may disturb the thermal comfort of the 

occupants. Therefore, in our previous studies in [13], [29], we developed a lab-scaled chilled water air 

conditioning system. The data was used to develop three machine learning models as in [13]: deep learning, 

support vector machine (SVM) and multi-layer perceptron (MLP) for data-driven FDD of the entire system 

faults. It covers the entire system faults, which are faults across the chiller, AHU, and the cooling tower. 

Results showed that all models were successfully identified all faults for more than 95%. 

Deep learning, SVM and MLP are among the most widely used for classification proses. For instance, 

deep learning was successfully proposed as FDD in Tennessee Eastman (TE) process as presented in [30]. 

Results show deep learning model outshines the other five classifier models. Likewise, Yan et al. [31] 

successfully proposed SVM as FDD in the chiller system. SVM also shows the highest accuracy compared to 

other methods in detecting breast cancer [32], [33]. Meanwhile, MLP successfully diagnosed bladder cancer 

and predicted faults in yacht hydrodynamics, as portrayed in [34], [35]. 

Even though the FDD in [13] successfully diagnosed the faults, it requires many sensors to be 

implemented in actual buildings. Nevertheless, most air conditioning systems in non-residential buildings 

have a limited number of sensors, and most of them were installed for control purposes only [6]. Hence, it 

needs a substantial additional cost to add more sensors to the building. Furthermore, the accuracy of the data-

driven method depends on the parameter data collected from the system. The more parameters in the dataset, 

the better FDD accuracy will be produced, and the bigger the system is, the more parameters will be required. 

Therefore, it is essential to identify the impact of those parameters on their ability to detect faults. The 

unimportant parameters can be eliminated to reduce the installation cost without compromising FDD accuracy. 

Thus, the proposed parameters can still avoid unnecessary energy wastage with smaller installation costs. 

In this paper, the impact of each parameter in FDD was investigated to identify the critical 

parameters. New dataset combinations were developed based on standard deviation and accuracy percentage 

values. Each combination was then evaluated using deep learning, SVM and MLP model developed in [13]. 

The performance of the proposed critical parameters was then compared with the performance of the original 

dataset in [13]. This paper was written in four sections, where some research backgrounds are presented in 

section 1. Then, the research methodology is presented carefully in section 2. It includes the development of 

the lab-scaled system, the fault simulation on the system and the investigation of each parameter’s impact. 

Section 3 elaborates the outcome of this research in detail. Lastly, the conclusions are written up in section 4. 
 

 

2. RESEARCH METHOD 

This section explains the research methodology of this research. It involves the development of the 

lab-scaled system and the selection methods of the parameters. The lab-scaled system was developed to 

generate reliable data for the FDD. Whereas the values of standard deviation and accuracy were used to 

investigate the impact of those parameters generated by the system. 
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2.1.  Lab scaled of centralised chilled water air conditioning system 

Figure 1 shows the lab-scaled system developed in this research as described in [7], [8], [13]. It 

consists of a chiller, cooling tower, AHU, and two rooms to replicate an actual centralised chilled water air 

conditioning system. The chiller used is a ready-made chiller system equipped with a chilled water tank, and 

the cooling tower is designed as a counter flow type. The AHU system has a cooling coil, a fan, supply and 

return ducts for each room, and dampers. The speed of the fan can be varied to achieve a specific supplied 

airflow rate. The rooms were constructed by insulated board and poly-carbonate, and each of them sizes 

2.4×1.2×1.6 m. Five bulbs rated 100 watt each was installed in each room to simulate heat from equipment 

and occupants. 
 

 

 
 

Figure 1. The lab-scaled of the chilled water system 
 

 

The system is a set of standalone and self-contained equipment. It has a structured platform to 

accommodate the cooling tower, water-cooled chiller, and AHU system. Two rooms were installed next to 

the structured platform. Four lockable castor wheels were mounted at the bottom of the structure platform for 

easy mobilization. The size of the platform is 64 cm (W)×150 cm (L)×170 cm (H). A control board is used to 

control and operate the system. The system was equipped with fourteen sensors: thermocouple sensors, water 

flow rate sensors, airflow rate sensors, and current sensor, and the details of each sensor and the parameters 

measured were tabulated in Table 1. The system coefficient of performance (COP) was also analyzed and 

presented in Sulaiman et al. [13]. The results show that the COPs reduce when the system has faults, which is 

consistent with the results energy audit of the actual system presented in Othman et al. [1]. 
 

 

Table 1. List of the sensors in the lab-scaled system 
Sensor Type Parameters measured 

Temperature sensor TTC1 = Air temperature in Room 1 

TTC2 = Air temperature in Room 2 
TS1 = Air temperature at ducting Room 1 

TS2 = Air temperature at ducting Room 2  

TCHWS = Supplied chilled water temperature 
TCHWR = Returned chilled water temperature 

TCWS = Supplied cooled water temperature 

TCWR = Returned cooled water temperature 
Airflow rate sensor VS1 = Airflow rate at ducting Room 1 

VS2 = Airflow rate at ducting Room 2 

Water flow rate sensor VCHWS = Supplied chilled water flow rate 
VCHWR = Returned chilled water flow rate 

VCWS= Supplied cooled water flow rate 

Current sensor CCH = Compressor current 

 
 

All parameters in Table 1 was logged during various conditions simulations in the lab-scaled 

system. The conditions simulated as described in Table 2, the location and type of faults were also portrayed 

in the table. It includes five faults throughout the entire system and one normal without fault condition. Three 

machine learning models were used to classify all conditions as described in Table 3. The parameter setting 

for each model is displayed in the table. All classifier models have successfully identified all conditions as 

presented in Sulaiman et al. [13]. 
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Table 2. List of conditions simulated in the lab-

scaled system [13] 
Condition Location of fault Type of fault 

Normal (no-fault) -- -- 
Evaporator Clogging Chiller Soft 

Compressor Failure Chiller Abrupt 

Cooling Tower Fan Faulty Cooling Tower Soft 
Damper Stuck AHU Soft 

Air Ducting Leakage AHU Soft 
 

Table 3. Simulation parameters [13] 
Models Parameter setting 

Deep 
learning 

Activation function for hidden layer: sigmoid 
Activation function for the output layer: 

softmax 

Optimization: stochastic gradient descent 
(SGD) 

SVM Kernel function: polykernel 

MLP Activation function: sigmoid 
 

 
 

2.2.  Parameter selection 

Out of fourteen sensors, six were installed in the two rooms, three sensors for each room. If a 

practical system is considered, the number of sensors required would be extensive as it depends on the 

number of rooms in the actual building. In other words, more cost is needed as three sensors are required for 

each room. Therefore, it is essential to investigate the impact of these parameters in classifying the faults. 

Insignificant sensors can be eliminated to reduce installation costs. However, the elimination must not affect 

accuracy. Table 4 represents the list of sensors and their location throughout the entire system. The data were 

categorised into two, Group A and Group B. Group A is a set of parameters related to the rooms, and Group 

B is a set of parameters associated with the central unit. 
 
 

Table 4. List of conditions simulated in the lab-scaled system 
Group Location of the sensors Parameters measured 

Group A (Sensors located at rooms) Room 1 TTC1 
TS1 

VS1 

Room 2 TTC2 
TS2 

VS2 

Group B (Sensors located at the central unit) The central unit of the system TCHWS 

TCHWR 

TCWS 

TCWR 

VCHWS 

VCHWR 

VCWS 

CCH 

 

 

In general, the number of parameters can be presented as (1), 
 

𝑛𝑃 = 𝑛𝐴𝑁𝑅𝑂𝑂𝑀 + 𝑛𝐵 = 3𝑁𝑅𝑂𝑂𝑀 + 8, (1) 
 

where nP represents the number of total parameters, nA is the number of parameters from Group A, NROOM is the 

total number of rooms, and nB is the number of parameters from Group B. In (1) indicates that the more rooms 

used in the system, the more parameters will increase. Therefore, it is essential to identify the critical parameters 

to detect all six conditions in FDD. Hence it can minimize the number of sensors used in a practical system and 

eventually reduce the cost. The values of standard deviation and accuracy were used to investigate the impact of 

these parameters to detect faults without compromising the performance of the classifiers. 
 

2.3.  Standard deviation 

In statistics, a standard deviation is used as a measure of variation in the dataset. A low value of 

standard deviation represents the data is close to the mean value. In contrast, a high value indicates that the 

data has a broader range and is farther than its mean value. In this paper, the standard deviation can be used 

to identify which parameters have notably changed throughout the simulation. Thus, it can be used to analyse 

the impact of parameter selection in identifying the faults. Table 5 shows the standard deviation value of each 

parameter in the dataset. The subscript x in parameter Group A denotes the room number, where  

x = 1,2,…, NROOM. 

Table 5 shows that VS and TCHWS have the highest standard deviation value for each group. In 

contrast, TTC and VCWS have the lowest standard deviation values. It shows that parameters of VS and TCHWS 

significantly changed during simulations compared to TTC and VCWS data. Therefore, the higher value of 

standard deviation may represent a more significant impact on the fault simulations. There is also a 
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possibility that the low value of standard deviation was less critical in fault classification and can be removed 

from the dataset. 

The parameters selection for new datasets of Group A and Group B are described in Table 6 and 

Table 7. One parameter was eliminated for every dataset formed in both Table 6 and Table 7. The datasets 

were formed based on the standard deviation values shown in Table 5. Datasets in Group A and Group B 

were then combined one by one as (2), 
 

𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = { 𝐴1𝐵1; 𝐴1𝐵2; … ; 𝐴2𝐵1; 𝐴2𝐵2; … ; 𝐴𝑛𝐵𝑚}, (2) 
 

where 𝑛 is the number of datasets in Group A, and 𝑚 is the number of datasets in Group B. Each 

combination was tested and compared with all three machine learning classifiers in Table 3. 
 

 

Table 5. Standard deviation value for all parameters in the dataset 
Group Parameters Parameters measured 

Group A VSX 10.03 

TSX 5.2 

TTCX 2.57 
Group B TCHWS 5.67 

TCWR 5.31 

TCWS 4.45 
TCHWR 4.03 

VCHWS 2.38 

VCHWR 1.83 
CCH 1.53 

VCWS 1.22 

 

 

Table 6. The selection of parameters in Group A 
Dataset List of parameters 

Original VSx, TSx, TTCx 

A1 VSx, TSx 

A2 TTCx, VSx 

A3 TTCx, TSx 

A4 VSx 
A5 TSx 

A6 TTCx 
 

Table 7. The selection of parameters in Group B 
Dataset List of parameters 

Original TCHWS, TCWR, TCWS, TCHWR, VCHWS, VCHWR, CCH, VCWS 

B1 TCHWS, TCWR, TCWS, TCHWR, VCHWS, VCHWR, CCH 

B2 TCHWS, TCWR, TCWS, TCHWR, VCHWS, VCHWR 

B3 TCHWS, TCWR, TCWS, TCHWR, VCHWS 

B4 TCHWS, TCWR, TCWS, TCHWR 
B5 TCHWS, TCWR, TCWS 

B6 TCHWS, TCWR 

B7 TCHWS 
 

 

 

2.4.  Accuracy 

The accuracy of the deep learning classifier was analysed when one of the parameters was removed 

from the dataset. The results represent the ability of the classifier to identify and classify the faults. 

Therefore, the higher accuracy obtained when a parameter was taken out from the dataset represents that the 

parameter does not impact the fault classification. However, should the accuracy decrease much when the 

parameter was eliminated from the dataset, the parameter significantly impacts the fault classification. The 

results were presented in Table 8, while Table 9 shows the parameters selection for new datasets of Group B. 

The datasets of Group A remain unchanged, as in Table 4. Similarly, each dataset’s combination was tested 

and compared with three machine learning classifiers. 
 

 

Table 8. The accuracy of the classifier when each of 

these parameters was deleted from the original dataset 
Group Parameters deleted Parameters measured 

Group A VSX 91.4% 

TTCX 93.1% 
TSX 94.0% 

Group B TCWS 91.5% 

TCHWS 93.7% 
VCHWS 93.8% 

TCWR 94.0% 

CCH 94.0% 
TCHWR 94.1% 

VCWS 94.3% 

VCHWR 94.5% 
 

Table 9. The selection of  

parameters in Group B 
Dataset List of parameters 

Original TCHWS, TCWR, TCWS, TCHWR, VCHWS, VCHWR, 

CCH, VCWS 
B11 TCWS, TCHWS, VCHWS, TCWR, CCH, TCHWR, VCWS 

B12 TCWS, TCHWS, VCHWS, TCWR, CCH, TCHWR 

B13 TCWS, TCHWS, VCHWS, TCWR, CCH 
B14 TCWS, TCHWS, VCHWS, TCWR 

B15 TCWS, TCHWS, VCHWS, CCH 

B16 TCWS, TCHWS, VCHWS 
B17 TCWS, TCHWS 

B18 TCWS 
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3. RESULTS AND DISCUSSION 

Table 10 shows the results of the best combination datasets formed using both methods discussed in 

the previous section. The combination was selected for the least parameters with a minimum of 90% 

accuracy. For instance, dataset A1B5 combined dataset A1 from Group A and dataset B5 from Group B. It 

was the best combination in dataset A1 with a minimum number of parameters that reached 90% accuracy. 

Dataset A5 was not listed because all combinations with any datasets Group B produced below 90% 

accuracy. The number of parameters required for each dataset was developed as in (1). The first part of the 

equation represents the parameters from Group A, while the second part represents the parameters in Group 

B. Based on the equations, the number of sensors depends on the number of rooms in the system. The results 

show that datasets A4B3, A6B3, A4B16, and A6B16 required the least number of sensors when the number 

of rooms increased, as compared to others. 

 

 

Table 10. Results for the best combination datasets formed 
Method Dataset Number of parameters required, nP Number of sensors for 

Nroom = 1 Nroom = 2 Nroom = 3 Nroom = 4 

Standard deviation A1B5 2𝑁𝑅𝑂𝑂𝑀 + 3 5 7 9 11 

A2B5 2𝑁𝑅𝑂𝑂𝑀 + 3 5 7 9 11 

A3B4 2𝑁𝑅𝑂𝑂𝑀 + 4 6 8 10 12 

A4B3 𝑁𝑅𝑂𝑂𝑀 + 5 6 7 8 9 

A6B3 𝑁𝑅𝑂𝑂𝑀 + 5 6 7 8 9 

Accuracy A1B16 2𝑁𝑅𝑂𝑂𝑀 + 3 5 7 9 11 

A2B17 2𝑁𝑅𝑂𝑂𝑀 + 2 4 6 8 10 

A3B16 2𝑁𝑅𝑂𝑂𝑀 + 3 5 7 9 11 

A4B16 𝑁𝑅𝑂𝑂𝑀 + 3 4 5 6 7 

A6B16 𝑁𝑅𝑂𝑂𝑀 + 3 4 5 6 7 

 

 

Based on the investigation results in Table 10, the datasets combination of Dataset A4 and A6 for 

standard deviation and accuracy selection methods were identified as the minimum number of required 

sensors. Table 11 compares the classification results from our previous study in [13] with the highlighted 

datasets in Table 10: A4B3, A6B3, A4B16, and A6B16. Three machine learning classifiers: deep learning, 

support vector machine (SVM), and multi-layer perceptron (MLP), were used to measure the accuracy of all 

five datasets. The accuracy of these newly combined datasets was a bit lesser than the original dataset in [13], 

around 0.6%-3.4%. Nonetheless, the differences were not much and are still reliable. 

 

 

Table 11. Comparison results between the original dataset, Dataset A4B3, A6B3, A4B16, and A6B16 
  Original dataset [13] Dataset A4B3 Dataset A6B3 Dataset A4B16 Dataset A6B16 

Classification accuracy Deep learning 94% 93.2% 91.8% 93.4% 92.3% 

SVM 97% 94.6% 94.3% 94.3% 93.6% 

MLP 99.4% 97.5% 97.3% 97.4% 96.6% 
Parameters Group A VSx VSx TTCx VSx TTCx 

TSx     

TTCx     
Group B TCHWS TCHWS TCHWS TCHWS TCHWS 

TCWR VCHWS VCHWS VCHWS VCHWS 

TCWS TCWS TCWS TCWS TCWS 
TCHWR TCHWR TCHWR   

VCHWS TCWR TCWR   

VCHWR     
CCH     

VCWS     

 

 

The original dataset has three parameters Group A and eight parameters of Group B. In comparison, 

Datasets A4B3 and A6B3 have one parameter of Group A and five parameters of Group B. Although Group 

A’s parameter is different, the parameters of Group B are the same for both datasets. Similarly, it is the same 

case for datasets A4B16 and A6B16, where Group B has the same parameters for both datasets. For 

information, datasets A4B16 and A6B16 have one parameter from Group A and three parameters of Group 

B. Moreover, the parameters of dataset B16 were part of the parameters of dataset B3. It can be concluded 

that TCHWS, VCHWS, and TCWS were among the critical parameters in Group B to classify all six conditions. As 

for Group A, either TTCx or VSx can be regarded as equally crucial for data-driven FDD because both datasets 
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had almost similar accuracy. Mathematically, the list of proposed parameters for data-driven FDD for 

centralised chilled water air conditioning system can be written as (3), 

 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑃 = { 𝑃𝑅𝑂𝑂𝑀 , 𝑃𝐶𝐸𝑁𝑇𝑅𝐴𝐿} (3) 

 

where 𝑃𝑅𝑂𝑂𝑀 = {𝑇𝑇𝐶,𝑥|𝑥 = 1,2, … . , 𝑁𝑅𝑂𝑂𝑀} 𝑂𝑅  {𝑉𝑆,𝑥|𝑥 = 1,2, … . , 𝑁𝑅𝑂𝑂𝑀} 

and 𝑃𝐶𝐸𝑁𝑇𝑅𝐴𝐿 = {𝑇𝐶𝐻𝑊𝑆 ,  𝑉𝐶𝐻𝑊𝑆 , 𝑇𝐶𝑊𝑆}. 

The minimum number of parameters required to identify six conditions, as described in Table 10 

successfully, can be expressed as (4), 

 

 𝑛𝑃 = 𝑁𝑅𝑂𝑂𝑀 + 3, (4) 

 

where NROOM represents the total number of rooms. The constant 3 indicates the three critical Group B 

parameters, which are TCHWS, VCHWS, TCWS. The other parameter associated with the number of rooms is 

either VS or TTC. In this research, two thermocouples were used to measure TTC, the temperature of each 

room, while for the airflow sensor, model SD2001 from ifm electronic was used to measure VS. The price of 

an airflow sensor is very much higher than the price of thermocouples. Therefore, in terms of cost, all four 

parameters in Dataset A6B16 can be considered the critical parameters to identify six classes of faults for this 

research at a lower cost than Dataset A4B16. Although the accuracy of the Dataset A4B16 was slightly 

higher than the Dataset A6B16, the difference was not much and was still above 90%.  
 

 

4. CONCLUSION 

This paper has presented the developed lab-scaled of a centralized chilled water air-conditioning 

system to represent the actual system. It is a complete system with a cooling tower, chiller, AHU and two 

rooms. Six conditions had successfully simulated in the lab-scaled system and presented in our previous 

study. However, if a practical system is considered, the number of sensors required would be extensive as it 

depends on the number of rooms in the building. In other words, more cost is needed as the number of 

sensors is increased with the number of rooms. Therefore, this paper has proposed critical parameters for 

data-driven FDD of a centralized chilled water system. The impact of each parameter was identified and 

carefully analyzed to maintain a good FDD accuracy. Four critical parameters were proposed in this paper: 

the rooms’ temperature, TTCx, supplied chilled water temperature, TCHWS, supplied chilled water flow rate, 

VCHWS, and supplied cooled water temperature, TCWS. Results showed that the data-driven FDD successfully 

diagnosed all six conditions with the proposed parameters for more than 92.3% accuracy. Furthermore, the 

results were only differed by 0.6-3.4%, which was almost similar to our previous study. With the proposed 

parameters, only critical parameters to be installed in the actual building thus can reduce the sensors 

installation cost. 
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