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ABSTRACT Ultra-dense heterogeneous networks (HetNets) are deployment scenarios in the advent of fifth
generation (5G) and beyond network generations. A massive number of small base stations (SBSs) and
connected devices have been exponentially increasing. This has subsequently led to a rise of several mobility
management issues which require optimization techniques to avoid performance degradation. Machine
learning (ML) is a promising approach for future mobile communication networks (5G and beyond). It has
the ability of improving the efficiency of complicated heterogeneous and decentralized networks. ML has
proven to be significant in the mobility management field since it optimizes handover control parameters
(HCPs) over various dynamic environments. To the best of the authors’ knowledge, no comprehensive survey
deeply discussing a state-of-the-art ML algorithms in mobility robustness optimization (MRO) functions.
However, each summarized algorithm in this study includes deployment scenario, ML type, methodology
used, criteria, HCPs, key performance indicators (KPIs), simulators, and achievements which can assist
researchers for future investigations in MRO functions. In addition, this study serves as a guide in the
selection of proper optimization algorithms according to the outcomes of each algorithm. Furthermore, this
study presented the common types ofML and the techniques used from each type to optimize the HCPs of the
MRO functions. Moreover, high-mobility-aware and network topologies are presented in MRO function for
further system enhancements. Besides, the survey further highlights several potential problems for upcoming
research and provides future directions to address the issues of next generation wireless networks.

INDEX TERMS Machine learning, handover, self-optimization, mobility robustness optimization, handover
margin, time-to-trigger, heterogeneous networks, 5G network.

I. INTRODUCTION
The fifth generation (5G) network is considered as a key
enabler in communication and information industries. High
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mobile traffic demands to support several services and appli-
cations are present [1], [2]. Ericsson predicts that there will
be 4.4 billion 5G subscriptions by 2027. Rising mobile traffic
demands must be efficiently met [3]. The increasing number
of 5G subscriptions will prompt mobile operators to deploy
ultra-dense small base stations (SBSs) to accommodate
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sufficient data rates for subscribers [4], [5], [6]. However, the
deployment of ultra-dense SBSs will cause several mobility
issues that may degrade network performance, such as radio
link failure (RLF) and handover ping-pong (HOPP) [7], [8].
The user equipment (UE) requires suitable handover (HO)
strategies to maintain stable and reliable radio communica-
tion links [9].

HO is a vital component of future cellular networks and
necessitates proper setting since it has a direct impact on
the quality of service (QoS). HO is defined as the pro-
cess of handing over the radio communication link from
the serving base station (BS) to the target BS when the
UE’s received signal from the serving BS drops below
the threshold level. The HO procedure will be more com-
plicated in ultra-dense SBSs deployments which require
efficient HO triggering algorithms to achieve optimal HO
settings with minimal human intervention [10], [11]. Future
cellular network generations (5G networks and beyond) will
require advanced self-optimization techniques to avoid net-
work degradation [12].

Self-optimization is a key aspect of the self-organization
network (SON). An automatic adjustment of HO param-
eters is performed to maintain connection quality during
HOs [13]. The SON consists of two main components:
radio frequency and radio resource management (RRM). The
self-optimization falls down on RRM which also consists
of two functions: mobility robustness optimization (MRO)
and load balancing optimization (LBO) [14]. MRO man-
ages HO issues according to UE movements, while LBO
focuses on traffic load balancing [15]. The MRO basically
auto-tunes HCPs based on the network status to control irreg-
ular HO triggering [16], [17].MRO functions can be achieved
by preserving the connection quality and utilizing network
resources. This leads to lower HO failure (HOF), RLF, and
HOPP while maintaining seamless communication [18].

The working procedure of the MRO function begins with
controlling the input data according to the operator’s targets
and objectives. The MRO algorithm applied will be acti-
vated to analyse the data. If the outcomes satisfy the targets
and objectives, one time MRO procedure ends. Otherwise,
a corrective action will be applied for a better system status.
If the target is not met after a corrective action, a fall back
is required to reverse the system to the previous status oth-
erwise, the system finalize one optimization step and starts
controlling the data for the next optimization steps. However,
the HO procedure has been introduced in the third-generation
partnership project (3GPP), TS 28.627 version 15.0.0
release 15, [19].

In recent years, machine learning (ML) techniques have
been considered as potential solutions for several MRO
functions. These techniques enhance HO management by
optimizing HO control parameters (HCPs), HO margin
(HOM), and time-to-trigger (TTT). ML optimizes HCPs by
learning, automatically extracting knowledge, and predicting
an effective scenario. ML also applies statistical tech-
niques to enhance the ML process without being explicitly

programmed [20]. Therefore, ML techniques are suitable for
solving various HO self-optimization issues in heterogeneous
networks (HetNets) [17].

The common types of ML have been implemented to opti-
mize the HCPs of MRO functions, such as the supervisedML
[21], [22], [23], [24], [25], [26], [27], unsupervised ML [28],
and reinforcement learning [14], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40], [41], [42]. Several ML
techniques under each type have been addressed as a solution
method. The supervised techniques include neural networks
multilayer perceptron [23], [24], neural networks based on
gated recurrent units (GRU) [21], rectified linear unit with
SoftMax function [26], and recurrent neural network based
on GRU and long short-term-memory (LSTM) [27]. All these
techniques implemented with different scenarios, HCPs, and
key performance indicators (KPIs). Article [21] optimized
the offset of MRO and LBO in 5G HetNets using the traffic
load of the BSs as the KPI while in [22], cell individual
offset (CIO) and HOM were optimized by considering the
SINR in a macro BS environment. In [23], [24], and [26],
the authors assessed the HCPs of the MRO function (TTT
and HOM). Each study implemented different scenarios,
methodologies, and KPIs. Ref. [23] examined several KPIs,
such as the HOF, HOPP, and unnecessary HOs. Therefore,
previous studies had analyzed the performance of HCPs in
various deployment scenarios using several KPIs: the HOF,
RLF, HOPP, signal-to-interference-plus-noise-ratio (SINR),
throughput, handover probability (HOP), cell dropping ratio
(CDR), and interruption time (IT). These studies are exten-
sively examined in Section IV.

To the best of our knowledge, article [28] is the only
research that applied unsupervised learning (K-means clus-
tering) to investigate TTT in MRO and to balance the traffic
load of the serving BS using in-building system scenarios in
long-term evolution (LTE) network.

Several reinforcement learning techniques have been
applied to achieve optimal HCP settings. The fuzzy
Q-learning technique was used throughout numerous works
[14], [29], [30], [33]. The research of [31],[32], [35], [38],
[39], and [40] presented a Q-learning technique to acquire
optimal HCP settings. The Q-learning technique was inte-
grated with other methods such as Q-learning and Analytic
hierarchy process technique for order of preference by simi-
larity to ideal solution (AHP-TOPSIS) [34], deep Q-learning
[42]. However, these reinforcement learning techniques have
been deployed over a several deployment scenarios and dif-
ferent KPIs. Hence, different achievements can be seen from
each approach. For instance, article [14] optimized the TTT
and HOM using RLF and HOPP as a KPIs in LTE net-
work while,[29] used HOF, CDR and HOF for optimizing
the TTT and HOM. Moreover, HetNet deployment scenario
is applied in [30] using HOR and CDR based on received
signal reference power (RSRP). Besides, HOM and traffic
load are optimized using HOR, CBR, and CDR as the per-
formance indicators. These reinforcement learning methods
optimize HO parameters without the need for dataset training.
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Section IV deeply discussed all previous reinforcement stud-
ies up to now.

Most HO triggering algorithms deployed in fourth
generation (4G) cellular networks are inefficient for 5G cel-
lular network application due to different specifications and
requirements. Existing HO triggering algorithms still require
further assessments to achieve optimum HO solution, espe-
cially in 5G networks. Further evaluations should be based
on the current specification releases in 3GPP. This survey
mainly focuses on the HO self-optimization network of MRO
based on ML algorithms. The contributions of this survey are
as follows:

• To the best of the authors’ knowledge, no review papers
have highlighted or discussed MRO functions using ML
algorithms.

• The MRO challenges including intra-system and inter-
system mobility are discussed.

• The summarized state-of-the-art ML algorithms can
assist researchers in future investigations since each
algorithm includes deployment scenario, ML type,
methodology used, criteria, HCPs, KPIs, simulators, and
achievements.

• This comprehensive survey investigates how ML algo-
rithms can achieve optimal HO settings by addressing
the common types of ML and the technique used from
each type.

• Several types of ML (i.e., supervised, unsupervised,
and reinforced learning) used in MRO functions are
discussed. State-of-the-art algorithms related to MRO
functions that apply ML as a solution are symmetrically
organized from the literature based on the year of publi-
cation and the types of learning.

• Velocity-aware and network topologies for MRO func-
tions are addressed since it has a direct impact on system
performance.

• This survey presents several challenges and potential
directions in future wireless network generations (5G
and beyond).

The remainder of this paper is organized as follows:
Section II discusses the motivations of HO self-optimization
based on ML techniques. Section III highlights several issues
of the MRO function. Section IV provides the related studies.
Enhancing MRO functions for future networks are provided
in Section V. Section VI presents the numerous ML algo-
rithms available. Section VII examines the various challenges
and future directions. Section VIII concludes this paper.

II. MOTIVATIONS OF MACHINE LEARNING
IN MRO FUNCTIONS
Wireless communication is one of many fields that use ML
techniques to facilitate network complexity and improve net-
work performance and accuracy. Due to various limitations of
traditional algorithm applications, ML techniques play a cru-
cial role in mitigating such limitations by addressing network
complexity, lowing expenditures, and obtaining optimal HO

self-optimization functions [43], [44]. Several motivations for
employing ML algorithms have been addressed in the area of
HO self-optimizations.

A. REDUCING OPEX AND CAPEX
In the early generations of mobile networks, such as the
second (2G) and third (3G) generations, HO parameters
were manually optimized. This negatively affected system
performance and accuracy. In recent years, assigning fixed
HCP values has become critical in mobile networks since
the number of connected devices are dramatically increasing.
High mobility users in deployed ultra-dense SBSs will be
addressed in future mobile HetNets, as shown in Fig. 1.
The figure presents the cellular networks from 1G to 6G,
the requirements (such as peak data rate, latency, spectral
efficiency, etc.), and the technologies used or will be used
in future. Moreover, Fig. 1 shows the mobility of 5G and
5G mobile communication networks which can reach greater
than 500 km/hr which will subsequently increases the ratio of
HOPP and RLF. In addition, it should be noted that applying
manual settings for high mobility users in dense HetNets
will negatively affect system operators in terms of OPEX
and CAPEX, further influencing network performance. Time
consumption is another consequence, leading to increased
operational costs and lower revenue [45].

B. REDUCING NETWORK COMPLEXITY
The contradictions found between the objectives of HO
parameters and dynamic environments are two critical chal-
lenges when optimizing HO parameters. However, ML can
interact with dynamic environments without requiring any
previous data. ML algorithms can remarkably handle vast
amounts of optimization parameters compared to con-
ventional interpolation techniques. ML can learn, model,
and map out functions that cannot be mathematically
interpreted [46].

C. ACHIEVING OPTIMALITY DURIN HANDOVER
The goal of the current research is to achieve optimum HO
setting in HO self-optimization networks. ML techniques
have significantly contributed towards obtaining ideal HO
settings by self-optimizing HCPs, thereby enhancing network
performance. Reinforcement learning (i.e., Q-learning) is
an ML technique used throughout various studies to self-
optimize HCPs. It does not require data and can be imple-
mented in dynamic environments.

III. MOBILITY ROBUSTNESS OPTIMIZATION
CHALLENGES
TTT and HOM are considered significant HCPs in MRO.
The optimization algorithm usually measures KPIs to achieve
the best setting of HCP values, as shown in Tables 2, 3. The
evaluation of KPIs varies from one study to the next, subse-
quently leading to significant differences in performance and
accuracy. The contradiction between HCPs always requires
further assessments to achieve efficient HO self-optimization
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FIGURE 1. Characteristics of mobile generations.

algorithms [47]. For instance, setting the HOM value too low
will increase HO probabilities too early, which will subse-
quently lead to HOPP. On the other hand, setting the HOM
value too highwill increase theHOprobability too late, which
will increase the RLF ratio [33], [48], [49]. The RLF requires
a decrease in HOM,while HOPP requires an increase inHOM
[50]. Table 1 illustrates the suboptimal optimizations of HCPs
and their consequences on system performance. The main
objective of MRO is to auto-tune HCPs to achieve ideal HO
triggering based on the detection and correction of mobility
issues, as defined in the following:

A. TOO LATE HO
The timing of HO is very critical. If HO occurs early or late,
different KPIs are triggered. Increasing HCP settings leads to
too late HO which causes high RLF, thereby resulting in high
IT and degradation in the UE’s throughput [34]. The RLF
occurs when the SINR of the UE stays under the acceptable
level where the connection quality is disrupted [19], [51]. The
UE reports the RLF to the network to investigate connection
failures. These reports are either fetched by the network
or link failure will be reported [51], [52], [53]. The RLF
usually occurs in both intra-system and inter-system mobility
as follows:

1) INTRA-SYSTEM TOO LATE HO
The RLF in the intra-system is detected only between BSs
that have the same systems, for instance, switching the
HO from next generation-radio access network (NG-RAN)

TABLE 1. Suboptimal settings of MRO parameters.

serving BS A to NG-RAN target BS B. In intra-system too
late HO, the RLF occurs before the successful initiation of
the HO procedure to the target BS that has the same system
mobility.

2) INTER-SYSTEM TOO LATE HO
The RLF in inter-system mobility is detected between BSs
that have different systems, for example, switching HO from
an evolved universal terrestrial radio access (E-UTRAN)
serving BS to NG-RAN target BS. In inter-system too late
HO, the RLF occurs before establishing successful connec-
tion to the E-UTRAN target BS. The UE stays for long
periods of time in the NG-RAN serving BS.

B. TOO EARL HO
Reducing the HCP settings (TTT and HOM) leads to too
early HO, as shown in Table 1. Since the execution is quickly
accomplished, this leads to high ping-pong effects which
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causes high signaling load to the network due to unneces-
sary HO. HOPP occurs when the serving BS hands over
the control of the UE to the target BS, then the target BS
hands the control of the UE back to the previous serving BS
within a predefined limited time [54]. Reducing frequent HOs
will lead to the preservation of network resources, thereby
enhancing system performance.

1) INTRA-SYSTEM TOO EARLY HO
In intra-system too early HO, the HOPP occurs shortly after
the successful initiation of the HO procedure from the serving
BS to the target BS in the same system. The UE attempts to
re-establish a connection to the serving BS.

2) INTER-SYSTEM TOO EARLY HO
In two different systems, such as theNG-RAN and
E-UTRAN, the HOPP in inter-system too early HO occurs
shortly after a successful initiation of the HO procedure from
the E-UTRAN serving BS to the NG-RAN target BS. The
UE attempts to re-establish a connection to the E-UTRAN
serving BS.

C. HO TO WRONG CELL
Inappropriate HCP settings lead to HO to the wrong cell
which may cause degradation in system performance due to
the occurrence of RLF orHOPP. InHO to thewrong cell, RLF
or HOPP is conducted shortly after the successful initiation of
the HO procedure from the serving BS to the target BS. The
connection is re-established by the BS that is neither the target
BS nor the serving BS. This connection re-establishment can
be made from intra-system or inter-system HO to the wrong
cell.

IV. RELATED WORKS
Several research that applied different approaches to HO self-
optimization (i.e., MRO) are present. Our study [55] compre-
hensively addressed several non-ML methods applied to the
MRO function for optimal HCP settings such as RSRP-based
[56], [57], [58], [59], [60], [61], [62], [63], [64], [65],
weight function [48], [66],[67], [68], fuzzy logic controller
(FLC) [69], [70], [71], [72], [73], speed scenarios [74], [75],
[76], [77], [78], [79], [80], UE speed with traffic load [70],
dwelling time [81], and combined techniques (i.e., weighted
FLC [82], Fuzzy AHP [83], and fuzzy TOPSIS [84]). have
been applied in MRO. Therefore, this survey is limited to
MRO that uses ML techniques to extensively examine the
topic in a clear and concise manner. Several approaches with
different ML techniques have been addressed throughout the
literature.

A. MRO USING SUPERVISED LEARNING
The supervised technique has been applied as a solution
in various studies related to HO self-optimization. Each of
the following research is unique in terms of the deployed
scenario, criteria, HCPs, KPIs, and simulation tools applied.
This has subsequently led to different accuracies using other

approaches, as shown in Table 2. The following studies
mainly address the MRO function that uses supervised learn-
ing, such as in [21], [22], [23], [24], [25], [26], and [27].
Table 2 is organized according to the sequence of research in
terms of criteria, HCPs, KPIs, and performance achievement.

The data-driven HO optimization (DDHO) approach was
proposed to minimize KPIs (i.e., too late HO, too early
HO, HO to wrong cell, unnecessary HO, and HOPP) [23].
Multilayer perceptron was also used as a solution for esti-
mating these KPIs. However, the enhancement of KPIs only
range between 15% to 20% in [21].

Kumari proposed the DDHO approach to minimize mobil-
ity issues such as HO delay, too late HO, too early HO,
and HO to the wrong cell [24]. The suggested framework
begins with data collection from the mobile communica-
tion network, followed by the identification of the type of
mobility issue with the application of various counters. The
DDHO approach then analyzes data to obtain the ratio for
each mobility problem. The data is forwarded to the KPI
estimation engine to optimize HCPs (TTT and HOM). Lastly,
the obtained HCP values are applied to the related eNB. The
results revealed an overall enhancement in mobility issues,
especially when low transmission power (15 dBm) is applied.

In [21], neural network based on GRU BSs was proposed
to predict the movement of UEs. A training data was created
from two BSs allocated in Lviv city, Ukraine. The GRU
was introduced to solve the short memory issue of recurrent
neural network due to its ability to use previous knowledge of
UE movements to acquire future information. The proposed
model further investigated the offsets of MRO and LBO.
A new coefficient was offered to determine which of the
two offsets is most relevant. The LBO offset is applied when
the BS is overloaded, otherwise, the MRO offset is used.
90% prediction accuracy of UE movements between BSs
was achieved using the neural network. By predicting the
user movement, the user traffic can be controlled which will
subsequently enhance the UE’s connection quality.

Due to the difficulties in handling large numbers of
configurations and optimization parameters using conven-
tional interpolation techniques, the ML framework with
the heuristic technique were proposed by Shodamola et al.
for successfully optimizing control parameters (CIO and
HOM). This was achieved by maximizing KPIs, such as the
SINR [22]. Firstly, data is generated by several simulators.
Next, five ML techniques are applied (i.e., linear regression,
K-nearest neighbor, extreme gradient boosting, categorical
boosting, and deep neural network) to predict the behav-
ior of SINR. Lastly, in the output of the ML techniques,
heuristic search technique in the form of genetic algorithm
(GA) is used to detect the optimal value of SINR. Based
on the investigation addressed in [22], the best prediction
performance among the five ML models was the categor-
ical boosting model. GA was also considered as an effi-
cient algorithm for determining an optimal solution with less
iterations (i.e., 500) compared to the Burte force technique.
To avoid partial optimization, the study should investigate the
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TABLE 2. Optimizing MRO using supervised and unsupervised learning.

optimal TTT since it is one of the most essential parameters
in MRO.

Deploying dense SBSs that underly traditional macro BSs
will lead to a variation in the SINR during HOs. This will sub-
sequently increase the ratio of RLF and HOPP. Huang et al.
[26] proposed a supervised learning with deep neural network
according to the SINR and SINR change (used as inputs)
to reduce RLF and HOPP. Based on the UE’s experience,
the measurement data was categorized as two classes: the
RLF class and the HOPP class. After data classification,
supervised learning was used to train the deep neural network
which consists of one input layer, two hidden layers, and one
output layer. Rectified linear unit and the SoftMax function
were used in the hidden layer and output layer, respectively.
The objective of the SoftMax function is to convert the
weighted sum of all values taken from the rectified linear unit
into probabilities for each class. If the probability of RLF
is higher than the probability of HOPP, the UE experiences
RLF and vice versa. The deployment scenario was based on
3GPP 5G dense urban network [2]. In this study, 27 macro

BSs were deployed in the environment, and 4-8 micro BSs
were implemented under each macro BS.

Future wireless communication networks (5G and beyond)
will face rapid changes and unplanned deployment of mas-
sive SBSs, which will subsequently affect user satisfaction.
Recurrent neural network based on GRU and LSTM BS have
been proposed tomaintain the previous information of the UE
and to understand the current user mobility [27]. LSTM has
three filters that can eliminate information from the cell state.
The GRU, which includes an update and reset layer, was also
addressed in this study to solve the gradient disappearance
issue. The update layer was employed to filter past data and
determine how much data is approved for future use, while
the reset layer deletes the unapproved data. The GRU requires
less resources and less training data than LSTM in terms of
cell-based architecture. Therefore, the data can be trained a
little faster compared to LSTM. This study investigated the
offsets ofMROandLBO to determine themost relevant offset
to be used at each situation. The results revealed that the
traffic prediction accuracy reaches 90%.
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B. MRO USING UNSUPERVISED LEARNING
To the best of the authors’ knowledge, [28] is the only study
that investigated TTT in MRO function using unsupervised
learning (K-means clustering algorithm). Table 2 presents the
examined parameters of this study.

Castro-Hernandez and Paranjape [28] have proposed a
novel approach based on ML and data mining techniques
to discover and learn the radio frequency conditions. The
authors further suggested a novelmethod to adjust HOparam-
eters according to the acquired data of evolved nodes B
(eNBs) using the TTT parameter. They also offered a load bal-
ancing approach for users in connected mode. The suggested
solutions were conducted to solve the HOF caused by late or
early HOs as well as unnecessary HOs. ML (K-means clus-
tering algorithm) and data mining techniques were proposed
to allow the in-building system to autonomously learn and
identify characteristic patterns in the signal strength received
from users as they approach the cell-edge. Next, optimal
HO parameters were applied for each case. Experimental
data collected from two fully operational LTE in-building
systems were deployed in the two buildings of the university
campus. One building was considered as a hotspot area where
the food court and student union offices are located. The
operating frequencies of the LTE macro BS were 2.1 and
2.6 GHz. The approach provided an average data rate gain
between 25% and 65%. The data rate gain can also reach
a value close to 150% for certain loading conditions. The
spectral efficiency at the BS edge was further enhanced
as well.

C. MRO USING REINFORCEMENT LEARNING
Most MRO studies have applied reinforcement learning,
mainly Q-learning, as a solution for obtaining the optimal
triggering value during HO. Table 3 presents the related
studies.

Decreasing revenue and increasing costs have become a
concern for network operators. Self-optimizing HO param-
eters may reduce operational expenditure since it decreases
human intervention when adjustments are needed. The fuzzy
Q-learning-based MRO approach has been suggested for HO
parameter adjustments [29]. The proposed approach includes
the fuzzy inference system, heuristic exploration/exploitation
policy, and Q-learning components. Several KPI parameters
(CDR, HOF ratio, and HOPP ratio) were also evaluated [29].
This study distinguished between services that can tolerate
certain connection interruptions (non-real time services such
as videos) and services that cannot tolerate any connection
interruptions with time (such as voice services).

FuzzyQ-learning algorithmwas also suggested to optimize
HOM and TTT in HetNets [30]. The system was evaluated
based on two KPIs (the CDR and HO rate) using A3 trig-
gering event. The main objective of the study is to balance
the signaling traffic created by HOs with CDR. The KPIs
were used as inputs to the network, also considered as the
system state in the Q-learning algorithm. To implement the
algorithm, the HOM-change was represented as the action

and considered as the output of the system. Random actions
were also chosen by the system with FLC. The UE’s speed
and TTT were 10 km/hr and 200 ms, respectively. In [30],
TTT and HOM must be automatically tuned for increased
system accuracy.

In [31], the Q-learning method was proposed to advance
SON functions (MRO, LBO, coverage, and inter-cell inter-
ference coordination (ICIO)) into cognitive cellular network
functions. It was noted that MRO and LBO are the two most
suitable functions for Q-learning due to their similar states in
BSs. The proposed algorithm investigated the sensitivity of
HCPs when changes occur in the UE’s velocity. In relation to
the MRO function, Q-learning based MRO solution has the
ability to learn the setting of TTT and HOM.

Maximizing the throughput and minimizing the number
of HOs are essential for achieving optimal triggering points.
Abdelmohsen et al[32] proposed a Q-learning optimization
algorithm to maximize the system throughput, minimize the
total number of HOs, and reduce the system delay over
three different UE speed scenarios (10 km/hr, 60 km/hr, and
160 km/hr). System delay is defined as the time duration
from the arrival time of the queuing packet at the eNB buffer
to the current time. Q-learning was used to determine the
optimum triggering points of HOM and TTT. The proposed
algorithm exhibited system performance enhancements in
terms of throughput (15% increment), HOs (30% reduction),
and delay as compared to the enhanced mobility state estima-
tion algorithm mentioned in [80].

Hegazy et al. proposed a fuzzy Q-learning algorithm to
self-optimize two conflicting problems: RLFs and ping-
pongs [14]. The contradiction indicates that the former
requires decreased HOM to mitigate late HO, while the lat-
ter requires increased HOM. The algorithm was presented
according to the categorization of users, such as the speed
and traffic load of eNBs. These categories are as follows:
slow speed real time users, slow speed non-real time users,
high-speed real time users, and high-speed non-real time
users. Various HOM and TTT with user categorizations were
analyzed by assessing their changing effects on the system.
The proposed algorithm revealed an increment of 5.4% in the
total HO rate and 6.2% for the compared algorithm in the
literature (i.e., fuzzy Q-learning).

A joint optimization algorithm between load balancing and
MRO based on the fuzzy system and Q-learning mechanism
was proposed in [33]. The fuzzy system adjusts HO parame-
ters to enhance system performance, which is then optimized
by the Q-learning algorithm to select the most suitable action
from the load balancing and MRO. The fuzzy system also
makes decisions based on the previous actions measured by
the KPIs. The proposed algorithm was presented to solve
the conflict between the two SON entities (LBO and MRO).
This contradiction requires an additional entity, such as a
coordinator, to manage the discrepancy and reduce system
complexity. However, the proposed algorithm demonstrated
the effective enhancement in traffic congestion mitigation
and HO reductions. TTT should be applied as an additional
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TABLE 3. Optimizing the HCPs of MRO using reinforcement learning.

parameter since it is the most significant control parameter in
the MRO function.

The optimal selection of target eNBs and accurate trigger-
ing points require further optimizations to reduce the HOF
and HOPP effects. To select an ideal target eNB, several HO
parameters with precise settings are necessary.

These parameters include the received signal reference
quality (RSRQ), current load on eNB, uplink SINR, as well
as the moving direction and location of UEs. Goyal et al.
proposed the AHP-TOPSIS method for the optimal selection
of the target eNB [34]. To obtain optimum eNB, appropriate
ranking of each UE should be provided by the AHP-TOPSIS
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method at the eNBs. The highest UE rank will be re-attached
to its eNB and considered as optimal. The ranking criterion of
the UE is based on the running applications of the UEs (delay
sensitive and speed sensitive applications) or high definition
videos. Priority is given to delay sensitivity applications so as
to avoid latency issues. After selecting the best target eNB,
the Q-learning approach is proposed for the proper setting
of TTT and HOM. The coverage size and time duration
required by the UE in the area are expected to obtain the
optimum triggering value. For the best triggering points,
Q-learning was used as the final stage before HO execution.
The reductions of theHOF rate andHOPPwere 28% and 25%
in the conventional method, and 35% and 33% for the fuzzy
multiple-criteria cell selection scheme.

In [38], HO was considered for visible light communica-
tion (VLC). In this paper, Shao et al. proposed a comprehen-
sive and flexible framework that controls self-optimization at
the centralized coordinator based on the Q-learning approach.
This centralized coordinator is located at LTE eNB to con-
trol the HO parameters of all VLC access points under the
LTE eNB coverage. In previous works, non-comprehensive
investigations were conducted to solve the problem of access
point-user association of heterogeneous radio-optical net-
works. However, previous research had either focused on
quasi-static network selection or only considered vertical
HO dwell time from optical to radio. The assumption of
the quasi-static method causes outdated decisions for high
mobile scenarios since it ignores the significance of the dwell
time vertical HO from radio to optical, and only focuses on
optical to radio HO. The optimum signal quality of these
analyses are unsatisfactory due to frequent disconnections.
Designed Q-learning based algorithm maximizes the average
throughput by learning the best sequence of TTTs. It has been
noted that the average throughput of small TTT space will
not decrease to a very low value (below 90 Mbps) during the
training process of online Q-table. The outcomes revealed
that 25% improvement in average throughput was achieved
by the proposed Q-learning based algorithm when compared
to the fixed TTT scheme.

Customer expectations are increased as a result of the
improvement of the network capabilities. Operators have
been pushed by these developments to re-focus their attention
from network performance to end user opinion (i.e., quality
of experience (QoE)). For this reason, María et al. proposed
QoE-aware Q-learning algorithm for the MRO function to
reduce the ratio of HOPP and RLF [39]. Several facilities
were examined such as video streaming, web browsing, file
download service, and voice over internet protocol. The
study was deployed over LTE network with constant mobile
speed scenarios (i.e., 30 km/hr and 70 km/hr). Moreover,
randomway point was applied as a mobility model. The main
objective of this study is to find the optimal setting value
for the TTT and HOM. However, Q-MRO and QoE-aware
algorithms were addressed. The first experiment has been
optimized without considering QoE-edges. Hence, the HO
performance is enhanced at the cost of degrading the QoE

of the users at the cell edges by 0.2 mean opinion score.
The measurement scale of the QoE (i.e., mean opinion score)
ranges from 1 (bad) to 5 (excellent).

In [40], a distributed reinforcement learning was proposed
to adapt the UE mobility along with proposing ML-based
algorithm (i.e., transfer learning based algorithm) for a
dynamic network topology adaption. The main objective of
the proposed algorithm is to optimize the HOM, TTT and
CIO over a dynamic small BSs to minimize the ratio of the
HOF and HOPP. Furthermore, two steps were considered
for the HO optimization. First step is to achieve the prior
knowledge as a coarse optimization while, in the second
step, the knowledge have been utilized using reinforcement
learning to auto-tunes the HCPs (i.e., HOM, TTT, and CIO).
In addition, the study has applied a random mobility model
with twomobile speed scenarios (i.e., 30 km/hr and 70 km/hr)
over a simulation environment of 12 small BSs. In addition,
Manhattan grid mobility model is used at speed of 5 km/hr
and 30 km/hr. The proposed algorithm’s adaptation time
was 4.17 % shorter than the comparative machine–based
algorithm. Furthermore, 416 % was the enhancement in the
satisfaction rate at UE’s speed of 5 km/hr compared to MRO
algorithm based on classification [57], and Q-learning-based
MRO [31]. In addition, the adaption time reduction at speed
of 5 km/hr was 4.17 minutes compare to 100 minutes and
79.17 minutes in [57] and [31], respectively.

Very high mobile speed scenarios requires a steady con-
nection during the transition of UE’s from one BS to another.
Moreover, high number of connected devices in ultra-dense
networks need a proper HO algorithm to auto-tunes the TTT
and HOM. Therefore, Raja et al. proposed learning-based
intelligent mobility management mechanism to self-optimize
the TTT and HOM based on HOF, latency, and through-
put [41]. Kalman filter has been used to predict the RSRP
of the serving and target BSs. Consequently, the target
BS will be chosen by state-action-reward-state-action-based
reinforcement learning. Then, ε-greedy policy is used for
auto-tuning the TTT and HOM. Furthermore, a prototype
for learning-based intelligent mobility management has been
created using the network simulator (NS-3) over 5G deploy-
ment scenario. In addition, several mobile speed scenarios
(i.e., 50 km/hr, 100 km/hr, 150 km/hr, 200 km/hr, 250 km/hr,
300 km/hr, 350 km/hr) were applied in [41]. However, the
results show that the average throughput of the proposed
mechanism is 19 % and 68 % higher than the mechanisms
applied in the literature which are the reliable extreme mobil-
ity [85] and contextual multi-armed bandit [86], respec-
tively. Besides, the applied mechanism shows a reduction by
28 % and 42 % in packet loss rate compared to [85] and
[86], respectively. During high mobile speed scenario (i.e.,
350 km/hr), the HOF rate of the presented mechanism shows
a 2 % and 44 % reduction over [85] and [86], respectively.

In [42], a software defined network-enabled based on
TOPSIS and deep recurrent Q-network HO strategy is applied
to automatically adjust the TTT and HOM. TOPSIS used
to preselect the target BS based on the RSRP, SINR, and
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traffic load. Then, the software defined network controller
auto-tunes the TTT and HOM using deep reinforcement
learning-based according to the selected target BS. In addi-
tion, The KPIs used in [42] include HOF, HOPP, and through-
put to show how well the configuration of TTT and HOM
is. Besides, random waypoint mobility was applied over
LTE ultra-dense small BSs. However, the proposed algorithm
shows an improvement in HOF by 55.93%, 45.17%, and
38.13% compare to traditional HO algorithm [87], upper con-
fidence bound algorithm [88], and Q-learning algorithm [34],
respectively. Furthermore, HOPPs were reduced by 66.85%,
55.03%, and 43.5% compared to [87], [88], and [34], respec-
tively. In addition, the proposed algorithm shows increases in
throughput by 55.48%, 43.02%, and 24.26% compared to the
other algorithms presented.

Several ML types using different approaches have been
applied in the HO self-optimization field where optimum HO
settings with minimal human intervention are required. The
proposed methods significantly contribute towards reducing
system complexity and controlling the discrepancies between
HO parameter objectives. Although all common ML types
(supervised, unsupervised, and reinforcement learning) have
been used, further assessments are needed to achieve an
efficient algorithm that can obtain optimal values for HCPs
(TTT and HOM). The anticipated release of the 3GPP speci-
fications modeled for 5G systems are still required for further
research. With the advancement of transportation systems,
speed scenarios can reach up to 500 km/hr. Preserving con-
nection quality is a critical issue in mobility management.

V. ENHANCING MOBILITY ROBUSTNESS OPTIMIZATION
FUNCTIONS FOR FUTURE NETWORKS
Several studies have been addressed for achieving the optimal
triggering value for the HCPs in MRO functions. However,
these studies have optimized the HCPs using various algo-
rithms with several deployment scenarios, KPIs, and different
mobile speed scenarios.

A. VELOCITY-AWARE AND TOPOLOGIES IN FUTURE
MOBILE NETWORK
As for homogeneous networks, numerous efforts have been
made for auto-tuning the HCPs based on mobility state esti-
mation by counting the number of HOs according to the
UE’s speed. However, at HetNet environments where the
random deployments of the different cell sizes are used,
self-optimizing HCPs still a complex task compared to those
in homogeneous.

High mobility scenarios in ultra-dense HetNets may create
a large number of frequent HOs which will subsequently
increase the system mobility issues (i.e., too late HO, too
early HO, and HO to wrong cell). Therefore, MRO function
aims to detect and correct these mobility issues through a
proper optimization settings of the TTT and HOM. More-
over, drones’ usage has increased rapidly nowadays with high
capabilities to serve in future mobile network and offering
a numerous solutions in several environments. But, drones’

velocity-aware are required since high speed may lead to
increasing in HO rates, HOPP, RLF. Therefore, several MRO
studies based on UE’s speed have been extensively addressed
in our work [55].

Based on the algorithms addressed in this study, HCPs of
the MROwere optimized under a several network topologies.
These topologies includes 5G network [8], [41], [48], [89],
HetNet [23], [30], [38], [56], [59], [60], [71], [75], [82],
LTE-network [14], [29], [32], [33], [34], [39], [70], [74], [76],
[77]. Moreover, several network topologies are addressed in
Tables 2, 3. However, these topologies have a direct impact
on system performance especially when high-speed scenarios
are applied. Nowadays, 5G network and beyond has the abil-
ity to support high-speed scenarios up to 500 km/hr as shown
in Fig. 1. The case will be more critical when implementing
a small dense millimeter waves (mm-waves). Hence, large
number of frequent HOs will occur which may increase the
ratio of unnecessary HOs, RLF and HOPP. Therefore, further
investigations are needed to came out with the effective algo-
rithm that is suitable with the requirements and specifications
of the future mobile HetNets.

B. MOBILITY MODELS FOR MRO FUNCTION
This subsection presents themobilitymodels used in previous
MRO with ML studies presented in the literature until now.
Manhattan mobility model is used in [23] and [24] where
the user is moving either in vertical or horizontal direction.
In [21] the user is moving randomly based on the neural net-
work predictions. The authors in [26] addressed two mobility
models: randomwalkmobility model for the indoor scenarios
at speeds up to 10 km/hr, and Manhattan mobility model
which used for outdoor scenarios at speeds between 30 km/hr
and 60 km/hr. Random waypoint mobility is applied in [14],
[27], [28], [30], [32], [33], [34], [38], and [42]. The users
moving in fixed straight forward direction in [29]. Article
[31] applied random walk mobility model. Manhattan grid
mobility model and random way point mobility model are
presented in [40], the random way point mobility model used
in pedestrian environment at user speed of 5 km/hr. Constant
velocity mobility model is introduced in [41].

VI. MACHINE LEARNING TECHNIQUES FOR MOBILITY
ROBUSTNESS OPTIMIZATION FUNCTIONS
In recent years, ML has proven to be significant in achieving
ideal HO triggering points by self-optimizing HO parame-
ters in a dynamic environment. However, 5G wireless net-
works vary from ML in terms of their individual research
fields. Wireless networks combined with ML can learn and
extract data when interacting within a dynamic environment.
Enabling ML in future wireless networks (5G and beyond)
will increase the capabilities of user mobility estimations,
HO self-optimization, and decision-making, thereby creat-
ing cost effective networks. Fig. 2 presents the integration
of ML with a wireless communication system as a method
for solving issues related to MRO functions. Ultra-dense
HetNets with different speed scenarios and several deployed
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environments as well as the traffic loads of the serving and
the target BS are addressed in Fig. 2. Dataset was col-
lected from different BSs that belong to various radio access
technologies to model the potential application. As shown
in Fig. 2, with introducing the ML techniques, the com-
plexity of the future mobile communication systems can be
reduced through predicting the target BS based on the dataset
collected. Moreover, deep learning has been introduced in
Fig. 2 since it has the capabilities for eliminating undesired
datasets which will subsequently reduce the storage issues
[27]. Nowadays, by considering a deep learning, the ML
community achieved a huge leap toward the success of many
ML tasks [43].

This section extensively examines the different ML
types for HO self-optimization. The survey focuses on the
optimization of control parameters in the MRO function.
Unlike traditional programing, ML depends on learning from
the input data to predict the desired output. Based on the
method of learning, ML has been classified into three cate-
gories: supervised ML, unsupervised ML, and reinforcement
learning. The following sections further explain the ML algo-
rithms proposed by previous studies in MRO functions.

A. SUPERVISED ML FOR MRO
Supervised learning is considered as one of themain solutions
that can efficiently solve MRO in future mobile networks.
In supervisedML, a labeled input data is fed to the network to
connect to a labeled output data. However, when the labeled
data is continuous, it is considered as a regression problem.
The main goal of supervised ML is to obtain an effective
algorithm that can obtain accurate predictions of new data
based on the relationship of the labeled input and output data,
as shown in Fig. 3. In addition, Fig. 3 represents an overview
of how the data are collected from the wireless networks. Due
to the confidentiality of revealing the wireless communica-
tion datasets, synthetic data including measurement reports,
such as RSRP, traffic load, SINR, andmobile speed scenarios,
are generated for optimizing the HCPs of theMRO. However,
different deployment scenarios create different datasets since
the measurement report’s values will be different. The trained
ML algorithms shown in Fig. 3 are addressed in Table 2 as this
work is only related to MRO functions.

The formulation of supervised ML further contains a train-
ing dataset of instances x corresponding to its label y. Next,
the ML algorithm aθ (neural network, linear model, decision
tree, etc.) will assign all addressed instances to labels.

aθ (x)→ y (1)

The predictor quality of performance is measured by using
the loss function:

L(y, aθ (x)). (2)

The loss function can be minimized by obtaining parameter
θ ′, as in the following equation:

θ ′← argmin
a

L(y, aθ (x)) (3)

The studies addressed in [21], [22], [23], [24], [25], [26],
and [27] have used supervised ML as a method for solv-
ing issues related to HO self-optimization in HetNets. The
supervised ML techniques that have been used in MRO stud-
ies include linear regression, K-nearest neighbor, extreme
gradient boosting, categorical boosting, deep neural network
(i.e., rectified linear unit and SoftMax function), and neural
network multilayer perceptron. The research of [21], [25],
and [27] presented recurrent neural network techniques for
HO optimization in 5G networks. The authors in [21] applied
neural networks to utilize the offsets of MRO and LBO.
The LBO offset is used when the serving BS is overloaded,
otherwise, theMRO offset is applied. TheML framework and
the heuristic technique was highlighted by [22] to optimize
HCPs (HOM and CIO) by maximizing the SINR. The neu-
ral network multilayer perceptron method was employed by
[23] and [24] to reduce connection failures and unnecessary
HOs in MRO. These studies were conducted for various
environments using different evaluated parameters. This has
led to significant variations regarding their performances and
accuracies.

Obtaining a training dataset become a challenging problem
due to dataset protection and regulation from the communi-
cation companies. However, the supervised studies presented
in the literature have generated their own synthetic dataset
by using several simulators (i.e., Matlab, LTE-simulator,
and ray-tracing based industry grade system-level simulator)
except authors in [21] have collected their data from two BSs
located in Lviv city.

B. UNSUPERVISED ML FOR MRO
Unsupervised learning techniques are key solutions for solv-
ing MRO challenges. They can contribute towards obtaining
efficient algorithms in future mobile networks. In unsuper-
vised learning, data is unlabeled. The main goal of this
technique is to determine regular patterns from the training
data [46], [43]. Clustering is another ML process that has
proven to achieve excellent results in wireless networks when
edge devices are grouped together. It can be defined as a
process of combining data into similar individual units of
each user [90]. Unsupervised ML (K-means clustering algo-
rithm) was proposed by [28] to allow the in-building system
to autonomously learn and identify characteristic patterns in
the signal strength received from users as they approach the
BS edge. The dataset in [28] was generated experimentally by
deploying two LTE in- building systems in two buildings of
the university campus. The operating LTE frequency applied
were 2.1 and 2.6 GHz. Ref. [28] also used the MRO func-
tion to optimize TTT for system performance, as explained
in Section IV.

C. REINFORCEMENT LEARNING FOR MRO
Reinforcement learning is highly effective in tackling prob-
lems related to unpredictable network environments [91].
It can obtain optimum HO triggering values by predicting
future decision policies based on the feedback of previous
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FIGURE 2. ML for future mobile communication systems.

decisions [92], [93]. Reinforcement learning has the ability
to interact with the network environment without requiring
any previous dataset or knowledge of any future changes in
a dynamic environment [94]. When the agent interacts with
the environment in reinforcement learning, the environment
responds with either punishment or reward. The agent then
optimizes its behavior based on these responses to minimize
the punishments and maximize the rewards [95].

Most studies throughout the literature have highlighted
reinforcement learning as a promising solution for achieving
optimum HO triggering values. These studies are classified
as follows:

The fuzzy Q-learning technique was addressed in
[14],[29], [30], and [33]. The research of [31], [32], [35], [38],
[39], [40] also presented the Q-learning technique for obtain-
ing ideal HCP settings. Other techniques (i.e., AHP-TOPSIS,
subtractive clustering, subtractive clustering with FLC, and
TOPSIS deep learning) integrated with Q-learning were also
addressed in [34], [36], [37], [42].

1) Q-LEARNING
Q-learning is a model-free off-policy reinforcement learning
algorithm that does not require models to solve learning
problems [31]. Q-learning has played a vital role in learn-
ing and improving network solutions through experience.
Equation (4) represents the Q-learning technique for deter-
mining the best Q-values based on the framework process of
reinforcement learning[96]:

Q(st ,At )← Q(st ,At )+ α[Rt+1
+ (max

a
Q(st+1, a))− (st ,At )] (4)

where Q(st ,At ) is the current action-value function, α is the
learning rate, Rt+1 is the expected reward at the next time
step, is the discount factor, and max

a
Q(St+1,a) is an estimate

of the ideal future action-value function at the next time step
over all possible actions [97]. The Q-learning framework con-
sists of state, action, and reward functions. The optimal policy
is provided from a set of Markov decision processes [36].

The Q-learning algorithm was addressed in the HO self-
optimization field in [31],[32], [35], [38], [39], and [40].
The authors in [31] proposed Q-learning to advance SON
functions into cognitive cellular network functions. Self-
optimization functions (MRO, LBO, CCO, and ICIO) were
mapped to Q-learning. Table 3 presents the scenario, HCPs,
KPIs, and simulation tool, as highlighted in article [31].
Ref. [32] proposed a Q-learning optimization algorithm to
solve the issues related to HOs, throughput, and delay within
the LTE network. The study objective is to determine the opti-
mum triggering points of HOM and TTT over three different
UE speed scenarios (10 km/hr, 60 km/hr, and 160 km/hr).
In [35], a novel method was suggested to enhance the UE’s
HO based on the RSRP using Q-learning. The study was
conducted to increase the RSRP average link beam gain in
5G cellular networks. The authors in [38] further suggested
a framework which controls self-optimization at the cen-
tralized coordinator based on the Q-learning approach. The
designed Q-learning based algorithm can maximize the aver-
age throughput by learning the optimal sequence of TTTs.
It is considered as an appropriate study for managing the
dynamic environment of HetNets. QoE-aware Q-learning
algorithm was addressed using HOPP and RLF as a KPIs to
optimize the TTT and HOM [39]. The UEsmove at low speed
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FIGURE 3. Concept of supervised ML in mobile communication systems.

scenarios (i.e., 30 km/hr and 70 km/hr). Furthermore, [39]
has addressed a random waypoint mobility model over LTE
network. In [40], Q-learning algorithm over a 12 small BSs
deployement scenario was presented to optimize TTT, HOM,
and CIO using HOF and HOPP. Mobility models include ran-
dom waypoint mobility and Manhattan grid mobility model
were applied in [40].

2) Q-LEARNING WITH OTHER TECHNIQUES
This section examines the various techniques combined with
Q-learning.
• FUZZY Q-LEARNING

FLC has been used in several research involving MRO
functions, such as in [29], [30], [14], and [33]. The
authors in [29] proposed the fuzzy Q-learning tech-
nique to minimize HOF, HOPP, and CDR with the
use of the MRO function. However, the study was
based on the LTE network. The same technique (fuzzy
Q-learning) was then proposed in [30] to optimize
HOM and TTT by enhancing HOR and CDR using the
A3 triggering event. The LTE network was the deploy-
ment scenario in [30]. In [14], fuzzy Q-learning was
offered to self-optimize the two contradictory issues
of the MRO functions (i.e., RLFs and HO ping-pongs)
within the LTE environment. The authors in [33] sug-
gested a joint optimization algorithm between load
balancing and MRO based on the fuzzy system and
Q-learning mechanism. The KPIs (HOR, CBR, and
CDR) were also applied to enhance the HCPs (HOM
and traffic load). The aim of [33] is to solve the dis-
crepancy between LBO and MRO.

• Q-LEARNING WITH SUBTRACTIVE
CLUSTERING
Various studies have addressed Q-learning with
subtractive clustering, such as in [36] and [37]. The
advantage of subjective clustering is its ability to trans-
form the input matrices into state vectors to enhance
the training process.
The authors in [36] proposed Q-learning with subtrac-
tive clustering techniques for optimal HO settings in 5G
ultra-dense networks. RSRP, SINR, and transmission

distance are the performance matrices collected by
the UE as historical data to improve the KPIs (HOF,
HOPP, and latency). Ref. [37] proposed the subtractive
clustering and Q-learning with the fuzzy logic-based
algorithm. RSRP, SINR, and transmission distance
were considered as input metrics to enhance system
performance by investigating HOPP, HOF, throughput,
and latency. The deployment scenario of [37] was based
on the 5G HetNet.

• TOPSIS DEEP REINFORCEMENT LEARNING
A unique study in MRO functions was presented in
[42]. TOPSIS deep Q-learning algorithm is proposed
to self-optimize TTT and HOM based on RSRP, SINR,
and traffic load. HOF, Throughput, and HOPP were
applied as a KPIs. The aim of TOPSIS technique and
deep reinforcement learning mainly deep Q-learning
is to preselect the target BS and auto-tunes TTT and
HOM, respectively. Furthermore, the users are moving
based on random waypoint mobility model over LTE
ultra-dense small BSs.

• Q-LEARNINGWITH AHP-TOPSIS
To the best of our knowledge, [34] is the only study that
addressed the MRO function using AHP-TOPSIS and
Q-learning. TheAHP-TOPSISmethodwas used for the
selection of optimum target BS to enhance connection
quality. Next, the Q-learning approach was used for the
ideal setting of TTT and HOM. HOF and HOPP were
the two KPIs used [34], as mentioned in Section IV.

VII. ISSUES AND FUTURE WORK DIRECTIONS
Several studies have been conducted regarding MRO algo-
rithms. This section discusses the various issues followed
by future work directions for each issue to facilitate further
research in this field.

A. SLOW PROCESSING AND STORING ISSUES OF DATA
The Q-learning algorithm has been widely employed to solve
MRO problems. However, this type of traditional reinforce-
ment learning algorithm (Q-learning) faces the issue of main-
taining and storing significantly large tables of immediate
Q-values in mobile devices, thereby deteriorating system
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FIGURE 4. Deep reinforcement learning in mobile networks.

performance [92]. To overcome the limitations of rein-
forcement learning, deep reinforcement learning has been
suggested as a potential solution in the field of wireless
communication [93]. Fig. 4 presents our integration design of
reinforcement learning with deep learning to achieve an opti-
mal HO triggering setting for wireless systems. The figure
shows that the optimal selection value is based on state-
action- reward process. Therefore, the HO decision relays
on the highest reward achieved. The HO decision using
deep reinforcement learning can be obtained through the
integration with the network environment without a need
of a dataset which will give a significant indication for the
network operators to use this technique with the dynamic
network environments. However, deep reinforcement learn-
ing is a promising tool for enhancing the performance of
future wireless network generations (5G and beyond). It has
less memory requirements for storing the model’s parameters
and can mitigate slow processing and computations that face
traditional reinforcement learning algorithms.

B. SUBOPTIMAL OPTIMIZATION ALGORITHMS
The HO triggering algorithms deployed in 4G cellular net-
works are inefficient for 5G cellular network application due
to different specifications and requirements [2]. In coming
years, the speed of user-connected devices will increase by
up to 500 km/hr due to advancements in transportation sys-
tems. This will be a critical concern in mobility management.
Further evaluations are required to achieve optimum HO for
MRO functions that can meet the requirements of future
wireless communication networks (5G and beyond). These
evaluations must consider effective HCPs with enough KPIs
to enhance system performance and accuracy. Moreover, for
algorithm optimality, several optimizations should be avoided
when optimizing the HCPs of the MRO function:

FIGURE 5. Handover challenges in ultra-dense networks.

• Central optimization: It has a negative impact on system
performance since the HCPs setting values are applied
to all users during HO regardless of the user experience.
However, distributed optimization should be applied to
each user individually since they face their own mobility
status such as speed, RSRP, and SINR.

• Partial HO optimization: It causes quality connection
issues. For instance, ignoring one of the control parame-
ters such as TTT or HOMmay lead to inaccuracy of HO
optimization. Thereby, deteriorate system performance.

Therefore, up to date, no optimal HO optimization algo-
rithm has been achieved to self-optimize the TTT and HOM
precisely.

C. MASSIVE CONNECTED DEVICES WITH
ULTRA-DENSE NETWORKS
In future mobile communication networks, unplanned
deployments of heterogeneous ultra-dense SBSs and the
number of connected devices will dramatically increase,
as shown in Fig. 1. The implementation of vast amounts
of SBSs per unit area using mm-waves will dramatically
increase due to their short transmission range [98], [99]. This,
in turn, will lead to several HO problems.

The anticipated challenges are illustrated in Fig. 5.
As shown in the figure, high HO rate, unnecessary HOs,
ping-pong HOs, signaling load, and RLF can dramatically
increase due to ultra-densification. Addressing the conse-
quences of HO management issues require further investi-
gations. Models that can preserve connection quality during
HOs and obtain robust mobility functions must be developed.
Applying dual connectivity may contribute to minimizing
RLF in dense network deployments since the UE is connected
to more than one target BS.

D. INSUFFICIENT DATASET ACCESSIBILITY
Due to the protection regulation of data, obtaining sufficient
and effective data to implement in the training model with
the use of ML has become a challenging issue. Acquiring
a dataset that includes measurement reports of the UE’s
mobility in HO optimization is extremely difficult. Thus,
datasets are generated using several network simulators and
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subsequently employed for the training model. Sufficient
and high-quality datasets are required as an authentication
reference for different ML models. They can also be applied
as a benchmark to measure the accuracy of ML models that
will potentially be used in HO optimization.

E. DEVICE POWER UTILIZATION
Ultra-dense SBSs will be deployed in future mobile com-
munication networks (5G and beyond) since these networks
will implement mm-wave frequency spectrums [100], [101],
[102]. Such large deployment scenarios require different
systems (intra-system and inter-system), creating a complex
HO process with different/similar radio access technologies
[103]. The UE’s measurement reports will further rise as
long as the number of mm-wave frequency spectrums in
ultra-dense SBSs increase. This will subsequently raise the
UE’s power consumption [104]. The process of locating and
updating UEs within the network environment are essen-
tial processes in mobility management. The two procedures,
known as tracking area update and paging, may increase
the signaling overhead and power consumption in LTE and
the 5G network [105]. The power consumption data can be
acquired by predicting the cell location of the UE using the
history information (i.e., UE’s exact location, direction, and
speed) [106], [107].

F. HIGH MOBILITY USERS DURING HANDOVERS
Nowadays, high speed scenarios including travelling trains
and dronesmay reach up to 500 km/hr whichwill create a crit-
ical challenge for mobility management [89]. Subsequently,
large number of the frequent HOs can be created due to
quick occurrence of HOs which will lead to increasing in
the ratio of HOPPs and RLFs. Thereby, deteriorate the qual-
ity connections. However, conditional HO is addressed as a
promising solution for minimizing the ratio of unsuccessful
HOs. Conditional HO defined as preparing a target BSs in
advance to preserve the quality connection during HOs[102],
[108], [109].

G. CONTRADICTION IN OBJECTIVES BETWEEN
OPTIMIZATION PARAMETERS AND ALGORITHMS
The conflict in objectives between MRO issues (i.e., too
late HO and too early HO) requires a proper setting value
for the TTT and HOM. For instance, too late HO requires
decreasing in TTT interval to avoid high RLF, while too early
HO requires increasing in TTT interval to avoid high HOPP
[8], [55]. This conflict between RLF and HOPP requires a
proper configuration of the HCPs to reach to an optimal HO
triggering. Furthermore, MRO function has a conflict with
LBO function since they are using the same control parameter
(i.e., HOM) [33], [49], [110]. Therefore, for enhancing
the stability and reliability of the communication sys-
tem performance, a proper HO self-optimization algorithm
that is able to accurately auto-tunes HCPs during HOs is
required.

TABLE 4. List of abbreviations in alphabetical order.

H. IGNORING QOE IN THE CELL EDGES
Majority of studies focused in reducing the mobility issues
such as RLF, HOPP, and HOF without taking a consideration
of QoE. However, QoE-aware in the edges of the BS brings
UE’s satisfaction which is a major concern for network oper-
ators. Therefore, improving the QoE in the BS’s edges while
enhancing the successful HO rates for the MRO is required
for further studies.

However, introducing 5G-enabled technologies (i.e., edge
computing, cloud radio access network, decentralization, and
multiple-input multiple-output) are essential for enhancing
the system performance. These 5G-enabled technologies may
contribute for reducing the latency and increase the spectral
efficiency.

VIII. CONCLUSION
MRO studies that employ ML techniques have been compre-
hensively discussed in this survey to help researchers deter-
mine the use of ML as well as which type of ML to choose.
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Various state-of-the-art ML algorithms that were deployed
throughout several scenarios with different parameters have
been addressed in this survey.Moreover, each study addresses
deployment scenario, ML type, methodology used, criteria,
HCPs, KPIs, simulators, and achievements. It can be seen that
differences in system performance and accuracies are present.
Based on these differences, researchers can determine the
most effective method that fits their research work. Further-
more, MRO functions under different network topologies are
deeply addressed. Besides the MRO challenges for intra-
system and inter-system mobility are discussed. In addition,
this study presented a several issues for further investigations.
These significant issues have been highlighted for future
investigations. Furthermore, future directions of the MRO
functions are addressed, such as deep reinforcement learning,
conditional HO, and dual connectivity. However, achieving
an optimal setting value for the HCPs of the MRO still far
behind.

APPENDIX A
See Table 4.

REFERENCES
[1] M. E. Morocho-Cayamcela, H. Lee, and W. Lim, ‘‘Machine learning for

5G/B5Gmobile and wireless communications: Potential, limitations, and
future directions,’’ IEEE Access, vol. 7, pp. 137184–137206, 2019.

[2] Study on Scenarios and Requirements for Next Generation Access Tech-
nologies, 3GPP document TR 38.913 Version 16.0.0 Release, 2020.

[3] Ericsson Mobility Report, Ericsson, Stockholm, Sweden, Jun. 2022.
[4] X. Zhang, ‘‘HetNet optimization,’’ in LTE Optimization Engineering

Handbook, Ed. Singapore: Wiley, 2017, pp. 741–751.
[5] B. Rong, X. Qiu, M. Kadoch, S. Sun, and W. Li, 5G Heterogeneous Net-

works: Self-Organizing and Optimization. Cham, Switzerland: Springer,
2016.

[6] A. Anpalagan, M. Bennis, and R. Vannithamby, Design and Deployment
of Small Cell Networks. Cambridge, U.K.: Cambridge Univ. Press, 2016.

[7] H.-S. Park, Y. Lee, T.-J. Kim, B.-C. Kim, and J.-Y. Lee, ‘‘Faster recovery
from radio link failure during handover,’’ IEEE Commun. Lett., vol. 24,
no. 8, pp. 1835–1839, Aug. 2020.

[8] S. Alraih, R. Nordin, I. Shayea, N. F. Abdullah, A. Abu-Samah, and
A. Alhammadi, ‘‘Effectiveness of handover control parameters on han-
dover performance in 5G and beyond mobile networks,’’ Wireless Com-
mun. Mobile Comput., vol. 2022, pp. 1–18, Mar. 2022.

[9] A. Karandikar, N. Akhtar, and M. Mehta, Mobility Management in LTE
Heterogeneous Networks. Singapore: Springer, 2017.

[10] M.-T. Nguyen and S. Kwon, ‘‘Geometry-based analysis of optimal han-
dover parameters for self-organizing networks,’’ IEEE Trans. Wireless
Commun., vol. 19, no. 4, pp. 2670–2683, Apr. 2020.

[11] T. A. Achhab, F. Abboud, and A. Assalem, ‘‘A robust self-optimization
algorithm based on idiosyncratic adaptation of handover parameters for
mobility management in LTE–A heterogeneous networks,’’ IEEE Access,
vol. 9, pp. 154237–154264, 2021.

[12] M. Tayyab, X. Gelabert, and R. Jäntti, ‘‘A survey on handover manage-
ment: From LTE to NR,’’ IEEE Access, vol. 7, pp. 118907–118930, 2019.

[13] E. Gures, ‘‘A comprehensive survey on mobility management in 5G
heterogeneous networks: Architectures, challenges and solutions,’’ IEEE
Access, vol. 8, pp. 195883–195913, 2020.

[14] R. D. Hegazy, O. A. Nasr, and H. A. Kamal, ‘‘Optimization of user
behavior based handover using fuzzy Q-learning for LTE networks,’’
Wireless Netw., vol. 24, no. 2, pp. 481–495, Feb. 2018.

[15] E. Gures, I. Shayea,M. Ergen,M.H. Azmi, andA. A. El-Saleh, ‘‘Machine
learning based load balancing algorithms in future heterogeneous net-
works: A survey,’’ IEEE Access, vol. 10, pp. 37689–37717, 2022.

[16] B. Zhang, ‘‘Handover control parameters optimisation in LTE networks,’’
Ph.D. dissertation, Dept. Electron. Elect. Eng., Univ. Sheffield, Sheffield,
U.K., 2018.

[17] W. K. Saad, I. Shayea, B. J. Hamza, H. Mohamad, Y. I. Daradkeh,
and W. A. Jabbar, ‘‘Handover parameters optimisation techniques in 5G
networks,’’ Sensors, vol. 21, no. 15, p. 5202, Jul. 2021.

[18] J. Joseph, F. Ahmed, T. Jokela, O. Tirkkonen, J. Poutanen, and J. Niemela,
‘‘Big data enabled mobility robustness optimization for commercial LTE
networks,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
May 2020, pp. 1–6.

[19] Telecommunication Management; Self-Organizing Networks (SON) Pol-
icy Network Resource Model (NRM) Integration Reference Point (IRP);
Information Service (IS), 3GPP document TS 28.627 version 15.0.0
Release, 2018.

[20] Y. Sun,M. Peng, Y. Zhou, Y. Huang, and S.Mao, ‘‘Application ofmachine
learning in wireless networks: Key techniques and open issues,’’ IEEE
Commun. Surveys Tuts., vol. 21, no. 4, pp. 3072–3108, 4th Quart., 2019.

[21] B. Shubyn and T. Maksymyuk, ‘‘Intelligent handover management in 5G
mobile networks based on recurrent neural networks,’’ in Proc. 3rd Int.
Conf. Adv. Inf. Commun. Technol. (AICT), Jul. 2019, pp. 348–351.

[22] J. Shodamola, U. Masood, M. Manalastas, and A. Imran, ‘‘A machine
learning based framework for KPI maximization in emerging networks
using mobility parameters,’’ 2020, arXiv:2005.01474.

[23] P.-C. Lin, L. F. G. Casanova, and B. K. S. Fatty, ‘‘Data-driven han-
dover optimization in next generation mobile communication networks,’’
Mobile Inf. Syst., vol. 2016, Aug. 2016, Art. no. 2368427.

[24] S. Kumari and B. Singh, ‘‘Data-driven handover optimization in small
cell networks,’’Wireless Netw., vol. 25, no. 8, pp. 5001–5009, Nov. 2019.

[25] Z. Ali, M. Miozzo, L. Giupponi, P. Dini, S. Denic, and S. Vassaki,
‘‘Recurrent neural networks for handover management in next-generation
self-organized networks,’’ in Proc. IEEE 31st Annu. Int. Symp. Pers.,
Indoor Mobile Radio Commun., Aug. 2020, pp. 1–6.

[26] Z.-H. Huang, Y.-L. Hsu, P.-K. Chang, andM.-J. Tsai, ‘‘Efficient handover
algorithm in 5G networks using deep learning,’’ in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2020, pp. 1–6.

[27] B. Shubyn, N. Lutsiv, O. Syrotynskyi, and R. Kolodii, ‘‘Deep learn-
ing based adaptive handover optimization for ultra-dense 5G mobile
networks,’’ in Proc. IEEE 15th Int. Conf. Adv. Trends Radioelectron.,
Telecommun. Comput. Eng. (TCSET), Feb. 2020, pp. 869–872.

[28] D. Castro-Hernandez and R. Paranjape, ‘‘Optimization of handover
parameters for LTE/LTE—A in-building systems,’’ IEEE Trans. Veh.
Technol., vol. 67, no. 6, pp. 5260–5273, Jun. 2018.

[29] A. Klein, N. P. Kuruvatti, J. Schneider, and H. D. Schotten, ‘‘Fuzzy
Q-learning for mobility robustness optimization in wireless networks,’’
in Proc. IEEE Globecom Workshops (GC Wkshps), Dec. 2013,
pp. 76–81.

[30] J. Wu, J. Liu, Z. Huang, and S. Zheng, ‘‘Dynamic fuzzy Q-learning
for handover parameters optimization in 5G multi-tier networks,’’ in
Proc. Int. Conf. Wireless Commun. Signal Process. (WCSP), Oct. 2015,
pp. 1–5.

[31] S. S.Mwanje, L. C. Schmelz, and A.Mitschele-Thiel, ‘‘Cognitive cellular
networks: A Q-learning framework for self-organizing networks,’’ IEEE
Trans. Netw. Service Manag., vol. 13, no. 1, pp. 85–98, Mar. 2016.

[32] A. Abdelmohsen, M. Abdelwahab, M. Adel, M. S. Darweesh, and
H. Mostafa, ‘‘LTE handover parameters optimization using Q-learning
technique,’’ in Proc. IEEE 61st Int. Midwest Symp. Circuits Syst. (MWS-
CAS), Aug. 2018, pp. 194–197.

[33] P. Muñoz, R. Barco, and I. de la Bandera, ‘‘Load balancing and handover
joint optimization in LTE networks using fuzzy logic and reinforcement
learning,’’ Comput. Netw., vol. 76, pp. 112–125, Jan. 2015.

[34] T. Goyal and S. Kaushal, ‘‘Handover optimization scheme for
LTE-advance networks based on AHP-TOPSIS and Q-learning,’’ Com-
put. Commun., vol. 133, pp. 67–76, Jan. 2019.

[35] V. Yajnanarayana, H. Rydén, and L. Hévizi, ‘‘5G handover using rein-
forcement learning,’’ 2019, arXiv:1904.02572.

[36] Q. Liu, C. F. Kwong, S. Wei, L. Li, and S. Zhang, ‘‘Intelligent handover
triggering mechanism in 5G ultra-dense networks via clustering-based
reinforcement learning,’’ Mobile Networks and Applications, vol. 26,
pp. 27–39, Jan. 2021.

[37] Q. Liu, C. Foong Kwong, S. Wei, S. Zhou, and L. Li, ‘‘Reinforcement
learning-based joint self-optimisation method for the fuzzy logic han-
dover algorithm in 5G HetNets,’’ 2020, arXiv:2006.05010.

[38] S. Shao, G. Liu, A. Khreishah, M. Ayyash, H. Elgala, T. D. C. Little,
and M. Rahaim, ‘‘Optimizing handover parameters by Q-learning for
heterogeneous radio-optical networks,’’ IEEE Photon. J., vol. 12, no. 1,
pp. 1–15, Feb. 2020.

VOLUME 11, 2023 111149



W. Tashan et al.: Advanced MRO Models in Future Mobile Networks Based on ML Solutions

[39] M. L. Mari-Altozano, S. S. Mwanje, S. L. Ramirez, M. Toril,
H. Sanneck, and C. Gijon, ‘‘A service-centric Q-learning algorithm for
mobility robustness optimization in LTE,’’ IEEE Trans. Netw. Service
Manage., vol. 18, no. 3, pp. 3541–3555, Sep. 2021.

[40] M. T. Nguyen and S. Kwon, ‘‘Machine learning–based mobility robust-
ness optimization under dynamic cellular networks,’’ IEEE Access, vol. 9,
pp. 77830–77844, 2021.

[41] R. Karmakar, G. Kaddoum, and S. Chattopadhyay, ‘‘Mobility manage-
ment in 5G and beyond: A novel smart handover with adaptive time-
to-trigger and hysteresis margin,’’ IEEE Trans. Mobile Comput., early
access, Jul. 4, 2022, doi: 10.1109/TMC.2022.3188212.

[42] W. Huang, M. Wu, Z. Yang, K. Sun, H. Zhang, and A. Nallanathan,
‘‘Self-adapting handover parameters optimization for SDN-enabled
UDN,’’ IEEE Trans. Wireless Commun., vol. 21, no. 8, pp. 6434–6447,
Aug. 2022.

[43] M. Z. Asghar, M. Abbas, K. Zeeshan, P. Kotilainen, and T. Hämäläinen,
‘‘Assessment of deep learning methodology for self-organizing 5G net-
works,’’ Appl. Sci., vol. 9, no. 15, p. 2975, Jul. 2019.

[44] A. Nakouri, ‘‘Optimization handover in deep learning within LTE,’’
Ph.D. dissertation, Faculte desMathematiques et de l’Informatique, Dept.
d’Informatique-Option: RTIC, Universite Mohamed Boudiaf-M’sila,
M’Sila, Algeria, 2019.

[45] D. Mishra and A. Mishra, ‘‘Self-optimization in LTE: An approach to
reduce call drops inmobile network,’’ inProc. Int. Conf. Futuristic Trends
Netw. Commun. Technol., 2018, pp. 382–395.

[46] M. S. Mollel, A. I. Abubakar, M. Ozturk, S. F. Kaijage, M. Kisangiri,
S. Hussain, M. A. Imran, and Q. H. Abbasi, ‘‘A survey of machine
learning applications to handover management in 5G and beyond,’’ IEEE
Access, vol. 9, pp. 45770–45802, 2021.

[47] Universal Mobile Telecommunications System (UMTS); LTE; Telecom-
munication Management; Self-Organizing Networks (SON) Policy Net-
work Resource Model (NRM) Integration Reference Point (IRP); Infor-
mation Service (IS), 3GPP document TS 28.628 version 15.1.0 Release,
2019.

[48] I. Shayea, M. Ergen, A. Azizan, M. Ismail, and Y. I. Daradkeh, ‘‘Indi-
vidualistic dynamic handover parameter self-optimization algorithm for
5G networks based on automatic weight function,’’ IEEE Access, vol. 8,
pp. 214392–214412, 2020.

[49] P. Muñoz, R. Barco, and S. Fortes, ‘‘Conflict resolution between load
balancing and handover optimization in LTE networks,’’ IEEE Commun.
Lett., vol. 18, no. 10, pp. 1795–1798, Oct. 2014.

[50] H.-W. Ferng and Y.-Y. Huang, ‘‘Handover scheme with enode-B pre-
selection and parameter self-optimization for LTE–A heterogeneous net-
works,’’ in Proc. Int. Conf. Mach. Learn. Cybern. (ICMLC), Jul. 2016,
pp. 594–599.

[51] MRO Feature Parameter Description, Huawei Technol., China, 2016,
pp. 1–116.

[52] LTE; Evolved Universal Terrestrial Radio Access Network (E-UTRAN);
Self-Configuring and Self-Optimizing Network (SON) Use Cases and
Solutions, 3GPP document TR 36.902 version 9.3.1 Release, 2011.

[53] 5G; NR; NR and NG-RAN Overall Description; Stage-2, 3GPP docu-
ment TS 38.300 version 16.4.0 Release, 2021.

[54] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and
Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Over-
all Description; Stage 2, 3GPP document TS 36.300 version 15.9.0
Release, 2020.

[55] W. Tashan, I. Shayea, S. Aldirmaz-Colak, M. Ergen, M. H. Azmi, and
A. Alhammadi, ‘‘Mobility robustness optimization in future
mobile heterogeneous networks: A survey,’’ IEEE Access, vol. 10,
pp. 45522–45541, 2022.

[56] A. Alhammadi, M. Roslee, M. Y. Alias, I. Shayea, S. Alraih, and
K. S. Mohamed, ‘‘Auto tuning self-optimization algorithm for mobil-
ity management in LTE—A and 5G HetNets,’’ IEEE Access, vol. 8,
pp. 294–304, 2020.

[57] M. T. Nguyen, S. Kwon, and H. Kim, ‘‘Mobility robustness optimization
for handover failure reduction in LTE small-cell networks,’’ IEEE Trans.
Veh. Technol., vol. 67, no. 5, pp. 4672–4676, May 2018.

[58] M.-H. Song, S.-H. Moon, and S.-J. Han, ‘‘Self-optimization of handover
parameters for dynamic small-cell networks,’’Wireless Commun. Mobile
Comput., vol. 15, no. 11, pp. 1497–1517, Aug. 2015.

[59] A. Alhammadi, M. Roslee, M. Y. Alias, I. Shayea, and S. Alraih,
‘‘Dynamic handover control parameters for LTE—A/5G mobile commu-
nications,’’ in Proc. Adv. Wireless Opt. Commun. (RTUWO), Nov. 2018,
pp. 39–44.

[60] A. Abdulraqeb, R. Mardeni, A. M. Yusoff, S. Ibraheem, and A. Saddam,
‘‘Self-optimization of handover control parameters for mobility manage-
ment in 4G/5G heterogeneous networks,’’ Autom. Control Comput. Sci.,
vol. 53, no. 5, pp. 441–451, Sep. 2019.

[61] A. A. Adewale, E. Ekong, F. Ibikunle, A. Orimogunje, and J. Abolade,
‘‘Ping-pong reduction for handover process using adaptive hysteresis
margin: A methodological approach,’’ in Proc. IOP Conf., Mater. Sci.
Eng., 2019, Art. no. 012118.

[62] S. Zhang, G. Chuai, andW. Gao, ‘‘A handover optimization algorithm for
LTE-R system handover parameter prediction and dynamic adjustment,’’
in Proc. Int. Conf. Commun., Signal Process., Syst., 2018, pp. 655–669.

[63] Y.-W. Mal, J.-L. Chen, and H.-K. Lin, ‘‘Mobility robustness optimization
based on radio link failure prediction,’’ inProc. 10th Int. Conf. Ubiquitous
Future Netw. (ICUFN), Jul. 2018, pp. 454–457.

[64] S. Chaudhuri, I. Baig, and D. Das, ‘‘Self organizing method for handover
performance optimization in LTE-advanced network,’’ Comput. Com-
mun., vol. 110, pp. 151–163, Sep. 2017.

[65] M.Mehta, N. Akhtar, andA.Karandikar, ‘‘Impact of handover parameters
on mobility performance in LTE HetNets,’’ in Proc. 21st Nat. Conf.
Commun. (NCC), Feb. 2015, pp. 1–6.

[66] W. Zheng, H. Zhang, X. Chu, and X. Wen, ‘‘Mobility robustness opti-
mization in self-organizing LTE femtocell networks,’’ EURASIP J. Wire-
less Commun. Netw., vol. 2013, no. 1, p. 27, Dec. 2013.

[67] I. M. Bălan, B. Sas, T. Jansen, I. Moerman, K. Spaey, and P. Demeester,
‘‘An enhanced weighted performance-based handover parameter opti-
mization algorithm for LTE networks,’’ EURASIP J. Wireless Commun.
Netw., vol. 2011, no. 1, pp. 1–11, Dec. 2011.

[68] I. Shayea, M. Ismail, R. Nordin, M. Ergen, N. Ahmad, N. F. Abdullah,
A. Alhammadi, and H. Mohamad, ‘‘New weight function for adapting
handover margin level over contiguous carrier aggregation deployment
scenarios in LTE-advanced system,’’ Wireless Pers. Commun., vol. 108,
no. 2, pp. 1179–1199, Sep. 2019.

[69] K. Da Costa Silva, Z. Becvar, and C. R. L. Frances, ‘‘Adaptive hysteresis
margin based on fuzzy logic for handover in mobile networks with dense
small cells,’’ IEEE Access, vol. 6, pp. 17178–17189, 2018.

[70] P. Munoz, R. Barco, and I. D. L. Bandera, ‘‘On the potential of handover
parameter optimization for self-organizing networks,’’ IEEE Trans. Veh.
Technol., vol. 62, no. 5, pp. 1895–1905, Jun. 2013.

[71] A. Alhammadi, M. Roslee, M. Y. Alias, I. Shayea, S. Alriah, and
A. B. Abas, ‘‘Advanced handover self-optimization approach for 4G/5G
HetNets using weighted fuzzy logic control,’’ in Proc. 15th Int. Conf.
Telecommun. (ConTEL), Jul. 2019, pp. 1–6.

[72] V. Buenestado, J. M. Ruiz-Aviles, M. Toril, and S. Luna-Ramirez,
‘‘Mobility robustness optimization in enterprise LTE femtocells,’’ in
Proc. IEEE 77th Veh. Technol. Conf. (VTC Spring), Jun. 2013, pp. 1–5.

[73] K. C. Silva, Z. Becvar, E. H. S. Cardoso, and C. R. L. Frances, ‘‘Self-
tuning handover algorithm based on fuzzy logic in mobile networks
with dense small cells,’’ in Proc. IEEE Wireless Commun. Netw. Conf.
(WCNC), Apr. 2018, pp. 1–6.

[74] F. Yang, H. Deng, F. Jiang, and X. Deng, ‘‘Handover optimization algo-
rithm in LTE high-speed railway environment,’’Wireless Pers. Commun.,
vol. 84, no. 2, pp. 1577–1589, Sep. 2015.

[75] A. Alhammadi, M. Roslee, M. Y. Alias, I. Shayea, and A. Alquhali,
‘‘Velocity-aware handover self-optimization management for next gen-
eration networks,’’ Appl. Sci., vol. 10, no. 4, p. 1354, Feb. 2020.

[76] Y. Zhang, M. Wu, S. Ge, L. Luan, and A. Zhang, ‘‘Optimization of time-
to-trigger parameter on handover performance in LTE high-speed railway
networks,’’ in Proc. 15th Int. Symp. Wireless Pers. Multimedia Commun.,
Sep. 2012, pp. 251–255.

[77] B. Davaasambuu, K. Yu, and T. Sato, ‘‘Self-optimization of handover
parameters for long-term evolution with dual wireless mobile relay
nodes,’’ Future Internet, vol. 7, no. 4, pp. 196–213, Jun. 2015.

[78] M. M. Hasan, S. Kwon, and S. Oh, ‘‘Frequent-handover mitigation in
ultra-dense heterogeneous networks,’’ IEEE Trans. Veh. Technol., vol. 68,
no. 1, pp. 1035–1040, Jan. 2019.

[79] M. S. N. Ali, A. L. Yusof, N. Ya’acob,M. Ismail, M. A. Zainali, M. Rosdi,
and B. A. Bakar, ‘‘Handoff optimization in macrocell and femtocell
LTE heterogeneous network,’’ J. Telecommun., Electron. Comput. Eng.
(JTEC), vol. 9, pp. 45–48, Jun. 2017.

[80] S. Nie, D. Wu, M. Zhao, X. Gu, L. Zhang, and L. Lu,
‘‘An enhanced mobility state estimation based handover optimization
algorithm in LTE—A self-organizing network,’’ in Proc. ANT/SEIT,
2015, pp. 270–277.

[81] S. Zang, W. Bao, P. L. Yeoh, H. Chen, Z. Lin, B. Vucetic, and
Y. Li, ‘‘Mobility handover optimization inmillimeter wave heterogeneous
networks,’’ in Proc. 17th Int. Symp. Commun. Inf. Technol. (ISCIT),
Sep. 2017, pp. 1–6.

111150 VOLUME 11, 2023

http://dx.doi.org/10.1109/TMC.2022.3188212


W. Tashan et al.: Advanced MRO Models in Future Mobile Networks Based on ML Solutions

[82] A. Alhammadi, W. H. Hassan, A. A. El-Saleh, I. Shayea, H. Mohamad,
and W. K. Saad, ‘‘Intelligent coordinated self-optimizing handover
scheme for 4G/5G heterogeneous networks,’’ ICT Exp., pp. 1–6,
Apr. 2022.

[83] R. Goyal, T. Goyal, S. Kaushal, and H. Kumar, ‘‘Fuzzy AHP based
technique for handover optimization in heterogeneous network,’’ in Proc.
2nd Int. Conf. Commun., Comput. Netw., 2019, pp. 293–301.

[84] Y. S. Hussein, B. M. Ali, M. F. A. Rasid, A. Sali, and A. M. Mansoor,
‘‘A novel cell-selection optimization handover for long-term evolution
(LTE) macrocellusing fuzzy TOPSIS,’’ Comput. Commun., vol. 73,
pp. 22–33, Jan. 2016.

[85] Y. Li, Q. Li, Z. Zhang, G. Baig, L. Qiu, and S. Lu, ‘‘Beyond 5G: Reli-
able extreme mobility management,’’ in Proc. Annu. Conf. ACM Special
Interest GroupDataCommun. Appl., Technol., Archit., Protocols Comput.
Commun., 2020, pp. 344–358.

[86] V. Yajnanarayana, H. Ryden, and L. Hevizi, ‘‘5G handover using rein-
forcement learning,’’ in Proc. IEEE 3rd 5G World Forum (5GWF),
Sep. 2020, pp. 349–354.

[87] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);
Radio Resource Control (RRC); Protocol Specification,
3GPP document TS 36.331 version 13.7.1 Release, 2017.

[88] C. Shen and M. van der Schaar, ‘‘A learning approach to frequent han-
dover mitigations in 3GPP mobility protocols,’’ in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), Mar. 2017, pp. 1–6.

[89] W. Kadhim Saad, I. Shayea, B. J. Hamza, A. Azizan, M. Ergen, and
A. Alhammadi, ‘‘Performance evaluation of mobility robustness opti-
mization (MRO) in 5G network with various mobility speed scenarios,’’
IEEE Access, vol. 10, pp. 60955–60971, 2022.

[90] S. Kumar, S. Vanmathi, B. Sanjay, S. Bharathi, andM.Meena, ‘‘Handover
forecasting in 5G using machine learning,’’ Int. J. Eng. Technol., vol. 7,
pp. 76–79, Jan. 2018.

[91] R. Amiri, M. A. Almasi, J. G. Andrews, and H. Mehrpouyan, ‘‘Rein-
forcement learning for self organization and power control of two-tier
heterogeneous networks,’’ IEEE Trans. Wireless Commun., vol. 18, no. 8,
pp. 3933–3947, Aug. 2019.

[92] Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, and L. Wang,
‘‘Deep reinforcement learning for mobile 5G and beyond: Fundamentals,
applications, and challenges,’’ IEEE Veh. Technol. Mag., vol. 14, no. 2,
pp. 44–52, Jun. 2019.

[93] A. Marinescu, Z. Jiang, S. Zhou, L. A. DaSilva, and Z. Niu, ‘‘Deep
learning-based coverage and capacity optimization,’’ in Machine Learn-
ing for Future Wireless Communications. Hoboken, NJ, USA: Wiley,
2020, pp. 63–83.

[94] P. H. V. Klaine, ‘‘Self-organization for 5G and beyond mobile networks
using reinforcement learning,’’ M.S. thesis, College Sci. Eng., Univ.
Glasgow, Glasgow, U.K., Jul. 2019.

[95] M. Kubat, An Introduction to Machine Learning, vol. 2. Cham,
Switzerland: Springer, 2017.

[96] Z. Wang, L. Li, Y. Xu, H. Tian, and S. Cui, ‘‘Handover control in wireless
systems via asynchronous multiuser deep reinforcement learning,’’ IEEE
Internet Things J., vol. 5, no. 6, pp. 4296–4307, Dec. 2018.

[97] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[98] T. Bilen, B. Canberk, and K. R. Chowdhury, ‘‘Handover management in
software-defined ultra-dense 5G networks,’’ IEEE Netw., vol. 31, no. 4,
pp. 49–55, Jul./Aug. 2017.

[99] W. Tashan, I. Shayea, S. Aldirmaz-Colak, T. A. Rahman, A. A. El-Saleh,
and M. Roslee, ‘‘Rain rate and rain attenuation over millimeter waves
in tropical regions based on real measurements,’’ in Proc. IEEE 15th
Malaysia Int. Conf. Commun. (MICC), Dec. 2021, pp. 120–125.

[100] I. Shayea, M. Ergen, M. Hadri Azmi, S. Aldirmaz Colak, R. Nordin,
and Y. I. Daradkeh, ‘‘Key challenges, drivers and solutions for mobil-
ity management in 5G networks: A survey,’’ IEEE Access, vol. 8,
pp. 172534–172552, 2020.

[101] J. T. J. Penttinen, ‘‘5G network planning and optimization,’’ in 5G
Explained: Security and Deployment of Advanced Mobile Communica-
tions. Hoboken, NJ, USA: Wiley, 2020, pp. 255–269.

[102] C. Lee, H. Cho, S. Song, and J.-M. Chung, ‘‘Prediction-based conditional
handover for 5G mm-wave networks: A deep-learning approach,’’ IEEE
Veh. Technol. Mag., vol. 15, no. 1, pp. 54–62, Mar. 2020.

[103] A. Stamou, N. Dimitriou, K. Kontovasilis, and S. Papavassiliou, ‘‘Auto-
nomic handover management for heterogeneous networks in a future
internet context: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 4,
pp. 3274–3297, 4th Quart., 2019.

[104] S. Hailu, M. Saily, and O. Tirkkonen, ‘‘RRC state handling for 5G,’’ IEEE
Commun. Mag., vol. 57, no. 1, pp. 106–113, Jan. 2019.

[105] A. A. R. Alsaeedy and E. K. P. Chong, ‘‘Mobility management for 5G IoT
devices: Improving power consumption with lightweight signaling over-
head,’’ IEEE Internet Things J., vol. 6, no. 5, pp. 8237–8247, Oct. 2019.

[106] P. Skrimponis, S. Dutta, M. Mezzavilla, S. Rangan, S. H. Mirfarshbafan,
C. Studer, J. Buckwalter, and M. Rodwell, ‘‘Power consumption analysis
for mobile mmWave and sub-THz receivers,’’ in Proc. 2nd 6G Wireless
Summit (6G SUMMIT), Mar. 2020, pp. 1–5.

[107] S. A. Hoseinitabatabei, A. Mohamed, M. Hassanpour, and R. Tafazolli,
‘‘The power of mobility prediction in reducing idle-state signaling in
cellular systems: A revisit to 4G mobility management,’’ IEEE Trans.
Wireless Commun., vol. 19, no. 5, pp. 3346–3360, May 2020.

[108] J. Stanczak, U. Karabulut, and A. Awada, ‘‘Conditional handover
in 5G: Principles, future use cases and FR2 performance,’’ 2022,
arXiv:2204.01283.

[109] H. Martikainen, I. Viering, A. Lobinger, and T. Jokela, ‘‘On the basics
of conditional handover for 5G mobility,’’ in Proc. IEEE 29th Annu.
Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), Sep. 2018,
pp. 1–7.

[110] Z. Liu, P. Hong, K. Xue, and M. Peng, ‘‘Conflict avoidance between
mobility robustness optimization and mobility load balancing,’’ in Proc.
IEEE Global Telecommun. Conf. (GLOBECOM), Dec. 2010, pp. 1–5.

WAHEEB TASHAN (Graduate Student Member,
IEEE) received the B.Sc. and M.Sc. degrees in
communication engineering from the International
Islamic University Malaysia (IIUM), Malaysia,
in 2013 and 2017, respectively. He is currently
pursuing the Ph.D. degree in electronics and
communication engineering with Kocaeli Univer-
sity, Kocaeli, Turkey. Besides, he is a TÜBİTAK
Researcher at the Department of Electronics and
Communications Engineering, Faculty of Elec-

trical and Electronics Engineering, Istanbul Technical University (ITU),
Istanbul, Turkey. He has published several papers related to radio prop-
agation. His research interests include mobility management, handover,
LTE/LTE-A, radio propagation, indoors and outdoors wireless communica-
tion, the IoT, 5G, and 6G.

IBRAHEEM SHAYEA received the bachelor’s
degree in electronics and communication engi-
neering from the Faculty of Engineering,
University ofDiyala, in July 2004, and themaster’s
degree in communication and computer engi-
neering and the Ph.D. degree in electrical and
electronic engineering (specifically in wireless
communication systems) from the Department
of Electrical, Electronic Engineering, Faculty of
Engineering and Built Environment, Universiti

Kebangsaan Malaysia (UKM), Malaysia, in 2010 and 2015, respectively.
From January 2005 to June 2006, he worked as a Computer Electronic
Maintenance Engineer and the Maintenance Manager at different companies
in Yemen. From January 2011 to December 2015 (during his Ph.D. study),
he worked as a Research Assistant and a Demonstrator at the Department
of Electrical, Electronic Engineering, Faculty of Engineering and Built
Environment, UKM. From January 2016 to June 2018, he worked as a
Postdoctoral Fellow at the Wireless Communication Center (WCC), Uni-
versity of Technology Malaysia (UTM), Malaysia. From September 2018
until August 2019, he worked as a Researcher Fellow at Istanbul Technical
University (ITU), Istanbul, Turkey. He has been working as an Assistant
Professor and an Associate Researcher at the Department of Electronics
and Communications Engineering, Faculty of Electrical and Electronics
Engineering, ITU, Since September 2019. He is currently an Associate
Researcher with WCC, UTM. His research interests include mobility
management in future heterogeneous (4G, 5G, and 6G) networks, mobile
edge computing, machine, and deep learning, the Internet of Things (IoT),
propagation of millimetre-wave, mobile broadband technology and future
data traffic growth, and spectrum gap analysis. He has published several
scientific research journals and conference papers.

VOLUME 11, 2023 111151



W. Tashan et al.: Advanced MRO Models in Future Mobile Networks Based on ML Solutions

SULTAN ALDIRMAZ-ÇOLAK (Senior Member,
IEEE) received the B.S. degree in electronics
and communications engineering from Kocaeli
University, Kocaeli, Turkey, in 2004, and the
M.S. and Ph.D. degrees from Yildiz Technical
University (YTU), Istanbul, in 2006 and 2012,
respectively. She was a Visiting Research Scholar
with the Department of Electrical and Com-
puter Engineering, University of South Florida,
in Spring and Summer of 2009. She is currently

an Associate Professor with the Electronics and Communications Engi-
neering Department, Kocaeli University. Her research interests include 5G
systems, HETNET, MIMO systems, index modulation, and visible light
communications.

OMAR ABDUL AZIZ (Member, IEEE) received
the B.Eng. degree in electrical and electronics,
the M.Sc. degree in electrical-electronics and
telecommunication, and the Ph.D. degree from
the Universiti Teknologi Malaysia (UTM), Johor,
Malaysia. He is currently a Senior Lecturer at
the Wireless Communication Centre, Universiti
Teknologi Malaysia. His research interests include
mobile and wireless communications, antenna
design, and microwave propagation.

ABDULRAQEB ALHAMMADI received the
B.Eng. degree in electronic (majoring in telecom-
munications) and the M.S. and Ph.D. degrees
in wireless communication from Multimedia
University, Malaysia, in 2011, 2015, and
2020, respectively. He served as a Research
Assistant/Research Scholar at Multimedia Uni-
versity, from 2012 to 2019. He is the author of
more than 20 articles in international journals and
conferences. His main research interests include

heterogeneous networks, mobility management, D2D communication, cog-
nitive radio networks, localization, and propagation modeling. He is a
member of professional institutes and societies, such as IEICE, IACSIT,
and IAENG. He is also a member of program committees at international
conferences and workshops. He was a recipient of several awards, including
the Excellent Researcher Award from Multimedia University, in 2019.

YOUSEF IBRAHIM DARADKEH received the
P.Eng., Ph.D., and Doctor of Engineering Sciences
degrees in computer engineering and information
technology (computer systems engineering and
computer software engineering). He has been
working as a Postdoctoral Research Fellow with
the Department of Electrical and Computer
Engineering, University of Calgary, Canada. He is
currently an Associate Professor at the Department
of Computer Engineering and Networks, College

of Engineering, Prince Sattam Bin Abdulaziz University, Saudi Arabia. He is
also a Senior Scientific Researcher and the Assistant Dean for Adminis-
trative Affairs. He is a dynamic academician having more than 15 years
of experience specializing in teaching and scientific research development
and administration experience. He has taught wide spectrum of computer
science, computer engineering and networks, computer software engineering
courses for undergraduate and graduate. He is a well-known and respected
scientist internationally. He has an excellent experience in designing courses
that bridge the gap between academia and industry as well as follow the
accreditation requirements. He has published over 90 high quality refereed
research papers in the international journal and conference. He has also
published two books, one chapter, and an edited book in the most prestigious
publications. He has membership of the International Academy of Science
and Engineering for Development (IASED). The international recognition
of his scientific achievements is demonstrated by numerous invitations to
participate in the program committees of international conferences and
foreign journals, as well as lecturing at renowned scientific centers around
the world.

111152 VOLUME 11, 2023


