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Abstract
Traffic speed prediction is an integral part of an Intelligent Transportation System (ITS)
and the Internet of Vehicles (IoV). Advanced knowledge of average traffic speed can help
take proactive preventive steps to avoid impending problems. There have been studies for
traffic speed prediction in which data has been decomposed into components using
various decomposition techniques such as empirical mode decomposition, wavelets, and
seasonal decomposition. As far as the authors are aware, no research has used additively
decomposed components as input features. In this study, we used additive decomposition
on 21,843 samples of traffic speed data. We implemented two statistical techniques
designed for double seasonality (i) Double Seasonal Holt‐Winter, and (ii) Trigonometric
seasonality, Box‐Cox transformation, autoregressive integrated moving average errors,
trend, and Seasonal components (TBATS), and five machine learning (ML) techniques, (i)
Multi‐Layer Perceptron, (ii) Convolutional‐Neural Network, (iii) Long Short‐Term
Memory, (iv) Gated Recurrent Unit and (v) Convolutional‐Neural Network‐LSTM.
Machine learning techniques are used in univariate mode with raw time series as features
and then with decomposed components as features in multivariate mode. This study
demonstrates that using decomposed components (trend, seasonal, and residual), as
features, improves prediction results for multivariate ML techniques. This becomes a
significant advantage when no other features are available.
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1 | INTRODUCTION

Traffic speed prediction is an integral part of an Intelligent
Transportation Systems (ITS) and Internet of Vehicles (IoV);
an IoV is comprised of a combination of a vehicle to vehicle,
vehicle to infra, vehicle to roadside units, and vehicle to
pedestrian communication disseminating safety messages using
wireless links [1]. A prior estimate of impending traffic con-
ditions greatly helps both of these systems for smooth, safe,
and unhindered operation. It also helps in trip planning, route
determination, and traffic management.

Modern techniques such as GPS probes, aerial photog-
raphy, cameras installed on top of tall buildings, or specially
equipped vehicles can all be used to measure vehicular speed
[2]. These measurements result in a time series, which is a
series of temporal observations taken at regular intervals. Time
series prediction can be accomplished using a variety of tech-
niques. However, before employing any technique, the data
should be thoroughly examined to identify a suitable model
compatible with the dataset. The decomposition of time series
is one possible approach. At high frequency, the long data set
may reveal multiple seasonalities along with trend and residuals.
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Two of the major time series forecasting techniques,
inheriting their power from statistics, are exponential
smoothing [3] and autoregression (AR) [4]. These techniques
exploit the statistical features of observed data to fit a model
into the current value minimising some cost functions such as
root‐mean‐square‐error (RMSE). These techniques and their
extensions, such as Holt‐Winter (HW) and auto regressive
moving average (ARMA), assume stationarity and linearity in
the underlying series. If the series is non‐linear and volatile
(having varying variance), then deep learning architectures are
expected to give better results. Nonetheless, there are evi-
dences that favour statistical algorithms like triple exponential
smoothing or its variants [5]. In contrast, a vast class of liter-
ature demonstrates improved performance with machine
learning (ML) techniques such as multi‐layer perceptron (MLP)
[6], long short‐term memory (LSTM) [7], and their hybrids [8].

Researchers demonstrate that neural networks can
comfortably handle non‐linearity with improved performance
[9, 10, 11]. Following alternative footsteps, some researchers
have decomposed time series using many ways such as sea-
sonal and trend decomposition using Loess (STL), empirical
mode decomposition (EMD), and additive/and multiplicative
decompositions. Additive decomposition along with echo
state network (ESN) is used in [12], STL decomposition is
used in [13], and decomposed components are applied to
HW and artificial neural network (ANN) models. Decom-
posed data is mostly modelled using variants of recurring
networks. A combination of two decomposition methods is
applied to LSTM networks in ref.[14]. In these approaches
key elements are splitting data into deterministic and random
parts and exposing each to a suitable model. Modelling the
deterministic part seems trivial for many models; however, it
is not ascertained by the researchers that whether statistical or
ML approach is preferable for random part. Secondly, data
with multiple seasonality is not explicitly modelled in these
research.

In the underlying study, we looked for a suitable model to
make a one‐step prediction using long and high‐frequency data
consisting of 21,843 samples taken every 5‐min interval. The
data are obtained from Here™ Technologies. The conse-
quence of the high frequency observations is the emergence of
daily seasonality and long length of data signifies weekly sea-
sonality. The data are very reliable with only 45 missing values
and confidence factor of 40 as claimed by the provider's
document. We identified two statistical models which are
specifically suitable for double seasonality data, that is, double
seasonal Holt‐Winter (DSHW) and trigonometric seasonality,
Box‐Cox transformation, autoregressive integrated moving
average (ARIMA) errors, trend and seasonal components
(TBATS). Further, five ML models (MLP) [6] (LSTM) [15, 16],
gated recurrent unit (GRU) [17, 18], convolutional‐neural
networks (CNN) [19, 20] and CNN‐LSTM [21, 22] were also
implemented. Seasonal autoregressive integrated moving
average (SARIMA) was used as the benchmark. The ML
models were used in univariate and multivariate modes. For
multivariate models we first additively decomposed time series
into its trend, seasonal and residual components with a view to

use them as features (independent variables). The motivation
for this approach is derived from the fact that decomposed
components are independent (having minimal correlation) and
correlated with the predicted variable (mean‐speed). The re-
sults obtained for three selected highway segments demon-
strate that this approach gives improvement for all machine
leaning models. The contribution of this research becomes
more significant in the case where there are no other features
available for a similar kind of data. To the best of our
knowledge no research has used additively decomposed com-
ponents as features in multivariate ML models.

The rest of the paper is organised as follows. Section 2
presents a review of related literature, and Section 3 describes
the methodology used, followed by the results given in Sec-
tion 4. Finally, Section 5 concludes the paper.

2 | RELATED WORK

The literature on time series analysis is rich and extensive,
covering many dimensions and domain‐specific approaches. In
the following, however, we cover a limited set of relevant
samples for short‐term traffic speed/flow prediction.

Most of the research on time series is inherited from
averaging and regression analysis from statistics. The re-
searchers have extensively used smoothing and AR techniques
such as HW and variants of ARIMA. However, due to the huge
impact of ML, techniques like MLP, LSTM, GRU, CNN, and
their hybrids are also used.

Broad coverage of data models and algorithms used for
smart transport planning was presented in ref.[23]. The re-
searchers have focussed on the mode of communication (e.g.
connected vehicles) and data collection methods, emphasising
the need for more accurate data sources. They also provided a
hybrid technique that combines data from two sources using
STL decomposition and CNN techniques. However, the table
comparing a few techniques claiming ARIMA requires a large
amount of historical data appears contradictory.

Various statistical and ML models for multiple horizons (5,
15, 30, and 60 min) and two aggregation levels (5 and 15 min)
have been evaluated in ref.[24]. Their modelling approaches
treat the periodic seasonal components and separately
seasonally adjusted data with improved performance for multi‐
step prediction and better results for higher aggregation
(15 min). They have used mean absolute error (MAE), RMSE,
and mean absolute percentage error (MAPE) as performance
measure criteria. One of the conclusions their research made is
that multi‐step prediction greatly improves with periodic
information.

Double Seasonal Holt‐Winter model, on hourly data from
Freeway I‐5 California, was applied in ref.[25]. A comparison
was made with standard HW and ARIMA, showing results in
favour of the DSHW technique for multi‐step forecasting. The
authors also came up with an improvement (in‐sample MAPE
improvement of 13.31%) in the basic model by including a
first‐order autoregression (AR(1)) term for one‐step
forecasting.
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Seasonal autoregressive integrated moving average model
and seasonal discrete grey model (SDGM) approaches, for data
collected at different time intervals, were combined in ref.[26].
Seasonal discrete grey model are used in finance, engineering,
control, and economics. The combination of SARIMA and
SDGM in ref.[26] was compared with SARIMA, SDGM,
support vector regression (SVR), and artificial neural networks
(ANN) models, claiming best results for SARIMA‐SDGM
using MAE, MAPE, and RMSE as performance metrics.

Outcomes of M3 competition were reported in ref.[27].
The results predominantly favour eight selected statistical ap-
proaches on simulated data over ML techniques. However, the
M4 competition that used real‐life data reported the winner as
a combination of triple exponential smoothing and LSTM used
hierarchically [28]. These results are significant because they
indicate a data dependency on algorithm performance and
consonant with an earlier publication [29] that rigorously
investigated the relation of performance with data
characteristics.

An attempt is made in ref.[30] to apply SARIMA for flow
prediction with a limited dataset of 3 days taken every 1 min,
aggregated into 10 min. The fourth day is used for validation.
The authors used a seasonal difference of 144 with multiple
AR and moving averages lags. They also investigated morning
and evening peak flow behaviours; all results are shown to be
within acceptable limits using the MAPE metric.

The ANN is one of the popular non‐parametric techniques
particularly suited for modelling non‐linear high‐frequency
data compared to statistical methods. In ref.[31], authors
identified difficulties in selecting the number of input nodes for
high‐frequency data for a set of daily, weekly and monthly data
selected from the NN5 competition. Their research signifies
that although the low‐frequency aggregated data gives better
results, this is achieved at the cost of losing valuable
information.

A performance comparison between SARIMA, radial‐
basis‐function neural network with Gaussian function and
their hybrid was made in ref.[32] using a 5‐min interval traffic
flow data of 14 days with 1 day ahead prediction. Their results
significantly favoured the hybrid technique over the individual
ones. A study in ref.[33] applied a deep belief network (DBN)
to predict speed on a road segment, showing performance
improvement over ARIMA and back‐propagation neural net-
works. A DBN is made up of a stack of restricted Boltzmann
machines trained to extract features from data at each hidden
layer. This study made use of 2‐min data collected over
3 months. A grid search was used to select model parameters.
Another study [34] used a neural network with radial‐basis‐
function to predict speed on an urban freeway, demon-
strating that spatial information can improve prediction
accuracy.

In another study involving traffic prediction [35], the au-
thors used MLP, feeding 19 different features (time of day, type
of vehicles, etc.) into the network, one hidden layer with six
neurons and one output to predict the flow. Data had 15 min
intervals, and only 45‐min data was used to predict a 15‐min
horizon. An important aspect of their research is that they

have predicted the speed of every type of vehicle separately.
Their work claims to have consistent performance for varied
time intervals.

A sequential combination of CNN and LSTM for speed
prediction and extracting spatio‐temporal features was sug-
gested in ref.[36]. Convolutional‐Neural Network was first
used to extract daily and weekly periodicity before being
combined with spatio‐temporal features. The results were
compared with SVR, MLP, Lasso, Random Forest, and LSTM,
which better prediction for prediction horizons ranging from
15 to 90 min.

A distributed, adaptive and customised LSTM was used in
ref.[37] for a large‐scale transportation network targeting fine‐
grained and accurate speed prediction. In their scheme, the
nodes observing similar traffic behaviour can use a model
trained for such traffic patterns, saving the computational load
of the network.

Ref.[38] investigated the LSTM neural network, taking
advantage of its ability to handle non‐linear dynamics,
remember long‐term dependencies, and automatically deter-
mine optimum time‐lag. Using 1‐month data collected at 2‐min
intervals, they found that support vector machines (SVM),
ARIMA, and the Kalman Filter performed better than the
three neural network variants, SVM, ARIMA, and Kalman
Filter, with multiple error metrics. A deep learning model for
speed prediction in ref.[39] claimed a rational integration of
recurrent neural network (RNN) and CNN. Their design
comprised of a context learning section, a periodicity learning
section, and an LSTM based time series learning section. For
learning time series patterns, neighbouring traffic information
was embedded in the convolution operation in the context
learning section capturing the spatial information that may
influence a segment of the road network.

Performance of two variants of MLP (one and five nodes
input layers and three hidden layers each) was compared with a
CNN, having five parallel sublayers in ref.[40]. This work
emphasised that MLP cannot capture local data dependence
and is prone to noise, while CNN overcomes both of these
limitations, improving the prediction results for 5, 10, 15, and
30‐min intervals.

Another approach generally used is to decompose a time
series into its components and then model these components
in various ways. One such approach is adapted in ref.[12],
where additively decomposed components are applied to echo
state networks (ESN) and exposed to various datasets. Results
are compared with LSTM, GRU, and ESN, showing an
improvement. Seasonal and trend decomposition using Loess
was used in ref.[13] to separate random and predictive parts.
LSTM‐NN models HW models seasonal and trend compo-
nents and residual parts. The results show improvement for
passenger flow prediction for 15, 30, 45, and 60‐min intervals.
In a similar approach in ref.[14], the author used (EMD) and
STL and applied decomposed components directly to single‐
step LSTM models. Their results favour the STL‐LSTM
combination compared to SVR, LSTM, and EMD‐LSTM
combination. The work in ref.[41] has used a combination of
EMD and ARIMA for 20 s data taken for peak hours on
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working days only. Whereas in our work, we have applied
statistical and ML models on 10 weeks of data, including 24 h
and weekends, using univariate and multivariate modes. They
applied their proposed EMD‐ARIMA model to 10 samples of
data reporting improvement.

The literature review above shows the diversity of various
statistical and ML models applications and their hybrids. It also
appears that there is an inconsistency in performance measure
methods making it difficult to make a direct comparison.
However, this survey reveals the following facts:

� High‐frequency long data poses a challenge in modelling
due to the emergence of multiple seasonality components.

� Decomposing is beneficial as a pre‐processing technique so
that deterministic and random parts can be modelled
separately.

� It is also reported that results are data specific in many cases
and may not be generalised.

� To the best of our knowledge, no research has used addi-
tively decomposed data as features for multivariate machine
learning models for traffic speed prediction.

3 | METHODOLOGY

3.1 | Data description and pre‐processing

The data for this research were obtained from Here™ Tech-
nologies who collect and maintain GPS probe data obtained
from vehicles travelling on the road through more than 100
providers worldwide. The service provider collects GPS data
from a variety of sources. According to the provider, the data is
sourced from various suppliers including OEM's who have
SIM‐connected passenger vehicles, logistics service providers,
which have vehicles with telematics tracking devices and
Smartphone applications providers that use GPS location.

With a frequency of 5 min, the selected dataset refers to a
1345‐m‐long north‐bound highway segment in Berlin, high-
lighted in red as shown in Figure 1. The data has a consistent
confidence factor of 40 indicating highest level of trust as
claimed by the provider.

The study focuses on mean‐speed (Mean) prediction.
There are 21,843 rows of data with 45 missing values, which
are back‐filled and forward‐filled by adjacent rows resulting in
21,888 rows corresponding to 76 days. A univariate time series
was obtained by extracting the ‘Mean’ column from the data
frame, as shown in Table 1. The other fields mentioned in the
table are length which gives the total length of the highway
segment, and the count is the number of vehicles used for the
measurement.

The histogram and the summary statistics of the data are
shown in Figure 2 and Table 2, respectively. The histogram
depicts the bimodal nature of the data relating to distinct day
and night behaviour of traffic.

Additive decomposition xt ¼mt þ st þ et ð1Þ

Multiplicative decomposition xt ¼mt ∗ st ∗ et ð2Þ

In Equations (1) and (2), time series xt is decomposed into
its trend, mt, seasonal, st, and a residual, et components. For an
ideal case, the residual is normally distributed, indicating the
absence of any correlated part. The decomposition helps in
selecting a suitable model for a time series. We preferred ad-
ditive decomposition because seasonal variation is independent
of the trend.

For this work, a multiple seasonal decomposition method
(MSTL) from the R library was used. Figure 3 shows the actual
data on top and decomposed components, namely, trend,
seasonal288 (12 � 24 = 288) for daily seasonality, seasonal2016
(12 � 24 � 7 = 2016) for weekly seasonality followed by a
residual component. Daily seasonality showed day‐night
minima and maxima, and weekly seasonality indicated low
values for working days and high values for weekends due to
light traffic. The trend depicted a decaying pattern attributed to
gradually increasing mean speed due to increasing business
activities.

The autocorrelation function of the remainder (residual),
given in Figure 4, revealed correlated daily (288) seasonal com-
ponents. Hence, the residual is not white, suggesting modelling
of seasonally adjusted data and seasonal data modelling.

3.2 | Description of the models

The statistical models for comparative analysis were selected
based on their suitability for double seasonality data, and ML
models were selected due to their applicability. In the following
we give a description of selected models in each group.

3.2.1 | DSHW and TBATS

Exponential smoothing techniques are based on the principle
of modelling the current observation using an exponentially
weighted average of past values as illustrated in Equation (3) in
the recursive form:

St ¼ αyt þ ð1 − αÞSt−1 0 < α ≤ 1 ð3Þ

where yt is the current value in time series, St and St−1 are the
current and previous estimates, respectively, and α is the
smoothing parameter. Extending this principle further, ref.[43]
presents the DSHW model as a set of four equations as given
in Equations (4)–(7).

bytðkÞ ¼ lt þ dt−s1þkþ wt−s2þk

þ∅k yt − lt−1 þ dt−s1 þ wt−s2ð Þ½ �
ð4Þ

lt ¼ λ yt − dt−s1 − wt−s2ð Þ þ ð1 − λÞlt−1 ð5Þ

dt ¼ δ yt − lt−s1 − wt−s2ð Þ þ ð1 − δÞdt−s1 ð6Þ
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wt ¼ ω yt − lt−s1 − dt−s1ð Þ þ ð1 − ωÞwt−s2 ð7Þ

where bytðkÞ is the current estimate at kth step, lt is the level
term; dt, wt are intraday and weekly seasonality terms,
respectively, ∅k is the damping factor at kth step, s1 and s2 are
the double seasonality cycles. λ, δ, and ω are the three
smoothing parameters to be estimated. Also, lt−s1, dt−s1 and
wt−s2 signifies level, daily seasonality, and weekly seasonality,

respectively, delayed by seasonality cycle 1, s1 and seasonality
cycle 2, s2.

Another model called TBATS extends the capability of the
DSHW model by including Box‐Cox transformations to
handle non‐linearity, Fourier representations to periodic model
components, and ARMA representation for capturing any
correlated residuals in a time series. The basic model is
formulated in Equations (8)–(11),

F I GURE 1 The Bundes‐Autobahn A100 Highway link is shown in HERE™ Traffic Viewer

TABLE 1 First two rows of data frame
under observation is a table

Date‐time TMC Length Count Mean Std. dev Confidence

2019‐07‐03 00:00:00 D01N10220 1345 226 83.5 10.7 40

2019‐07‐03 00:05:00 D01N10220 1345 328 88.7 10.4 40

Note: TMC: Traffic Message Channel [42].
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yðλÞt ¼ lt−1 þ ∅bt−1 þ
XT

i ¼ 1

sðiÞt − mi þ dt ð8Þ

lt ¼ lt−1 þ ∅bt−1 þ αdt ð9Þ

bt ¼ ∅bt−1 þ βdt ð10Þ

dt ¼
Xp

i¼1

φidt−i þ
Xq

i¼1

θiet−i þ et ð11Þ

where: yðλÞt —time series at moment t (Box‐cox transformed),
sðiÞt —ith seasonal component, lt—local level, bt—ARMA (p, q)
process for residuals, dt is a series of ARMA models with
orders (p, q), et—Gaussian white noise, T—the number of
seasonalities, ∅ is the damping parameter for trend and α, β
are the smoothing parameters. Also, lt−1, bt−1 are one‐step past
values and dt−i, et−i are ith step past values of respective terms.

3.2.2 | Multi‐layer perceptron

An MLP offers a flexible architecture to provide a functional
approximation of a dataset. The building block of MLP is a single
neuron that takes multiple weighted inputs along with a bias to
activate a non‐linear processing block to provide an output. The
overall network has an input layer with multiple inputs, one or
more hidden layers with the number of neurons, and an output
layer with one or more outputs. A subset of labelled data trains
the network. Input weights of every perceptron are initially

randomised, the output is calculated. If there is an unacceptable
error between calculated output and desired output, the network
weights are updated using the back‐propagation algorithm. The
architecture mathematically is expressed as in Equation (12).

Fðx; w Þ ¼ φ
X

k

ωokφ
X

j
ωkjφ …:φ

X

i
ωlixi

 ! !0

@

1

A

0

@

1

A

ð12Þ

The expression shows the nested application of sigmoid
function, φ, with the associated input weights, ω. This ap-
proximation's granularity depends on the number of hidden
layers and the number of neurons in each layer. According to the
universal approximation theorem [44], only one layer is needed
to approximate any continuous function. However, if compu-
tational complexity and learning rate are taken into account, it is
argued that a second hidden layer may be justified. Another
issue of prime importance is the number of neurons in a hidden
layer. This is believed that it cannot be determined mathemat-
ically rather, it is based on experimentation, keeping in view the
training data size. Over‐training a network may cause over‐
fitting compromising the generalisation ability of the network.

3.2.3 | LSTM and GRU

Long Short‐Term Memory network is a modified form of
RNN. In RNN, as shown in Figure 5, neurons are augmented
with feedback connections developing contextual information
of the previously seen values and producing the capability to
memorise past information.

However, RNNs are maligned with vanishing/exploding
gradient problems [45] and cannot memorise long dependence
in time series. In [46], the author has suggested mitigating this

F I GURE 2 The histogram of traffic speed data

TABLE 2 Summary statistics of time series data

Count Mean Std. dev Minimum 25% 50% 75% Maximum

21,888 68.2 18.4 3.2 48.6 76.2 83.2 130.2
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F I GURE 4 Autocorrelation of the remainder of decomposed data

F I GURE 3 Additively decomposed data for 76 days revealing double seasonality (y‐axis is the mean speed in Km/h)
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problem by including an adaptive critic in a feedback loop that
learns from the environment and controls the network activ-
ities, as shown in Figure 5.

The use of adaptive critic will induce two properties in the
network:

1. It will learn the long‐term dependence in a time sequence
used for training.

2. The network will adapt to short‐term statistical variations in
the environment (training sequence) without affecting the
tuned network.

An LSTM network is a manifestation of this idea of
maintaining and controlling contextual information with the
help of three control gates:

� An input gate (it) controls when and how much information
from the input is allowed to be remembered by the
contextual memory.

� A forget gate (f t) controls the case when the context has
become insignificant and should be erased.

� An output gate (ot) determines whether or not the
contextual information should be passed to the next cell.

A typical LSTM cell is shown in Figure 6.
The set of equations from Equations (13)–(18) describe the

functionality of an LSTM cell.

f t ¼ σ Uf xt þWf ht−1
� �

ð13Þ

~ct ¼ tanh Ucxt þ Wcht−1ð Þ ð14Þ

it ¼ σ Uixt þWiht−1ð Þ ð15Þ

ot ¼ σ Uoxt þWoht−1ð Þ ð16Þ

ct ¼ f t ∗ ct−1 þ it ∗ ~ct ð17Þ

ht ¼ ot ∗ tanh ctð Þ ð18Þ

where xt is the input vector, ht−1 is the previous cell output,
ct−1 is the previous cell memory, ht is the cell output, ct is the
current cell memory, Uf , Ui, and Uo are the U weights for
forget gate, input gate and output gate. Similarly, Wf , Wc, Wi,
Wo are the W weights for the forget gate, cell state, input, and
output gates, respectively. Asterisk (*) denotes a point‐wise
multiplication.

Gated Recurrent Unit is similar to the LSTM, however, it
does not have a separate memory cell. In GRU, the forget gate
and the input gate are combined to form an update gate
making it simpler and computationally efficient. Thus, there are
only two gates present that is, reset gate and update gate. The
entire functionality is shown in Figure 7 and given by Equa-
tions (19)–(22).

F I GURE 5 Conceptual architecture of recurrent neural network
(RNN) with feedback; the basis for LSTM

F I GURE 6 A Long Short‐Term Memory (LSTM) cell
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rt ¼ σ Urxt þ Wrht−1ð Þ ð19Þ

~ht ¼ tanh
�
Uxt þ W rt ∗ ht−1ð Þ ð20Þ

zt ¼ σ Uzxt þ Wzht−1ð Þ ð21Þ

ht ¼ 1 − ztð Þ ∗ ht−1 þ zt ∗ ~ht
�

ð22Þ

In Figure 7, rt denotes reset gate having the similar func-
tion as in LSTM as given in Equation (19). The reset gate
enables the system to forget the previous state. The candidate
activation ~ht, is given by Equation (20), whereas ht is the
activation of GRU which takes account of previous activation
that is, ht−1 and the candidate activation ~ht. The update gate is
shown by zt in Equation (21). It decides on how much the
previous information will be passed onto the future.

3.2.4 | CNN

Convolutional‐Neural Networks, mainly popular for image
classification, are also adopted for time series prediction.
CNNs are composed of a sequence of convolution and
pooling layers. The convolution layer implements a filtering
operation using a suitable kernel to extract features of input
data, and the pooling layer performs sampling to reduce the
size of the feature matrix. This procedure may be repeated
many times depending on the depth and nature of sorting
features hierarchically. The output layer is fully connected to
the output node(s) for classification or prediction. The basic
structure is shown in Figure 8.

3.2.5 | CNN‐LSTM

CNN‐LSTM combination, in a cascaded configuration, is
claimed to render benefit of both models. The CNN part ex-
tracts the features of a time series, and LSTM captures inter-
dependency between the data segments. Here, a CNN is used
as a front‐end followed by the LSTM. The features extracted
by CNN are further processed by LSTM, which extracts the
temporal variations. A typical configuration is shown in
Figure 9, where the flattened output of CNN is given as the
input to the LSTM for the final prediction.

3.3 | Regression analysis

Regression analysis involves finding a relation between an in-
dependent variable (also called a feature, predictor or regres-
sor) and the dependent variable (outcome, response) that is to
be predicted. It is shown in Equation (23) where xi is a pre-
dictor, y is predicted variable and β0, β1 are parameters that
need to be estimated for better approximation. The resulting
approximation errors, εi, are termed as residual. The parame-
ters are estimated usually using least‐square method.

yi ¼ β0 þ β1xi þ εi ð23Þ

The residual error may be reduced if one can find more
independent features that have correlation with the outcome.
The resulting set of equations are given in compact and
detailed form in Equation (24) and Equation (25), respectively.

Y ¼ X βþ ϵ ð24Þ

F I GURE 7 Gated Recurrent Unit
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In order to reduce predicting error, the independent vari-
ables are required to be independent (uncorrelated) with each
other and expected to have some correlation with the depen-
dent variable. A correlation matrix completely depicts the
relation between independent and dependent variables as
shown in Equation (26)

R¼

rx1x1 rx1x2 rx1x3 rx1x4 rx1y
rx2x1 rx2x2 rx2x3 rx2x4 rx2y
rx3x1 rx3x2 rx3x3 rx3x4 rx3y
rx4x1 rx4x2 rx4x3 rx4x4 rx4y
ryx1 ryx2 ryx3 ryx4 ryy

2

6
6
6
6
4

3

7
7
7
7
5

ð26Þ

where

Correlation coefficient¼ rxixj

¼

P5

j¼1

�
xij − xi

��
xkj − xk

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P5

j¼1
xij − xi
� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P5

j¼1
xkj − xk
� �2

s − 1 ≤ xij ≤ 1 ð27Þ

As can be seen that the matrix is symmetric about diagonal
(xij ¼ xji) and the diagonal itself gives the normalised variance
(equal to 1) of all variables in context. The last column (and
row) gives correlation between independent variables xi and
the response variable y.

3.4 | Performance measures

Three performance measures were applied to evaluate the
predictions from the models, using test data in this work. Root
means square, as given in Equation (28), is one of the popular
measures due to its mathematical tractability

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i ¼1
Predictedi − Actualið Þ

2

N

v
u
u
u
t

ð28Þ

Mean absolute percentage error, as given in Equation (29),
is a unit‐free measure of relative error.

MAPE¼
100
N

XN

i ¼1

jPredictedi − Actualij
Actuali

ð29Þ

F I GURE 8 Multivariate Convolutional‐Neural Network (CNN) architecture

F I GURE 9 CNN‐LSTM
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However, it suffers the drawback of resulting in large
values for errors close to zero. Secondly, it is biased towards
positive errors and penalises greatly to negative errors. These
shortcomings are reasonably addressed by symmetric‐mean
absolute percentage error (s‐MAPE) as defined in
Equation (30).

sMAPE¼
100
N

XN

i ¼1

jPredictedi − Actualij
jPredictedijþjActualij

2

� � ð30Þ

3.5 | Implementation

Before exposing data to modelling, we filled the missing values
by backward and forward filling methods and checked for
outliers. Further, the data was split into training and test parts
with 16,128 samples (56 days) and 5760 samples (20 days),
respectively. For the classical ARIMA model, used as a
benchmark, we first tested data for stationarity using ‘adfuller’
test and then searched for model order using ‘auto.arima’
function. The obtained model was then fitted on training data
using SARIMA. It is to be noted that SARIMA takes care of
single seasonality only. Double Seasonal Holt‐Winter and
TBATS, on the other hand, are designed for double season-
alities. For DSHW and TBATS, we used R libraries. The time
series was formatted as an extended time‐series (XTS) object
and then converted to a multiple seasonality time‐series
(MSTS) object. Exponential triple smoothing was

implemented using the DSHW model with daily (288 samples)
and weekly (288 � 7 = 2016 samples) seasonality arguments.
The same data was used for TBATS.

Figure 10 shows the relative performance of three statis-
tical models using two scales to highlight daily and weekly
seasonality patterns with 300 and 4032 lags, respectively.
Figure 10c,d show that the residual autocorrelation plot of the
DSHW model captured daily seasonality (no significant spike
at lag = 288). In contrast, it has missed some proportion of
weekly seasonality as evident at lag = 2016. TBATS model, as
shown in Figure 10e,f, has modelled both seasonality compo-
nents better than the other two counterparts. Figure 10a,b
show that the ARIMA model has poorly modelled both daily
and weekly seasonality components. This behaviour is also
reflected in Table 3 where TBATS enjoys the least error
amongst three statistical models.

Machine learning models were implemented in univariate
and multivariate modes. Motivation for multivariate imple-
mentation was derived from the fact that additively decom-
posed components (trend, seasonality, and residuals) are
independent to each other because each convey a different
characteristic of the data, as also revealed by correlation matrix
shown in Figure 11. It may also be noted that each component
shows a significant correlation with the predicted variable that
is ‘Mean_Speed’.

For each implementation, data was first formatted in su-
pervised learning mode for the ML models with 11 columns
for a time‐lag of 11 steps and one column as a label. A train‐

F I GURE 1 0 Auto correlation of model's residuals for lag 300 and 4032
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test split was performed in a 70/30 ratio. A grid search was
performed to identify suitable configurations in each case. In
order to avoid over/under‐fitting, train‐validation‐loss curves

for univariate and multivariate models were obtained as shown
in Figure 12 and Figure 13 respectively. The number of epochs
for each model was selected based on these curves. Each
model was implemented using one hidden layer only to ach-
ieve a fair comparison. In order to generalise the results, all
ML models were implemented to three different road seg-
ments that carry similar type of traffic. The performance of
the ML models, for highway segment 1 (Figure 1), is given in
Table 4, and the summary of model parameters is shown
in Table 5. The generalisation results are shown in Table 6 in
Section 4.

TABLE 3 Performance of implemented statistical techniques

Measure/Model ARIMA DSHW TBATS

RMSE 5.52 6.8 5.44

MAPE 7.01 8.87 6.96

sMAPE 6.70 7.94 6.66

F I GURE 1 1 Correlation matrix

F I GURE 1 2 Train versus validation loss curves for the implemented univariate machine learning (ML) models
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4 | RESULTS AND DISCUSSION

This research attempted to model a high frequency and rela-
tively long traffic speed data with dual seasonality. A pictorial
view of the complete implementation is shown in Figure 14.
After exploration, three statistical (ARIMA, DSHW, and
TBATS) and five ML techniques (MLP, CNN, LSTM, GRU,
and CNN‐LSTM) were investigated for the available dataset.

The results for statistical and ML techniques are presented
in Table 3 and Table 4, respectively. Amongst the statistical
models, TBATS, designed to handle multiple seasonality, has
performed better than SARIMA and DSHW resulting in a

minimum RMSE error. This superiority is also reflected in
autocorrelation plots of residuals shown in Figure 10, which
indicates that TBATS has captured double seasonality better
than two other models. As may be expected, however, the
autocorrelation is not completely white and some traces of
seasonal components at samples 288 and 2016 are shown. This
behaviour may be attributed to the heteroskedasticity of data
which is also obvious in the time‐plot of residual in Figure 3.

Performance of univariate and multivariate ML models is
given in Table 4. The prediction plots for two consecutive days
are shown in Figure 15 and Figure 16 along with corresponding
zoomed parts. It may be noted that there is a difference in day

F I GURE 1 3 Train versus validation loss curves for the implemented multivariate machine learning (ML) models

TABLE 4 Performance of implemented
algorithms for highway segment 1 (Figure 1)

Measure/Model MLP CNN LSTM GRU CNN‐LSTM

Univariate RMSE 5.41 5.53 5.25 5.23 5.47

MAPE 6.74 6.87 6.42 6.72 7.06

sMAPE 6.55 6.72 6.42 6.41 6.71

Multivariate RMSE 5.15 5.23 5.22 5.07 5.16

MAPE 6.49 6.73 6.86 6.42 6.48

sMAPE 6.35 6.49 6.48 6.19 6.35

RMSE improvement (%) 4.63 5.33 0.16 2.86 5.60
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TABLE 5 The summary of model parameters

Univariate Multivariate

Model Inputs Hidden layer units Epochs Inputs Hidden layer units Epochs

MLP 11 + 1 100 100 11 � 4 + 4 100 120

CNN 11 + 1 50 filter = 64, kernel‐size = 3 100 11 � 4 + 4 50 filter = 64, kernel‐size = 3 40

LSTM/GRU 11 + 1 100 100 11 � 4 + 4 50 60

CNN‐LSTM 11 + 1 Filter = 64, kernel‐size = 3,
LSTM‐cells = 50

40 11 � 4 + 4 Filter = 64, kernel‐size = 3,
LSTM‐cells = 50

40

Note: 1. Univariate inputs represent 11 lagged inputs and one label for supervise learning. 2. Multivariate inputs represent 11 lagged values for four features and four labels.

TABLE 6 Generalisation performance
for three selected highway segments

MLP CNN LSTM GRU CNN‐LSTM

Highway segment 1 Univariate 5.41 5.53 5.25 5.23 5.47

Multivariate 5.15 5.23 5.22 5.07 5.16

%Improvement 4.63 5.33 0.16 2.86 5.60

Highway segment 2 Univariate 5.93 5.97 5.74 5.70 6.03

Multivariate 5.71 5.68 5.61 5.57 5.61

%Improvement 3.54 4.74 2.24 2.28 6.98

Highway segment 3 Univariate 7.26 7.28 7.23 7.24 7.26

Multivariate 7.11 7.08 7.18 7.04 7.14

%Improvement 1.97 2.78 0.67 2.71 1.56

F I GURE 1 4 Complete implementation

ALI ET AL. - 105

 26317680, 2022, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sm

c2.12027 by N
ational Institutes O

f H
ealth M

alaysia, W
iley O

nline L
ibrary on [03/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



and night behaviour of traffic. In daytime, traffic is slower and
have gradual variations whereas night traffic is faster and rapid.
Random variations are present in both the cases. As expected,

the models have responded better to gradual variations whereas
random variations are aggregated trend. Amongst all ML
models, GRU has performed the best owing to its capability of

F I GURE 1 5 Prediction of univariate models taken over the time of 2 days (samples taken with an increment of 5 min)

F I GURE 1 6 Prediction of multivariate models taken over 2 days (samples taken with an increment of 5 min)
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capturing long term temporal dependence and better stability
than LSTM by virtue of reset gate that enables the system to
control the information passed further.

The traffic‐speed time series used in this exploration has
multiple dynamics. Firstly, variations in speed are spread over a
range of 3–130 Km/h. Secondly, there are day‐night cyclic var-
iations as discussed above. Moreover, there is a pronounced
difference between working days traffic and week‐end traffic as
revealed in Figure 3. The suggested approach breaks these
multiple dynamics into various components by additive
decomposition. As shown in correlation matrix in Figure 11,
these decomposed components are independent and uncorre-
lated. At the same time, they enjoy good correlation with the
predicted variable (Mean‐Speed) because these components
have been extracted from the same. So, the decomposed com-
ponents become a natural choice to be used as independent
variables in multivariate ML models. When used in multivariate
ML configuration, the decomposed components as independent
variables facilitate improved optimisation reducing the mean‐
square error in each multivariate case as compared to the uni-
variate counterpart. Nonetheless, the results show an asymptotic
behaviour around a mean RMSE error of 5.16 and standard
deviation of 0.11, emphasising the limitation of models to
respond to random and heteroskedastic parts of data.

Finally, in order to generalise the results, the work has been
extended to additional two highway segments having similar
nature of traffic as shown in Figure 17. The generalisation
results are shown in Table 6. It may be noted that all models
have generalised well with a consistent improvement in per-
formance for multivariate case.

5 | CONCLUSION

This research has evaluated the performance of selected
statistical and ML models for dynamic and high frequency
data in a novel way. First, three statistical and five ML
models are implemented in univariate configuration.
Amongst the statistical models suitable for double

seasonality data, TBATS has shown better results showing
its superiority over DSHW and ARIMA models in
capturing seasonal effects. Amongst univariate ML models,
GRU has outperformed others. The main contribution of
this work is the implementation of ML models in multi-
variate configuration using additively decomposed compo-
nents as features (independent variables). The performance
results show a consistent improvement in all the imple-
mentations demonstrating benefits of this approach. The
improvement has resulted due to the independent nature of
decomposed components that are inherently correlated with
the predicted variable that is, traffic speed. This contribu-
tion becomes even more significant when no other features
having greater correlation are available for multivariate
models. The results, however, have a performance bottle-
neck due to heteroskedastic nature of data that may have
not been captured by the implemented models. Conse-
quently, we propose to investigate a mixture density
network that claims to handle multimodal and hetero-
skedastic data [47, 48] as part of future work. Alternatively,
an autoregressive conditional heteroskedasticity model may
also be considered to model similar kind of data [49].
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F I GURE 1 7 Histogram for three highway segments
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