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ABSTRACT Rumex obtusifolius Linnaeus (R. obtu. L.) is one of the vital broad-leaved weeds in grassland
that needs removal. It affects dairy products and reduces their quality. Hand-removal methods are costly
and time-consuming. Chemical treatment using herbicides has a negative impact on crops and causes
environmental pollution. In smart farming, weeding is performed by using computer vision to recognize the
weeds efficiently and effectively. Conventional machine learning (ML)-based algorithms face challenges,
especially in identifying the weeds in real-world data due to a lack of features. Deep learning (DL)
approaches use self-learning to extract all potential features that assist in classifying malignant weed species
accurately. Recently, single deep learning methods achieved high performance in identifying well-separated
and illumination but suffered from misclassification in more sophisticated cases such as overlapping and
partial occlusion leaves. This paper presents a hybrid Convolutional Neural Network (CNN) model of three
state-of-the-art CNNs to classify Rumex obtusifolius. The proposed model utilizes convolutional neural
networks to extract features and classify images. The framework of the proposed method comprises three
paramount stages to accomplish the classification key idea, including the data preparation phase, pre-
processing phase, and classification phase. A hybrid model of three CNN extractor networks is used as the
backbone in the classification stage. Our tested data is real-world data that includes multi-circumstances
(overlap, occlusion, various illuminations, etc.) acquired from nature. The first extractor is the Visual
Graphics Group-16 (VGG-16) for well-separated leaves and non-complicated issues. The second extractor
is Residential Energy Services Network-50 (ResNet-50), to overcome complex real-world issues. The third
extractor is Inception-v3 to solve the illumination problem. Therefore, combining three networks into one
model improves the discriminatory ability to extract additional useful features. The proposed model has
been tested using two benchmark datasets for Rumex weed plants. Both of these datasets were captured in
real-world environments. The first dataset consists of 900 samples, while the second dataset consists of 677
samples. Each dataset is individually tested in the proposed model to evaluate the classification accuracy
using a set of standard evaluation metrics including accuracy, precession, recall, True-Positive Rate (TPR),
False-Positive Rate (FPR), and F1-score. The total averages of the proposed model on both datasets are
97.51%, 97.4%, 94.45%, and 95.9% on the accuracy, recall, precision, and F1-score, respectively.

INDEX TERMS CNN networks, ensemble models, real-world data, weed classification, economic growth.

NOMENCLATURE
CNN Convolutional Neural Network.

The associate editor coordinating the review of this manuscript and
approving it for publication was Liandong Zhu.

Mask R-CNN Mask region-convolutional neural
network.

E-RCNN Ensemble-region convolutional neu-
ral network.

ML Machine learning.

90940 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-2919-1704
https://orcid.org/0000-0003-1785-008X
https://orcid.org/0000-0001-7248-7522
https://orcid.org/0000-0002-3817-2655
https://orcid.org/0000-0002-2546-2450
https://orcid.org/0000-0003-3406-4320


A. H. Al-Badri et al.: Hybrid CNN Model for Classification of Rumex Obtusifolius in Grassland

DL Deep learning.
R. obtu. L. Rumex obtusifolius linnaeus.
VGG Visual graphics group.
ResNet Residential energy services network.
SIFT Scale invariant feature transform.
SURF Speed-up robust feature.
KNN K-nearest neighbor.
SVM Support vector machine.
L2regL2lossSVCp Linear2-regularized with

Linear2-loss logistic regression
model using primal computation.

L2regLogReg L2-regularized with L2-loss logistic
regression.

RF Random forest.
LBP Local binary patterns.
YOLO You only look once.
NDVI Normalized difference vegetation

index.
FPR False-positive rate.
FNR False-negative rate.
TPR True-positive rate.
TNR True-negative rate.
UAV Unmanned aerial vehicle.
FCL Fully connected layers.
ReLU Rectified linear unit.
RBF Radial basis function.
RoI Region of interest.
DoI Domain of interest.

I. INTRODUCTION
In recent years, continuous development towards weed con-
trol within planted crops has been offered.Rumex obtusifolius
(R. obtu.), or dock broad-leaved, is considered an unde-
sirable weed plant in agriculture that necessitates removal.
The harmful effects of this weed have spread around the
world, particularly in Europe. In Germany, 85% of organic
farms encounter broad-leaved dock issues. It diminishes the
grass’s productivity by 10%–40% [1]. Due to the Rumex’s
widespread nature, livestock gormandize it readily and inten-
sively. Therefore, it has a substantial impact on dairy and
productivity [2]. It causes animal health issues due to high
oxalic acid, which hinders the quality of products due to
low nutritional value. In addition, it significantly affects the
economic growth of countries. Progress in the accurate clas-
sification of Rumex is, however, restricted by the demand
for physical removal or chemical treatments. Therefore, these
issues triggered this study to design a robust weed classifica-
tion model that can be utilized in an automatic weed control
system to classify this harmful species of weed. Due to the
vast range of weed species in nature and working conditions,
this research issue is fraught with challenges.

Manual or hand-weeding is one of the well-known tech-
niques to eliminate weeds. The farmer scans the entire farm
for undesirable or unusual plants, plugging them out using
his hands or simple tools. Their technique faces numerous
challenges, such as lengthy-time of completion, difficulty

of detection, and labor-cost. Another method for malignant
weed removal is chemical treatment, which targets numerous
weeds using herbicides sprayed on large-scale farms [3].
Farmers or machines perform this process. The problem with
such a technique is the treatment cost and environmental
pollution issues. In addition, this adversely affects animal and
human health [4]. Thus, both hand-removing and chemical
treatment techniques are time-consuming, costly, and can
result in environmental issues [5].

Nowadays, precision farming or smart farming approaches
utilize computer vision as an alternate technique to deter-
mine the Region of Interest (RoI) in the pasture [6]. These
approaches are more robust in terms of efficiency and
effectiveness. Some studies focused on detecting various
weed species over the last three decades by discriminating
these weeds from crop plants, as in Binch and Fox [7]. In their
work, Jia et al. [8] examined the identification of the plant on
the farm using thresholding. They located the root position by
computing the cross points of major veins in corn leaf images
captured from the top scene. In the same year, Franz et al.
[9] used the curvature technique to detect partially occluded
leaves on different seedlings plants at late growth stage.
By aligning the resampled curvatures for each genus, the
author revealed the significance of identifying a leaf that was
not entirely occluded. The shortage in their approach was
related to the accuracy of curvature to identify various shape
of serration. Tian [10] utilized spatial features to determine
certain locations of cotyledon crop plants. They obtained the
location information by calculating the center point of the
stem during the early growth stage. Woebbecke et al. [11]
proposed a method for differentiating monocot and dicot
weed plants, representing two weed species that exist in
the United States. They claimed that the optimum period to
address these harmful plants would be from the 14th to the
23rd day of their growth. In the last three decades, real-world
data has remained a challenging task for the computer vision
scientific community. Occlusion, overlapping, different illu-
mination, and various growth stages conditions are common
issues in real-world data [12]. Hand-engineering features are
basic Machine Learning (ML) methods to extract features
manually. These methods achieved satisfying results with
artificial data under controlled conditions. Deep Learning
(DL)-based approaches are an extension ofML approaches to
achieve encouraging results with real-world data using self-
extracting features [13].

The key limitation of the previous methods is how to
accurately classify the Rumex under real-world conditions
in the case of insufficient training images. Due to the mun-
dane nature of annotating a huge number of images, the
motivation of designing a model to work with a reasonable
number of images that contain various real-world conditions
is desirable. Therefore, the main drive of this work is to inves-
tigate the issues of Rumex classification, including heavy
occurrence, various growth stages, overlapping with plants,
and adverse environmental-agricultural impact. In addition,
using mechanical or chemical actuation methods to control
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Rumex species impacts human and animal life and reduces
the plants’ amount and quality. This is the first time that a
hybrid Convolutional Neural Network (CNN) has been used
to improve the accuracy of classifyingRumexweed plants in a
complicated scenario. The purpose of using CNN networks in
classification is to provide a robust method for self-extracting
features [14].

Our main contribution focuses on designing a new ensem-
ble model of three CNN networks at its backbone base. The
framework of this model is adaptable to numerous weed
control applications to address various weed species. This
ensemble uses voting majority rule to decide whether the
plant is considered by the model as a weed or not. This
combination has not previously been used in the Rumex
classification model to the best of our knowledge. The
Ensemble-Region Convolutional Neural Network (E-RCNN)
network is proposed for its novelty in using ensemble clas-
sifiers at its backbone base. The second contribution is
using the new proposed model to address data challenges
under real-world conditions such as occlusion, overlapping,
various image resolutions, various growth stages, and dif-
ferent illumination conditions. Combining three extractors
into one model provides the following expected benefits:
i) enhancing classification accuracy, ii) reducing the illumi-
nation effect, iii) controlling the occluded and overlapped
issues, and iv) enhancing the capability of feature extraction
and representation. This study uses benchmark datasets from
Kounalakis et al. [15] and Van Evert et al. [1]. Both sets are
real-world of the actual farm that were captured under chal-
lenging conditions, such as various illuminations, occlusions,
and overlapping conditions.

The remainder of this paper is organized as follows:
The related work is presented in Section II; the proposed
model is outlined in Section III; the materials and meth-
ods are explained in Section IV; Section V is the conclu-
sion; and finally, limitations and future trends are elucidated
in Section VI.

II. RELATED WORK
This section discusses most related works that explored ML
and DL techniques to address broad-leaved weed plants.
Dürr et al. [16] utilized the Local Binary Patterns (LBP) with
C-histograms to extract the size and spectral features of the
Rumex weeds. Then, they eliminated the detected regions
using a heating oven at 1200 KW. The problem with their
method is the high error rate of misclassified regions, which
reached 35%. Van Evert et al. [17] found that texture is a
significant feature for identifying broad-leaved weeds like
Urtica and Rumex. Binch and Fox [7] compared different ML
algorithms using real data. Their comparison demonstrated
that the best results were obtained by combining LBP with
Support Vector Machine (SVM) for Rumex classification.
Unfortunately, the LBP method relies heavily on texture fea-
tures and ignores beneficial information such as shape, and
color. This dependence restricts the method’s performance,
making it unable to mitigate the error rates.

Gao et al. [18] used the Normalized Difference Vegetation
Index (NDVI) color index with Random Forest (RF) to clas-
sify Rumex and two additional species of weeds, Convolvulus
arvensis and Cirsium arvense, from the maize crop. The
mean classification rate of Rumex is 69.1%, which is better
than the K-Nearest Neighbor (KNN). However, they depend
on a specific number of extracted features from 8 different
bands. In addition, their method is costly due to the multi-
spectral camera. Kounalakis et al. [19] proposed Speed-Up
Robust Feature (SURF) features with Linear2-regularized
with Linear2-loss logistic regression model using primal
computation (L2regL2lossSVCp) to recognize the Rumex.
They captured 100 images of Rumex in a real field using mul-
tiple high-resolution cameras. Then, each image is segmented
into 9 patches to yield 900 images. Dividing an image into
muti-regions has adversely affected the quality of the features
represented in the image. Moreover, their method is based
on hand-crafted features that represent image content. Thus,
the classification results of such a method record 89.09%
accuracy with a 4.38% False-Positive Rate (FPR).

Zhang et al. [20] utilized a single CNN approach to recog-
nize Rumex obtusifolius in various illumination conditions.
They achieved 96.88%. The problem with such a method is
that resizing the input image size to 64 × 64 pixels causes a
loss of useful information that can assist in solving challeng-
ing cases. Valente et al. [21] used AlexNet transfer learning
to classify Rumex obtusifolius in grassland. They generated
high-resolution data using a small Unmanned Aerial Vehicle
(UAV). They scored 91.9% accuracy when the Rumex in
moved and cut-off cases. The drawback of such a method
is that the images are not tested under various illumina-
tion cases. In addition, they captured their images from the
same level at 10 meters in height. Such image types restrict
the method from obtaining sufficient information about the
leaves and the entire object. This limits the method’s per-
formance to identifying Rumex in various real-world con-
ditions. Lam et al. [22] used the Visual Graphics Group
(VGG) method to classify the early growth of Rumex weeds
using UAV. One of the limitations of their method is focus-
ing on limited cases of Rumex that are found on one field
site and ignoring other cases such as the different growth
stages and other real conditions. The results of their proposed
method are 92.1% and 78.7% on the accuracy and F1-score,
respectively. In this work, we utilized the data collected by
Kounalakis et al. [23] and Van Evert et al. [1] to estimate
the performance of the proposed model. Furthermore, four
extracted features comprise visual texture features, spatial
context features, spectral features, and biology morphology
features. Besides, their study supported the idea that the
sophisticated system is a trade-off between accuracy and
efficiency. Finally, Kounalakis et al. [23] applied the transfer
learning technique to recognize Rumex in grassland.
The significant contributions of this research are design-

ing a new ensemble model of three CNN architectures to
enhance the classification accuracy of Rumex. To the best of
our knowledge, the three DL networks were not previously
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FIGURE 1. Ensemble diagram.

combined into one model to be implemented in the agri-
cultural field, especially with Rumex. In addition, this work
improves the classification accuracy for Rumex and reduces
the error rate. This improvement leads the scientist to utilize
this model to be generalized to various weed plants.

III. PROPOSED METHOD
In this paper, the proposed method has been discussed thor-
oughly. Three main stages are identified and proposed to
accomplish the classification objectives, including the data
preparation stage, pre-processing stage, and classification
stage. The stages of the methodology are thoroughly dis-
cussed in the following subsections. This paper highlights
the generic framework of this research and introduces the
required steps to implement the research systematically.
Ensemble learning is the aggregation of numerous mod-
els, such as extractors and classifiers, to tackle a specific
computational intelligence issue. The key idea of ensemble
learning is to enhance classification accuracy and predic-
tion. The structure of the E-RCNN network consists of two
parts. The first one is the features extractor, and the sec-
ond part is the classifier network. Each extractor consists
of convolutional layers, dropouts, and max-pooling layers in
between. Three CNN models are adapted in their structure to
fit the data requirements. This data suffers from illumination,
overlapping, and occlusion. These three extractors aremerged
to form a hybrid model. The ensemble model requires an odd
number of methods for voting purposes, such as three, five
or seven and upwards. Therefore, determining the number
of elements (e.g., methods) in an ensemble is critical [24].
Three selected methods are combined to design our proposed
model in this case. Using more than three architectures in
one model increases the memory space and reduces effi-
ciency. Regarding using more than five networks, the model
complexity is also increased; as a result, the model will be
complicated, which negatively affects the system’s perfor-
mance. Fig. 1 illustrates the mechanism of the ensemble.
First, each variable is passed through the three extractors to be
processed. Then, these individual extractors’ outputs contain
the predicted label. Hence, the predicted outputs attained
from the three extractor backbones are passed through the
ensemble model as inputs to vote for one classified label
in each process. Each classified object is selected to have
a low error rate with a high probability. The formula of the
ensemble is depicted in the below Equation.

Given some training data:

Dtrain = xn, yn; n1, . . . ,Ntrain (1)

where:
D: represents the classifier model.
n: is the number of classes.
Inductive learning:

L : Dtrain→ h(·), where h(·) : χ → (2)

Ensemble learning:

LT : Dtrain→ hT (·)⇒ {hI (·) , h2 (·) , . . . , hT (·)} (3)

The ensemble model yields optimum performance when
there is critical diversity in the output results of the composing
methods [25]. The first layers of the feature extractor network
extract useful features such as color identification, edges, and
curves of the objects in the image. Then, the annotated images
were divided to the ratio of 80:20 into a training set and
a testing set, respectively. All this data is with RGB color
images of various sizes. After that, the prepared data becomes
ready to feed the proposed model. Generally, DL models
require a small square image to reduce the time and memory-
constrains. In addition, DL networks require a fixed resolu-
tion of training images to feed the network [26]. Furthermore,
data augmentation is utilized to improve generalization [27],
[28], [29]. In this regard, the image resizing technique is
applied to decline the input image size to the standard size
of 224 × 224 × 3 pixels [30], [31], [32]. Furthermore,
DL methods necessitate a vast dataset to increase accuracy
and hinder overfitting.

The outputs of these methods are grouped to produce the
final predictions. Each extractor uses the mean subtraction
algorithm located in the data loader. This technique assists
in accumulating the data around the mean where the helpful
features exist. The benefit of such a technique is that it
reduces the effects of outliers and illumination issues in some
cases. Due to the high performance of the three networks in
the ImageNet competition [14], they are selected to combine
the proposed model.

1. The first extractor model is VGG-16 [33], which is the
basis of our hybrid model. It is efficient and accurate
[34] to handle well-separated and some partially occluded
leaves.
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FIGURE 2. The architecture of VGG-16.

2. Residential Energy Services Network-50 (ResNet-50)
[35] is the second extractor model, which has amore dense
convoluted architecture than VGG-16 [33] due to its fur-
ther dense layers. Nevertheless, it handles the overfitting
problem of VGG-16 and deals with more sophisticated
issues such as overlapping and occlusion.

3. The final extractor is the Inception-V3 model [36],
which is more robust than the VGG-16 and ResNet-50
to overcome the illumination issue not solved in the
preprocessing step.

The E-RCNN utilizes a hybrid model composed of three
backbone networks, including VGG-16, ResNet-50, and
Inception-V3 for feature extraction and classification. Further
explanation can be found in [33] and [35].

A. VGG-16 EXTRACTOR
Fig. 2 illustrates the sixteen layers of the VGG-16 network
architecture. Some of these layers include trainable param-
eters, while some do not, like the Max pool layer. The key
idea of the VGG depth group was to investigate how the
depth of convolutional networks influences the accuracy of
models for wide-range image recognition and classification.
All of VGG’s architectures have many Fully Connected
Layers (FCLs) with various convolutional layers. The more
depth, the more convolutional layers. Fig. 2 shows thir-
teen blue rectangles related to the hidden layers and the

non-linear activation function represented by the Rectified
Linear Unit (ReLU). The five red rectangles are related to
the max-pooling layers. In addition, two green rectangles
represent two FCLs. Therefore, the total number of layers
with adjustable parameters is 15, including 13 convolution
layers and 2 FCL layers. The proposed method fine-tunes
the last two layers, the SoftMax layers, to fit our dataset.
In this work, the SoftMax function is re-initialized to carry
the appropriate number of classes for the samples to decide
whether the plant is Rumex or non-Rumex. In this design,
VGG-16 commenced with a relatively small channel capacity
of 64 and rose by a scale factor after each max-pooling layer
till it reached 512. Fig. 3 shows the flattened architecture
of VGG-16.

The structure consists of five blocks. The first two adjacent
blocks are composed of pair-convolution layers and then
max-pooling. The last three contiguous blocks have three
convolution layers followed by max-pooling. Finally, the
last three dense layers represent the FCL, or as they are
known, the classification layers [22]. The first two FCLs
are flattened, consisting of 512 depths, while the last FCL
includes 128 depths. The size is reduced by half after every
max-pooling. Table 1 displays the VGG-16’s overall network
configurations.

These are the characteristics of the VGG-16 network:
1. Input Layer: It accepts 224× 224 color images with three

channels as input.
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FIGURE 3. VGG-16’s flattened architectural design.

TABLE 1. The configuration summary of the VGG-16.

2. Convolution Layers: They are a sequence of dense lay-
ers that the input images are passed through. Every

convolution filter has a tiny filter of 3× 3 size with a stride
of 1. Each window size (also known as kernel size) utilizes
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FIGURE 4. The architecture of ResNet-50.

row and column padding to preserve the input and output
size as fixed.

3. Max pooling: Is implemented across a 2 × 2 of window
size with a stride of 2, indicating that max pool windows
are non-overlapping windows.

4. A max pool layer is not always the layer that follows a
convolution layer. Instead of the max-pool layer, a convo-
lution layer is followed by another convolution layer.

5. The proposed model modifies the original technique by
replacing the last three connected layers of the original
method with two FCLs to fit the number of our classes.
The first FCL has 1 ×1 × 28 neurons. Increasing the
number of neurons means increasing the complexity and
processing time of the model with the same accuracy,
causing overfitting, while decreasing this number causes
underfitting. The second FCL consists of two outputs
1× 1× 2 as there are two classes, Rumex and non-Rumex
in our dataset.

6. ReLU is the activation function that is used in the hidden
layers.
To justify selecting the window size of 3 × 3 is that it

is the minimum potential value to fulfill the required direc-
tions of the entire image from top to bottom and from left
to right passing through the center. Furthermore, stacking
pair-convolutional layers of 3 × 3 excepting max-pooling
between them has an effective receptive field of 5 × 5.
Similarly, using triple 3 × 3 convolution layers have an
effective receptive field of 7 × 7.

B. RESNET-50 EXTRACTOR
There are four stages of the ResNet-50 architecture, as illus-
trated in Fig. 4. The dimensions of the input image for this

FIGURE 5. GoogLeNet network with the inception layer.

network are 224 × 224 × 3. The configuration of kernel
sizes in ResNet uses 7 × 7 and 3 × 3 for initial convolution
and max-pooling, respectively. After which, the process of
the first stage commenced. The first stage consists of three
residual blocks. Each block of the residual includes three
layers. The kernel sizes of the layers in the block residual
are 64, 64, and 256, respectively. There are two types of
curved arrows. The first type is connected curved arrows used
with an identity connection. The second type of curved arrow
is the dashed curved arrow, denoting that the convolution
operation is using stride 2 in the residual block. At this
stage, the input size of the image was reduced by 50% for
the height and width, while the channel increased by dual.
Observably, the channel width increases to dual, whereas the
input size decreases as it proceeds through the stages. Most
deeper networks such as ResNet-101 and ResNet-50 provide
a bottleneck in their architectures.

The benefit of using bottlenecks in such an architec-
ture is that it decreases the number of network parameters
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FIGURE 6. The architecture design of Inception-V3.

represented by feature maps in the network while preserving
the network’s depth. Another advantage is that it permits
the network to be generalized with new data. The bottleneck
consists of a small-dimensions convolution layer that is 1× 1,
where the number of output channels of this layer is less
than the number of input channels. Each residual function
comprises three layers assembled on top of one another. The
dimensions of these convolutional layers are 1 × 1, 3 × 3,
and 1 × 1. The first and third convolutional layers of 11 are
employed to reduce and then retrieve the input resolution.
At the same time, the second convolution layer, which is
3 × 3 is used as the bottleneck to resize the dimensions for
input and output [37]. In addition, our research fine-tunes the
FCL to fit with the class numbers of our data, which includes
two classes, Rumex and non-Rumex.

C. INCEPTION-V3 EXTRACTOR
Unlike ResNet-50, the Inception family is a wider-style
network rather than a deeper one. In Inception-V3, various
multiple transformations of the same input map are calculated
simultaneously. Then, the results are concatenated into a solo
output. The previous version of Inception used three layers
of 5 × 5, 3 × 3 convolution, and one max-pool. In the later
versions, the filter size of the 5 × 5 convolution layer was
replaced with two 3 × 3 convolution layers, instead of using
only one large filter size. This reduction is called factoriza-
tion. The benefit of factorizing is to reduce the number of
parameters by 28%, which helps to reduce the computational
cost. Generally, the purpose of increasing the depth of any
network is to enhance accuracy. However, it causes vanishing
gradient issues, such as consuming additional resources for
computation. To overcome this issue, Inception-V3 intro-

duced an auxiliary unit of a 1 × 1 convolution layer. Using
these units is helpful because they address the problem of
vanishing gradients andmake amore comprehensive network
[38]. Fig. 5 shows the effects of adding 1 × 1 convolution
on the computational cost of Inception-V3. Szegedy et al.
[36] claimed that using a bottleneck in the initial layers
causes the loss of useful information from the input layer.
In addition, they adopted one of the principles in all the
Inception families to enhance the accuracy of classification
at a reasonable computational cost by parallel increasing the
width and depth. Inception-V3 differs from the other Incep-
tion families in using additional techniques such as factorized
7 × 7 convolutions, label smoothing, and auxiliary units or
auxiliary classifiers [36]. Fig. 6 illustrates the Inception-V3
architecture. Our research modified the last two layers to fit
our data. The experimental configurations and the parameter
details of our Inception-V3 are depicted in Table 2.

IV. MATERIALS AND METHODS
A. DATASET DESCRIPTION
The description of the data used in this study is elucidated
thoroughly. In this study, two standard benchmark datasets
have been used. The first dataset [dataset 1] is obtained from
Kounalakis et al. [23]. The total number of images in this
dataset is 900 images of Rumexweed plants in grassland. The
second dataset [dataset 2] is acquired from Van Evert et al.
[17]. The total number of images in this dataset is 677 images
of Rumex weed plants in grassland. Both these datasets are
two-dimensional RGB-colored images. The format of these
datasets is Joint Photographic Group (JPG). The images in
the dataset have various resolution sizes. The first data was
captured using a robotic system on an organic dairy farm
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TABLE 2. Summary of Inception-V3 configuration.

in France. In contrast, the second dataset was taken using a
Cybershot DSC-60 by Sony, Tokyo, Japan, on two different
dairy farms in the Netherlands. The size of dataset 2 is
2304 by 1728 pixels hand-held at a 1.7 m distance from
the ground. These datasets are considered real-world images.
Real-world data is captured under various circumstances such
as illumination, overlapping, and occlusion. Due to a lack of
information, these cases are classified as sophisticated issues
for ML techniques. However, this information could contain
significant features that are crucial in identifying the leaf type.

Through leaf type, it becomes feasible to identify the plant
type. The images in this dataset either contain the entire
Rumex weed surrounded by the grassland or only the leaves
of this weed (e.g., Rumex). The RoI of this dataset is the
ability to identify Rumex in the grass or among the leaves of
a scene. Fig. 7 shows that both Rumex and grass are likely to
share the green color, which increases the difficulty of ML to
recognize them. However, the grass is a more intense color
than Rumex. In the pasture, the grass frequently covers the
weeds. Therefore, shape and size are considered apparent fea-
tures. The Rumex leaf differs from the grass leaf in its shape.
Rumex leaves are short and broad, whereas grass leaves are
long with a narrow edge of several millimeters. According to

texture, Rumex is coarser than grass, which carries valuable
information in the classification. Van Evert et al. [1] claimed
that the detection performance of Rumex improved when the
grass was short and the plant was in rosette form.

B. IMAGE RESIZING
The first step in image preparation is image resizing. Several
image sizes were introduced to train our proposed model,
commencing from 128 × 128, which achieved acceptable
performance. Then, we raise the scale to 196 × 196, which
leverages the performance level by 2%. By proceeding
with the rescaling process using 224 × 224, 299 × 299,
336 × 336 until 350 × 350, it is observed that the model
yields optimum results in network performance when the
input image is 224 × 224. Finally, we investigated that
increasing the scale over 224 × 224 yields the same perfor-
mance but with high computation.

C. DATA AUGMENTATION
After image resizing, data augmentation is implemented to
boost the number of training samples [39] and mitigate over-
fitting [40]. Since CNNmethods are greedy to vast annotated
data [41], several transformations are implemented to enlarge
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FIGURE 7. Original samples of Rumex obtusifolius (broad-leafed) weed plants in real-world conditions.

the training data size and introduce various shapes of Rumex,
such as flip, mirror, and rotate. These transformations are
randomly augmented for each epoch of training and vali-
dation. To implement all these transformations in Python,
an exciting class, namely ImageDataGenerator, has been
used. For rotation, each image is rotated 20 degrees clockwise
to extend the dataset by 18 times to cover all potential changes
in the input image’s position. Then, both the horizontal and
vertical scales with a range of 0.5 are utilized to enlarge the
image. In addition, a cropping adjustment with a range of
15% is applied. Both vertical and horizontal transformations
are performed using the flipping operation. The generated
images from these transformations are merely used during
batch training [42], [43]. These transformations are exe-
cuted temporally in memory during runtime, but they are not
saved to disk. These three extractor models are incorporated
to establish a hybrid backbone for the weed classification
model. The hybrid model can handle the overlapping occlu-
sion and illumination conditions in real-world images. The
details of the hybrid method are discussed in the subsequent
sections.

D. PROPOSED METHOD IMPLEMENTATION
The experiments were implemented on a machine using
Windows 10 64-bit as an operating system. The hard-
ware components of this machine comprise an Intel
Core i7-10 Gen. The primary memory size was 32 GB. The
GPU was an RTX 2070 with 16 GB of memory. Python
3.7 with CUDA 10.1 was the programming language for
developing the DL model. PyCharm was employed as the
framework for coding. Python provides the entire package of
both the Pip and Conda libraries. The proportion of training

data to testing data is 80:20 samples. The initial values for
the batch size, epoch size, and learning rate are 32, 10, and
10−4, respectively. The framework of this approach is shown
in Fig. 8.

Based on this figure, the processes involve three main
stages, including data preparation, image pre-processing,
and image classification, distributed into eight steps. The
data preparation stage includes two steps, and the image
pre-processing stage involves two steps. Finally, the feature
extraction and image classification stage consists of two
steps. An additional step is introduced to evaluate the classifi-
cation results of the proposed model using quantitative mea-
sures. These are the summary descriptions of the functions of
each step:

Step 1: Collecting samples from the source to be prepared
for the training process.

Step 2: Dividing the dataset into 80% for the training set
and 20% for the testing set.

Step 3: In the pre-processing stage, image resizing reduces
the memory space and time-consuming execution. The pro-
posed model converts all the images from various sizes to
a specific size, which is 224 × 224 pixels as a standard
size.

Step 4: Increasing the scale of the dataset using the data
augmentation technique. This technique is used to increase
dataset size and reduce overfitting. Several augmentation
operations are utilized in this step, such asmirroring, flipping,
zooming, and rotations.

Step 5: Training the three extractor models with all the
annotated training. Individually, these extractor models are
used to extract the features, so that the output of each model
yields its classification results.
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FIGURE 8. The entire design framework of the proposed model includes three stages: data collection, image preprocessing, and feature extraction and
classification.

Step 6: Finally, all the outputs of the three extractor models
are grouped into the ensemble model for voting by the major-
ity. The result of the ensemble model yields one classified
label as the predicted result.

Step 7: Evaluating the results of the proposed method
using the performance metrics including precision, accuracy,
recall, and F1-score for classification accuracy.

The concentration of this research would be on the clas-
sification stage to be the basis for weed detection. In the
following sections, these steps are illustrated in more detail.
Fig. 9 demonstrates the algorithmic step code of our proposed
model.

E. RESULTS AND DISCUSSIONS
To test the efficacy of our proposed approach, we compared
it with the previous competing studies. The effectiveness of
the ML and DL methods is tested to measure the method’s
validity on a designated test problem. Similarly, the proposed
method aims to improve classification accuracy. Fig. 10 and
Fig. 11 illustrate the analysis of the training accuracy and loss
error rate of the three backbone networks of this approach
applied to two various Rumex datasets, including dataset 1
[23] and dataset 2 [17]. Fig. 10 and Fig. 11 compare the per-
formances of three backbone networks, VGG-16, ResNet-50,
and Inception-V3, during the training process for dataset 1
and dataset 2. It is observed that VGG-16 is more stable than
Inception-V3 and ResNet-50 networks during the training
process of dataset 1 and dataset 2. However, the performance

of Inception-V3 decreased in both datasets at the final level of
the training process. According to ResNet-50, it is monitored
that the performance of this network increases sluggishly
compared to other backbone networks. It requires ample
time to be trained due to its dense layers. To analyze the
error rate or loss of the three backbone networks, the pay
attention is recorded for ResNet-50, which has a lower error
rate than Inception-V3 and VGG-16. For VGG-16, however,
the greater error rate is considered.

For evaluation, somewell-knownmetrics such as accuracy,
F1-score [44], precision, and recall [45] are employed to
observe the effectiveness of the proposed method. In this
research, we focus on using quantitative measurement to
quantify the robustness of our proposed model. This set of
metrics compares the predicted label with the ground-truth
label in terms of accuracy [46], precision or PPV [21], recall
[32], and F1-score [47]. The standard formula of accuracy,
precession, recall, and F1-score are shown in the following
Equations:

Accuracy=
TP+ TN

TP+ TN + FP+ FN
(4)

Precision=
TP

TP+ FP
(5)

Recall or Sensitivity or TPR=
TP

TP+ FN
(6)

F1− Score= 2×
Precision× Recall
Precision+ Recall

(7)
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FIGURE 9. The algorithm of the proposed model.

FP=
FP

FP+ TN
(8)

where:
TP: represents the total number of Rumex weeds classified

by both images of ground truth and the proposed model.
FP: represents the total number of non-Rumex weeds (e.g.,

grass) that are not classified as ground truth images while they
are recognized as Rumex through the proposed method.
FN: represents the total number of Rumex weeds that are

recognized via the ground truth image and not recognized
through the proposed model.

TN: represents the total number of non-Rumex that are
not found in both the ground truth and the proposed model.
After which, we compute the True-Positive Rate (TPR), and
True-Negative Rate (TNR) to make a fair comparison using
the confusion matrix.

F. COMPARISON TO PREVIOUS RUMEX
CLASSIFICATION APPROACHES
Several hand-crafted and self-learning classification methods
are compared to the proposed. These methods were applied
to classify the Rumex weed plants from grass using real-
world data. Table 3 illustrates the classification results of

these methods using the standard evaluation metrics. These
metrics are applied to verify that each true positive pixel in
the Domain of Interest (DoI) has been precisely classified.
For fair comparison, all representative methods were applied
to the same tested data. The results in this table show that
the Scale Invariant Feature Transform (SIFT) feature-based
system [15] has the lowest accuracy, precision, and F1-score
rates of all the tested techniques due to the high FPR. That
means it is inefficient to determine the non-Rumex weeds
correctly. Later, the SURF feature-based system [48] was
proposed to overcome the previous method’s shortage by
lowering the FPR and False-Negative Rate (FNR), but it
remains suffering from FPR sensitivity. The problem with
those methods is that they used vectors to extract features,
which are inefficient in identifying the negative objects due
to the occlusion issue with Rumex weeds. Sünderhauf et al.
[49] proposed Overfeat CNN for feature extraction with
Extreme RF for classification. Such a method improves the
system’s recognition capability by reducing the FPR at a
low rate. However, that method registered the highest FNR
of all competing methods, classifying the true positive (TP)
plant. Reyes et al. [50] used fine-tuned AlexNet [51] for weed
recognition.
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FIGURE 10. The comparison performance for each network of the proposed method over dataset 1.

FIGURE 11. The comparison performance for each network of the proposed method over dataset 2.

To analyse the results in Table 3, it is observed that
our proposed model achieved accurate classification results
compared to competing methods. As shown in Table 3 and
Table 4, our method achieved 97.02% accuracy using dataset

1 and 98% accuracy using dataset 2. Although AlexNet fine-
tuning [50] and Overfeat with ExtremeTrees [49] achieved
somewhat greater accuracy than our proposed model (1.36%
and 1.90%, respectively), their results are relatively poor in
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TABLE 3. Classification results of the various classification methods with our proposed model applied to dataset 1 in terms of accuracy, precision, recall,
F1-score, FPR, and FNR (all as %).

terms of precision, recall, and F1-score metrics. However,
the proposed model delivered on its promises by recording
81.35%, 27.41%, and 71.56% high difference rates on preci-
sion, recall, and F1-score, respectively. The shortcomings of
the compared methods are due to the lack of addressing the
challenging scenario and focusing on well-separated leaves
or plants in the scene. Specifically, the limitation of these
methods frequently occurs due to insufficient learning to clas-
sify occlusion and overlapped cases [52]. Furthermore, some
methods depend on specific features such as shape or texture,
which are not adequate to recognize the type of object [53],
[54]. Concretely, the empirical results demonstrate, in over-
all evaluation metrics, that our proposed model provides a
higher baseline accuracy than existing methods. Due to the
diverse architectural designs of each network in our model,
different features are yielded. These features play a crucial
role in identifying our complex scenario. The finding of this
work is that using a hybrid model produces a higher base-
line accuracy against occlusion than using a single method.
In some occlusion cases, however, our model showed low
performance, especially when there are multi-occluded cases
of Rumex in the same scene and due to the low-resolution
imagery. Another challenging issue is observed when the
scene contains a part of Rumex leaves distributed on the
boundary where most features are absent.

Both Kounalakis et al. [23] in their Inception-V1
with L2-regularized with L2-loss logistic regression
(L2regLogReg) and Reyes et al. [50] in their AlexNet method
used the same training parameters by setting 10 to the learn-
ing rate for their classifiers. Reyes et al. [50] reduced the FPR
to raise the recall ratio. At the same time, the FNR of such a

method does not produce sufficient results to recognize the
true positive pixels due to overfitting. It is observed that there
are unbalanced results in the evaluation metrics of the same
method. The accuracy of most compared methods is high,
while the F1-score metric reported low-rate values. In this
regard, this proposed method achieves stable performance
using the same standard metrics. The first evaluation was
applied to the [23] data. In their work, Kounalakis et al. [23]
demonstrated that the Inception-V1 with the L2regLogReg
approach achieved the highest accuracy compared to other
representative methods. We compute the F1-measure rate of
the Inception-V1+L2regLogReg approach and other com-
pared methods to be evaluated with our proposed model.
Based on the analysis, we investigated that some metrics
such as recall have high sensitivity to true negative pixels due
to the high disparity between positive and negative pixels.
Therefore, the second experiment is applied to the second set
of Rumex data [17] as presented in Table 4.
Van Evert et al. [17] used 2-D Fourier analysis in their

generated data from the above table. This method achieved
82%-89% acceptable scores using the accuracy metric, while
it has not been tested on other evaluation metrics. In addition,
their method is not being compared with other methods.
In this work, we implemented several methods to mea-
sure the performance of our work and the 2-D Fourier
analysis method. The comparative results of the competing
approaches in terms of FPR and FNR of dataset 1 are shown
in Fig. 12. According to this figure, the SIFT feature-based
system has the greatest FPR rate, while the Overheat-Extreme
Trees technique has the highest FNR. The lowest FPR and
FNR, on the other hand, attained the key target by recording
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TABLE 4. Classification results of the various classification methods with our proposed model applied to dataset 2 in terms of accuracy, precision, recall,
F1-score, FPR, and FNR (all as %).

FIGURE 12. The classification results of the compared methods with our proposed model applied to dataset 1 in terms of FPR and FNR
metrics.

0.02% on both measures when using the proposed model.
That implies the application does not waste time processing
the non-existent Rumex or misclassifying the actual Rumex in
reality. The comparative results of the competing approaches
in terms of FPR and FNR of dataset 2 are shown in Fig. 13.
This figure illustrates that the SVM using a polynomial func-
tion scored the highest FPR and FNR of all the competing
methods, while its classification accuracy is similar to that of
2-D Fourier analysis. On the other hand, we applied SVM
with Gaussian Radial Basis Function (RBF) to the same
tested data to achieve the highest accuracy, precision, recall,
and F1-score rates of all the competing methods. However,

∗Polynomial Kernel Function.

the FPR and FNR of the SVM_RBF are high due to poor
images and occlusion, making it inappropriate to be utilized
with a robust detection model. Nevertheless, the results show
that the proposed model outperforms by 4%, 1%, 46%, and
28% higher results than the best-compared methods on the
accuracy, precision, recall, and F1-measure, respectively. Fur-
thermore, its FPR and FNR are tiny to identify the RoI and
effectivelymisclassify unwanted regions. This outperforming
leads to the fact that this approach is promising for a new
detection model. Table 5 details the comparison results of
our proposed methods using two different datasets. On the
other hand, the accuracy rate has the lowest rate of the two
datasets, with dataset 2 having a 0.98% higher rate. Fig. 14
and Fig. 15 depict the confusion matrix of dataset 1 and

90954 VOLUME 10, 2022



A. H. Al-Badri et al.: Hybrid CNN Model for Classification of Rumex Obtusifolius in Grassland

FIGURE 13. The classification results of the compared methods with our proposed model
applied to dataset 2 in terms of FPR and FNR metrics.

FIGURE 14. The confusion matrix of our proposed model applied to
dataset 1.

FIGURE 15. The confusion matrix of our proposed model applied to
dataset 2.

dataset 2, respectively. The preliminary results of the pro-
posed model on precision and F1-score in dataset 1 are higher
than those in dataset 2. In contrast, the proposed model is
higher in accuracy and recall when using dataset 2. Thus, our
finding is a balance between these two datasets that could be
merged into one dataset. In addition, our method achieved
high accuracy (97%-98%), which is higher than the individual
methods to classify Rumex in different conditions. However,
it does not concentrate on a single issue like illumination,
as used in Zhang et al. [20] work.

TABLE 5. Comparison results of our proposed model applied to both
datasets in terms of accuracy, precision, recall, F1-score, FPR, and FNR (all
in percent).

V. CONCLUSION
Rumex. is a vital weed plant that has a substantial effect
on dairy yield and production. Real-world images such as
illumination, overlapping, and occlusion reduce the accu-
racy of the classification model. These issues are considered
challenging task to computer vision. Most previous works
focused on weed classification under controlled conditions,
whereas weeds are certainly allocated in grassland under the
real-world conditions of farms. In this study, a new hybrid
CNN model with three various extractors at the backbone
is proposed to improve classification accuracy in real-world
data. Unlike the single approach, combining three different
networks into one ensemble model increases the ability to
extract deepening (e.g., additional beneficial) features due to
the variety of architectural designs for each network. In addi-
tion, each extractor provides the ability to address one ormore
challenging real-world issues so that the shortcomings of
each network are addressed by the two remaining networks.
Experimental results show that utilizing different extractor
networks was able to reduce the FPR and FNR to a low-level
rate. Compared to other recent models, this reduction helps
generalize the model with unseen fields to classify Rumex in
real-world conditions.
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This work uses a standard benchmark dataset of images
captured under real-world conditions. Images in these two
datasets are captured in challenging conditions of a real
farm, such as various illumination, occlusion, and overlap-
ping conditions. In addition, each image includes single or
multi-leaves or entire Rumex weed plants. The proposed
approach has been compared and evaluated using the same
dataset with different methods. The results have shown that
the proposed approach produces better results than other
competing methods. The total averages of this approach on
both datasets are 97.51%, 94.41%, 97.44%, and 95.93%using
accuracy, precision, recall, and F1-score, respectively.

This work introduces pivotal knowledge to the computer-
vision community. Firstly, it improves the classification
methods for Rumex in real-world conditions by using a
combination of three different classifiers. Regarding the
agricultural community, this research can be implemented
in a weed management system or an automated weed
spraying system. It assists the farmer in alleviating labor-
intensive costs, reducing time-consuming tasks, preventing
herbicide pollution in the environment, and controlling weed
separation.

VI. LIMITATION AND FUTURE DIRECTIONS
Real-world data is a challenging issue in computer vision
approaches. The limitation of this data is the deficiency
of beneficial information in the occluded and overlapped
regions. Increasing these regions adversely impacts the clas-
sification accuracy of the results. However, using sufficient
samples in the training of DL raises the model’s potential
for extracting and classifying. For future work, these two
datasets can be combined to increase the number of samples,
especially those for the entire Rumex plant in the grass,
due to the limited amount. In addition, this work can be
expanded to produce a new detection model focusing on
Rumex weed plants using You Only Look Once (YOLO)
detection and Mask Region-Convolutional Neural Network
(R-CNN). Moreover, we will investigate the restrictions on
why other networks achieve high performance in their related
tasks as compared with our data. Besides, we plan to apply
our proposed model to classify the diseases and lesions of
Rumex or other weed species.
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