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ABSTRACT Generative adversarial networks (GANs) gained tremendous growth due to the potency and
efficiency in producing realistic samples. This study proposes a light-weight GAN (LiWGAN) to learn
non-image synthesis with minimum computational time for less power computing. Hence, the LiWGAN
method enhanced a new skip-layer channel-wise excitationmodule (SLE) and a self-supervised discriminator
design for non-synthesis performance using the facemask dataset. Facemask is one of the preventative
strategies pioneered by the current COVID-19 pandemic. LiWGAN manipulates a non-image synthesis of
facemasks that could be beneficial for some researchers to identify an individual using lower power devices,
occlusion challenges for face recognition, and alleviate the accuracy challenges due to limited datasets. The
study evaluates the performance of the processing time in terms of batch sizes and image resolutions using
the facemask dataset. The Fréchet inception distance (FID) was also measured on the facemask images
to evaluate the quality of the augmented image using LiWGAN. The findings for 3000 generated images
showed a nearly similar FID score at 220.43 with significantly less processing time per iteration at 1.03s
than StyleGAN at 219.97 FID score. One experiment was conducted using the CelebA dataset to compare
with GL-GAN and DRAGAN, proving LiWGAN is appropriate for other datasets. The outcomes found
LiWGAN performed better than GL-GAN and DRAGAN at 91.31 FID score with 3.50s processing time per
iteration. Therefore, LiWGAN could aim to enhance the FID score to be near zero in the future with less
processing time by using different datasets.
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INDEX TERMS Non-image synthesis, self-supervised discriminator, data augmentation, deep learning,
generative adversarial network.

I. INTRODUCTION20

Generative adversarial networks (GANs) are among the most21

significant developments in the deep learning domain, espe-22

cially for medical imaging applications [1]. GANs have23

received considerable interest in the computer vision commu-24

nity due to data generation capabilities without directly mod-25

eling the likelihood density function. GANs comprise two26

neural networks: a generator that collects data distribution27

and a discriminator that predicts sample composition from28

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .

training data [2]. In addition, the discriminator differentiates 29

between genuine and fake images. Generally, the generator 30

aims to make the discriminator believe that the images are 31

genuine [3]. GANs can be used to generate new data for a lim- 32

ited dataset, which can be challenging and time-consuming. 33

GANs are one of the pre-processing processes before the 34

training phase begins. Comparing and contrasting genera- 35

tive and discriminative algorithms can help better grasp how 36

GANs work. 37

Deep neural networks perform an unparalleled direction 38

with sufficient data on various tasks such as image detection 39

and classification, voice recognition and synthesis, human 40
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learning, reinforcement learning, and others [4] in the past41

decade. Data augmentation (DA) has proven compelling in42

image and video classification [5] to identify genuine and43

fake images and videos. Moreover, data augmentation can be44

a regularizer to avoid neural network overfitting and enhance45

the efficiency of imbalanced classes. Simple techniques,46

including cropping, rotating, changing the image color, and47

flipping input images, are helpful for data augmentation,48

which many researchers have performed. In addition, the49

data-augmentation methods aim to address significant prob-50

lems. The key approaches are in the data warping group,51

which is a method to directly augment the input to the data52

space model [6].53

The impressive results of GANs are not only in generating54

realistic samples [7], [8], [9] but also in object detection [10],55

[11], [12] and image translation [13]. There are two categories56

of generative models: conventional machine learning algo-57

rithms and deep learning algorithms. The simulated observa-58

tions based on a probability density function (pdf) built using59

generativemethods can yield large samples. However, several60

issues arise in generating realistic samples, which cannot61

monitor the GAN for producing practical samples because62

of sampling issues in generator input variables. Vanilla GAN63

can produce realistic test samples, but its impact on features64

is unclear and straightforward [14]. Therefore, a particular65

role should have an appropriate structure with a complicated66

expression, which is unable to develop for each conventional67

generative model [15].68

CELEB-500K, described in [16], is a large training dataset69

for face recognition. There are 50M images in the dataset, rep-70

resenting 500K different celebrities. As a result, the method71

is more accurate than other publicly available datasets. On the72

other hand, our study focuses on working with a limited73

dataset using CelebA with 10K unique identities. The dataset74

is great for training and testing models for face recognition75

and logging in to mobile devices with an individual’s face or76

searching through surveillance images for a particular person.77

One possible light-weight computational application of78

GAN is mobile edge computing (MEC). The MEC was79

developed as a potential approach to significantly reduce the80

processing time, and communication resources on mobile81

devices [17]. Numerous studies have shown that GANs can82

be implemented in MEC with respect to latency [18], [19],83

security [20], and low power consumption [21], [22]. The84

study in [22] proven that their proposed GAN can reduce the85

time and resources needed for image validation.86

This paper proposes light-weight generative adversarial87

networks (LiWGAN) to generate high quality images for88

non-image synthesis with minimum computational time for89

a less power computing. Our study employs a public face-90

mask dataset due to the COVID-19 pandemic that remains91

debatable, and wearing a facemask is becoming more rec-92

ommended. Facemasks are an initiative that incorporates the93

community as a prevention technique. Thus, the generated94

datasets would be helpful for other researchers to detect and95

classify facemask with occlusion challenges. We evaluated96

the quality of the specific image in terms of the Fréchet 97

inception distance (FID) scores with state-of-art methods. For 98

comparison with StyleGAN [23], we repeated the experiment 99

using the same facemask dataset to identify the challenges 100

of data augmentation in increasing the number of images 101

and their quality. The main contributions of this study are as 102

follows: 103

1) We built the Skip-Layer channel-wise excitation mod- 104

ule, which revises the channel responses on a high-scale 105

feature map via low-scale activation. SLE allows for 106

a robust gradient flow across the model weights for 107

faster training. Programmatically, it helps to disentan- 108

gle styles and content like StyleGAN. 109

2) We propose a self-supervised discriminator, D, as the 110

feature encoder with an additional decoder. We forceD 111

to learn a more descriptive feature map covering more 112

regions from an input image, yielding more details 113

about the setting to train a generator, G. 114

3) We validate our proposed method concerning other 115

benchmarks utilising CelebA datasets and demonstrat- 116

ing that LiWGAN significantly reduced processing 117

time in applications requiring less computing power. 118

II. RELATED WORKS 119

Current works related to GAN approaches mainly improved 120

the image classifier, generation, and detection of fake and 121

genuine images [2], [3], [14], [24], [25], [26], [27], [28], [29], 122

[30]. Some studies have conducted GAN techniques with 123

two processes: 1) focusing on learning augmented images 124

and 2) using the conventional classification network [31]. 125

Goodfellow et al. proposed the Vanilla GAN [2] for a gen- 126

erative model. They draw samples directly from the required 127

data distribution without explicitly modeling the underlying 128

density function. 129

A new approach called BicycleGAN was created from 130

a conditional variational autoencoder GAN and conditional 131

latent regressor GAN [30]. They developed a method to 132

simultaneously implement the relationship between latent 133

encoding and output to boost decoder performance without 134

enforcing a tough decision. Moreover, BicycleGAN can yield 135

diverse and visually pleasing outcomes in several image-to- 136

image conversion problems. 137

Kodali et al. [26] proposed a novel gradient penalty scheme 138

called DRAGAN to eradicate a low local equilibrium in 139

non-convex sports. They proved that they could accomplish 140

asymptotic convergence without requiring the discriminator 141

to be adequately satisfied. 142

Some authors develop a GAN semi-supervised training 143

scheme for chest anomaly classification, patch-based retinal 144

vessel classification, and cardiac diagnosis [32], [33], [34]. 145

They found that the method can perform better than the 146

conventional supervised CNN. Proposing a softmax GAN, 147

they substitute the classification loss with cross-entropy 148

losses for the generator and discriminator in a single batch 149

of images [27]. The authors proved that implementing 150
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importance sampling provides a rigorous approach to global151

optimization.152

Adler et al. proposed a Banach Wasserstein GAN153

(BWGAN) to generate realistic samples from complex image154

distributions [24]. The strategy is to separate Banach spaces155

using a gradient penalty and allows practitioners to use the156

unique feature sets in the generator to determine which157

features to prioritize. A WGAN and InfoGAN combined158

to develop the unsupervised cell-level visual representation159

of images in histopathology [35]. The methods derived the160

attributes of the discriminator to construct a classifier.161

ControlGAN adopts the auxiliary classifier GAN162

(ACGAN) to generate conditional samples as a classification163

layer in a discriminator that solves the overfitting [14]. Con-164

trolGAN’s independent classifier distinguishes the classifier165

function from the discriminator, using artificial learning166

algorithms to classify an unlabeled dataset with minimal167

computational effort. The strategy is to maintain a proper168

equilibrium between the two issues operated concurrently by169

two different network modules.170

Mode seeking GAN (MSGAN) was applied on the171

DCGAN and worked as an effective regularization term172

on the generator [36]. The regularization term drives the173

generators to investigate more minor modes by increasing174

the gap between produced images and the distance between175

the related latent codes. The regularization approach was176

implemented into existing conditional GAN without train-177

ing or network structural changes. Regularization improves178

baseline frameworks’ complexity without reducing image179

quality.180

A new co-evolutionary method in [37] designed a Cycle-181

GAN that allows two portable generators to remove unnec-182

essary filters, reducing memory consumption concurrently.183

In addition, the proposed method achieved high compression184

and optimization rates. The style information in the com-185

pressed images can be used on any off-the-shelf platform186

without affecting visual quality.187

The effective DA network’s goals are detecting out-of-188

distribution data and enhancing resilience without com-189

promising classification accuracy [38]. The comparison of190

the effective DA and the state-of-art WideResNet proposed191

in [39] showed the effectiveness of both methods in various192

datasets. The initial novelty of the study is that when the193

input image is out of distribution, the predicted probabilities194

of the enhanced images could be inaccurate. As a result, the195

effective DA is more practical than previous approaches and196

can be readily adapted to diverse neural networks to increase197

security in real applications.198

Supervised learning sentence compression, SeqGAN, and199

data screening were proposed as a framework for data aug-200

mentation [40]. The framework uses SeqGAN to create text201

data to address the lack of variety in widely used approaches.202

However, SeqGAN faces a significant hurdle while training203

on large texts. Hence the study presented a sentence reduction204

method. The sentiment words are preserved throughout the205

sentence reduction procedure to preserve more sentiment206

information. The produced data that contains inaccurate 207

sentiment information can be removed using the proposed 208

data screening method. 209

Face Augmentation Generative Adversarial Network 210

(FA-GAN) was proposed in [41] to minimize the effect of 211

deformation attribute distribution imbalances for the CASIA- 212

WebFace dataset. Besides improving face recognition accu- 213

racy, the FA-GAN uses disentangled identity representations 214

to manipulate various characteristics of an individual’s face. 215

Research on face recognition and synthesis tasks shows that 216

the proposed network preserves identity well in restricted 217

datasets. 218

An adaptive global and local bilevel optimization model 219

(GL-GAN) proposed in [42] optimized the image from the 220

local and global aspects. The local bilevel optimizationmodel 221

was proposed based on the discriminator’s output feature 222

matrix, in which each element evaluates image receptive field 223

quality and determines the area with low quality. However, 224

the GL-GAN needs extension studies for edge computing and 225

mobile devices due to limitations where the proposed method 226

selects a low-quality rectangular receptive field that causes 227

overlapping images. 228

The author in [43] proposed DCGAN, known as adver- 229

sarial learning-based data augmentation (Ada), to produce 230

additional malicious users. The DCGAN-based data augmen- 231

tation approach can produce better user embeddings than 232

simple data augmentation methods, making it better at detect- 233

ing malicious users in sparse-sample situations. However, 234

although DCGAN can entirely imitate malicious users’ dis- 235

persion, there is a constraint to the generated fake users. The 236

hostile users are being injected into the system to make them 237

more like genuine users to evade detection. As a result, these 238

malicious users’ false users are less likely to include attack 239

characteristics. 240

A combination of GAN and re-id model called Jot-GAN 241

was proposed to train the generator and re-id model con- 242

currently to obtain their respective optimums using a dis- 243

criminator [44]. Furthermore, the adversarial training and the 244

produced samples enhance the re-id model’s ability to trick 245

the discriminator, thereby boosting its performance. Findings 246

showed that the Jot-GAN surpassed the existingmethodswith 247

the identification loss and triplets loss. 248

In 2018, the NVIDIA team introduced a style-based GAN 249

model (StyleGAN) [23]. The normalization of the gener- 250

ator was restructured and regularized to facilitate a good 251

mapping condition from latent to image codes. As a result, 252

the authors enhanced the training performance for superior- 253

quality images. The simplified data flow produced the most 254

significant performance due to weight demodulation, lazy 255

regularization, and algorithm optimization. 256

The advantages of StyleGAN are that it is easy to allocate 257

an image produced to its root and improve its quality. How- 258

ever, training requires more computational time. Therefore, 259

we take advantage of theweaknesses of StyleGAN to improve 260

the performance of our proposed model, specifically in min- 261

imizing the computational time. 262
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FIGURE 1. The variations of coarse and fine details [39].

III. SYSTEM MODEL263

A. StyleGAN264

The NVIDIA team developed StyleGAN in 2018 [23], [45],265

[46]. The authors proposed a new generator architecture that266

enables them to monitor various levels of data in the samples,267

from coarse details (e.g., head shape) to finer details (e.g., hair268

length and eye color), as shown in Fig. 1. StyleGAN applies269

the concept of ProgressiveGAN, in which the networks ini-270

tiate at a lower resolution (42) and use more data (10242)271

to train the network on more progressively scaled layers272

of networks. Thus, the training time becomes considerably273

quicker and more stable. StyleGAN allows simpler things274

by mapping a network that encodes input vectors into an275

intermediate latent space, w. In addition, it controls various276

levels of detail. StyleGAN utilizes bi-linear sampling instead277

of down-sampling, and later applies on ProgressiveGAN. The278

bi-linear sampling is carried out by low-pass filtering the279

activation with a different second-order binomial filter after280

each upsampling layer and before each downsampling layer.281

The comparison of the traditional StyleGAN and Style-282

GAN architectures [23], as illustrated in Fig. 2, shows the283

redesign of the style-based generator by omitting the input284

layer, referring to Fig. 2b. Instead, the latent vector, z in the285

latent input space, Z mapped to another vector ofw ∈ W with286

the 512 dimensions. The implementation of 8-fully connected287

layers, FC aims to simplify the mapping, f . The output of the288

mapping network, w, is then passed through a learned affine289

transformation, A, before passing into the synthesis network,290

an adaptive instance normalization (AdaIN) module. Finally,291

the model converts encoded mapping into a generated image.292

The input to AdaIN is styles y = (σ,µ) generated by applying293

A to w. The styles y controls adaptive instance normalization294

operations after each convolutional layer of the synthesis net-295

work, g. The following equation defines the AdaIN operation296

as,297

AdaIN = (x, y) = σ (y)(
x − µ(x)
σ (x)

)+ µ(y) (1)298

where each input feature map, x is normalized separately299

and then scaled and biased using the corresponding scalar300

components from style y. The normalized content input is301

simply scaled up by σ (y) and shifted by µ(y). Thus, the302

dimension of y is twice the number of input x on that layer.303

The synthesis network contained 18 convolutional layers for304

each resolution: 42 and 10242.305

FIGURE 2. The architecture of StyleGAN [39].

Style generation uses an intermediate vector at each level 306

of the synthesis network, which may cause the network to 307

learn the correlation between different levels. Therefore, the 308

model randomly selects two input vectors, z1 and z2, and 309

generates intermediate vectors, w1 and w2 to reduce the cor- 310

relation. It then trains some of the levels using the first and 311

switches method (in a random split point) to the other to train 312

the remaining levels. The random split point switch ensures 313

the networks do not learn the correlation effectively. 314

Finally, the generator offers a direct mechanism of cre- 315

ating stochastic detail by explicitly incorporating noise 316

inputs. Each layer of the synthesis network receives sepa- 317

rate single-channel images formed of uncorrelated Gaussian 318

noise. First, the noise image is transmitted to all feature maps 319

using learned per-feature scaling factors, as illustrated in 320

Fig. 2b. The corresponding convolutional filtering operation 321

result is subsequently subjected to the noise image. 322

IV. LIGHT-WEIGHT GAN 323

This study compared our proposed model, a LiWGAN, with 324

StyleGAN. We adopted StyleGAN in [23], [45], and [46], 325

including the model configuration and differentiable data- 326

augmentation, for the best training on few-sample datasets. 327

Furthermore, we compared our proposed model with Style- 328

GAN based on the computing time because StyleGAN 329

requires much more computing time to train. However, for 330

non-image synthesis quality, we compared it regardless of 331

the computing time. Therefore, we developed our proposed 332

model using two proposed techniques, namely a skip-layer 333

excitation module and a self-supervised discriminator. 334

A LiWGAN requires a generator, G, that can learn fast 335

and a discriminator, D, to provide valuable signals to train G 336

continuously, as illustrated in Fig. 3a. It utilizes a single con- 337

volution layer on each resolution in G and applies three input 338

channels: 82, 162, and 322, including three output channels: 339
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FIGURE 3. The structure of the generator, G in (a), and skip-layer excitation module in (b). Feature-maps consists of the spatial size
and omits the channel number that presented in the green boxes. The blue box and blue arrows represent the same up-sampling
structure. The red boxes represent the SLE component.

1282, 2562, and 5122 for the convolution layer in both G340

andD. We present the structure of theG andD, referring to in341

Fig. 3 and Fig. 4, with descriptions of the component layers342

and forward flow. Generally, our proposed model is similar343

to StyleGAN. However, the structural designs make our pro-344

posed model much smaller than StyleGAN and substantially345

faster to train with skip-layer channel-wise excitation (SLE)346

implementation. Meanwhile, our proposed model remains347

robust on small datasets owing to its compact size with the348

two proposed techniques.349

A. SKIP-LAYER CHANNEL-WISE EXCITATION350

Generator, G, requires deepening combined with up-351

sampling needs, with further convolution layers. A deeper352

model with more convolution layers leads to a longer training353

time of the GAN owing to the increased number of model354

parameters and a weaker gradient flow through G.355

SLE was redesigned based on the skip layer connections356

in [32] to train a deep model and strengthen the gradient sig-357

nals between layers. As presented in Fig. 3, the architecture358

of the SLE displays ResBlock implemented skip connections359

as an element-wise addition between the activations from dif-360

ferent convolution layers. In addition, channel-wise multipli-361

cations were performed between the activations to eliminate362

the heavy computation of convolution. The skip connections363

were used at a similar resolution in previous GAN works.364

However, skip connections were performed between resolu-365

tions into a more extended range in this study, as an equal366

spatial dimension was no longer necessary. The ResBlock is367

applicable with a shortcut gradient flow without additional368

computational cost to ensure that the SLE succeeds. The 369

computation of SLE is as follows, 370

y = F(xl, {Wi})· xh (2) 371

where x and y are the input and output feature maps of the 372

SLE component, function F comprises the operations on xl 373

and Wi specifies the learned module weights. The SLE com- 374

ponent indicates that xl and xh are the feature maps at resolu- 375

tions of 82 and 1282, as shown in Fig. 3b. First, the adaptive 376

pooling layer, F down-samples xl into 42 along the spatial 377

dimensions, and the convolutional layer later down-samples 378

it into 12. A LeakyReLU is used to design nonlinearity, and 379

xl has the same channel size as xh for other convolutionary 380

layers. Finally, after a gating operation via a sigmoid function, 381

the output from F multiplies xh along the channel dimension 382

yields y with the same shape as xh. 383

SLE resembles the squeeze-and-excitation module (SE) 384

proposed in [47]. However, the SE operates within one feature 385

map as a self-gating module. In comparison, SLE performs 386

between feature maps far away from each other. While SLE 387

benefits from channel-wise feature re-calibration similar to 388

SE, it also strengthens the gradient flow of the whole model 389

like ResBlock. The channel-wise multiplication in SLE also 390

coincides with instance normalization [48], [49], widely used 391

in style transfer. 392

Similarly, we show that SLE enables G to automatically 393

disentangle the content and style attributes, as in Style- 394

GAN [46]. The performance of SLE on high-resolution fea- 395

ture maps, altering these feature maps is more likely to 396

change the style attributes of the generated image [46], [50]. 397
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FIGURE 4. The structure and the forward flow of the discriminator. The same residual
down-sampling structure is presented in the blue boxes, and the same decoder structure is
presented in the orange boxes.

By replacing xl in SLE with another synthesized sample, our398

G can generate an image with entire content but in the new399

replacing image style.400

B. SELF-SUPERVISED DISCRIMINATOR401

This study presented a simple regularization for D as an402

encoder and a train with small decoders. An auto-encoding403

training requires D to extract the image features that the404

decoder can reconstruct. The decoder and D were optimized405

to achieve a quick restoration loss trained on real samples.406

The decoders are optimized together with D on a simple407

reconstruction loss, trained only on real samples.408

Lrecons = Ef∼Dencode(x),x∼Ia [||G(f )− T (x)||] (3)409

where we propose the reconstruction lossLrecons between the410

intermediate feature maps the f , from the discriminator D.411

The function G contains the processing on f and the decoder,412

and the function T represents the processing of sample x from413

genuine images, Ia.414

The self-supervised, D is illustrated in Fig. 4, where two415

decoders for the feature maps are employed on two scales:416

f1 on 162 and f2 on 82. The decoders have four convolution417

layers only to produce images at 1282 resolution. Never-418

theless, it may require additional computations, which is419

less than other regularization methods. The f1 was randomly 420

cropped with 1
8 of its height and width, then crop the genuine 421

image on the same portion to obtain the cropped image, Ic. 422

Next, the genuine image was resized to obtain a down- 423

sampled image, I . Then, the decoders were produced I ′c from 424

cropped f1, and I ′ from f2. Finally, D and the decoders were 425

trained to reduce the loss for the corresponding of I ′c to Ic and 426

I ′ to I . The simple decoder has three convolution layers with 427

the nearest unsample layer using gated linear unit (GLU) to 428

alleviate the loss of sample images. 429

D extracts a more comprehensive representation from 430

the inputs, covering the overall compositions (from f2) and 431

detailed textures (from f1). Note that the processing in G 432

and T is not limited to cropping; more operations remain 433

to be explored for better performance. The auto-encoding 434

approach is a typical method for self-supervised learning, 435

which improves model robustness and generalization abil- 436

ity [51], [52], [53], [54]. From the perspective of GAN, 437

a regularizedD via self-supervision training strategies signif- 438

icantly improves the synthesis quality on G, which enhances 439

the performance of auto-encoding. 440

Moreover, the method varies radically from merging the 441

GAN and auto-encoder (AE). In previous works, G was 442

primarily trained as a decoder in a latent space from D or 443
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TABLE 1. Data augmentation in LiWGAN.

the adversary training with D as a potential loss compared444

to the training of AE. However, in this study, a pure GAN445

with a much simpler training schema was implemented in446

the model. The auto-coding training regularizes D without447

involving G. Therefore, hinge loss was implemented to train448

D and G iteratively. The advantage of hinge loss is that it can449

compute faster than other GAN losses.450

V. AUGMENTATION451

Image data augmentation is the best-known data augmen-452

tation type. It involves the creation of a transformed image453

in the training dataset that is the same class as the original454

image [55]. It requires some effort and cost to collect labeled455

datasets, particularly in disciplines like facial recognition456

using non-image synthesis, where the datasets are in millions.457

On the other hand, data augmentation refers to the practice of458

enhancing the original datasets.459

This study used several basic augmentation techniques,460

such as rotation, shearing, cropping, zooming in and out,461

and many more. In this study, by default, the augmentation462

types were set to horizontal translation and cutout for occlu-463

sion images, with color and contrast omitted. The horizontal464

translation of an image of a person wearing a mask may465

make sense, as the photo can be taken from the right or left.466

However, a vertical-horizontal image of a person wearing a467

mask does not make sense.468

It is probably not appropriate, given that it is unfeasible469

to see an upside-down person. The purpose of color and470

contrast is to generalize images trained using various lighting471

spectrums. Thus, an appropriate data augmentation technique472

must be chosen wisely within the context of the training473

dataset.474

Several types of augmentation presented in this study are475

listed in Table 1. These four were executed due to the sig-476

nificant output for data augmentation in a low-data setting.477

A general recommendation is to use proper augmentations478

for the data and as much as possible; then, after some training,479

it is most destructive for image augmentation.480

VI. SIMULATION PARAMETER481

This section explains the datasets and methods used for482

LiWGAN to generate more facemask images and perform483

data augmentation. First, the data augmentation is described484

briefly to understand the LiWGAN implementation better.485

Then, the process of developing facemask images begins in486

TABLE 2. Summary of simulation parameter.

correspondence with the data augmentation results. Table 2 487

presents the summary of the simulation parameter used in this 488

study to apply LiWGAN to improve the performance of GAN 489

model. 490

A. FACEMASK DATASET 491

A facemask detection dataset was utilized in this study to per- 492

form data augmentation and classification of face imageswith 493

and without a mask. The facemask dataset was taken from 494

Kaggle and found in [56]. The dataset consisted of 7553 RGB 495

images in two separate folders with and without a mask. 496

Images of faces with masks contained 3725 images, and faces 497

without masks contained 3828 images. The facemask images 498

were trained for 10,000 iterations for 2562 resolution images. 499

B. DEVELOPMENT ENVIRONMENT 500

Google Colaboratory, the most well-known Google Colab, 501

is used in this study as a development platform to run our 502

proposed model via the Colab Notebook. Google Colab is 503

a research project used for machine learning models on 504

powerful hardware options, namely, the graphics processing 505

unit (GPU) and tensor processing unit (TPU) [57]. Google 506

Colab offers core machine learning and artificial intelligence 507

libraries, such as TensorFlow, Matplotlib, and Keras, with 508

either Python 2 or 3 runtimes pre-configured [58]. We used 509

Google Colab Pro to work faster and with longer runtimes 510

in this study. The GPU of NVIDIA Tesla P100 is utilized 511

with high-memory virtual machines (VMs). We need a faster 512

GPU and high RAM to run our proposed model because our 513

proposed model needs to generate more images that require 514

longer runtimes ofmore than 24 hours and less disconnection. 515

C. METRICS 516

The Fréchet inception distance (FID) computes the total 517

semantic realism of the synthesized image. The FID created 518

by Martin Heusel et al. [59] generates genuine images and 519

improves the current inception score (IS). The conditional 520

class predictions for synthetic images and themarginal proba- 521

bility for the predicted classes were combined to obtain the IS. 522

However, the IS does not demonstrate how synthetic images 523

interact with genuine images. 524

The purpose of the FID score is to measure synthetic 525

images based on synthetic image data compared with the 526
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results of a set of genuine images in the target domain [60].527

Therefore, a lower FID indicates better quality images; how-528

ever, a high FID indicates a low-quality image and displays a529

linear relationship.530

In this study, we let the generator G produce 5000 images531

and measure the FID between the synthesized images and the532

entire training set for datasets with more than 1000 images.533

Therefore, we used 1000, 2000, 3000, and 5000 images to534

compute the FID in this study. By considering the significant535

performance difference between our proposed model and the536

comparable models, FID is likely to be consistent with the537

others; thus, it is unnecessary to implement other metrics. The538

FID, d2 provided in [56] is computed as follows,539

d2(x, g) = ||µx − µg||22 + Tr(Cx + Cg − 2(CxCg)
1
2 (4)540

where x is the genuine image, and g is the generated image.541

While, µx and µg refer to the feature-wise means of the542

genuine and generated images, respectively. The Cx and Cg543

refer to the covariance matrix for the genuine and generated544

feature vectors, known as sigma. The ||µx − µg||2 refers to545

the sum square difference between the two mean vectors,546

while Tr refers to the trace of a square matrix, the sum of547

the elements on the main diagonal (from the upper left to the548

lower right).549

VII. RESULTS AND DISCUSSION550

A. QUALITATIVE EVALUATION551

We executed image augmentation with a single GPU and552

three hours of training for the dataset with 10,000 iterations.553

As explained in Section V, the augmentation results were554

produced based on the types of augmentations, for both with555

and without mask data. The augmentations can be combined556

with more than one augmentation to produce varied results.557

Fig. 5 shows some images combined all augmentation types,558

namely a) color and contrast, b) cutout for occlusion images,559

c) offset-x and offset-y for shift-variant images, and d) hori-560

zontal translation with an image size of 2562 and batch size561

of 16.562

The qualitative comparisons with StyleGAN based on res-563

olutions of 2562 and 10242 highlighted the efficiency of our564

proposed model as in Fig. 6. StyleGAN either converges565

slower or suffers from mode collapse, given the same batch566

size and training time. In contrast, our proposed model con-567

sistently generated satisfactory images. Note that the best568

results from our proposed model on facemask images only569

took one hour of training time, and the best performance570

was achieved at training for four hours with a resolution of571

10242. For StyleGAN on the facemask, the images were from572

the best epoch, which corresponds to the training time and573

GPU in Table 3 and Table 4. The resolution of 10242 from574

StyleGAN is also limited, given the increased training time.575

LiWGAN has the same features as StyleGAN with a576

channel-wise excitation module. It learns how to distinguish577

high images from G’s convolution layers on various scales578

uncontrolled from high-level semantic attributes (style and579

content). The style-mixing results in Fig.6 show LiWGAN580

TABLE 3. Comparison of computational cost of our model and StyleGAN
based on batch sizes.

TABLE 4. Comparison of computational cost based on 2562 and
10242 resolutions.

and StyleGANwith 2562 and 10242 resolutions.While Style- 581

GAN suffers from converging on the bottom high-resolution 582

datasets, LiWGAN successfully learns the style representa- 583

tions along the channel dimension on the ‘‘excited’’ layers 584

(i.e., for feature maps with 2562 and 5122 resolution). 585

Collecting large-scale image datasets are expensive for 586

a particular character, genre, or subject. On these few-shot 587

datasets, a data-efficient model is valuable for image gener- 588

ation. The computational cost comparison is evaluated and 589

tabulated in Table 3, which presents the normalized models 590

combined with a mask and without a mask on an NVIDIA 591

Tesla P100 GPU and high memory virtual machines (VMs), 592

implemented using PyTorch in Google Colab Pro. The com- 593

parison evaluated the training time per 10,000 iterations and 594

trained the GPU with a resolution of 2562 for multiple batch 595

sizes, such as 8, 16, and 32, for the total images of 1000. 596

We executed StyleGAN into the dataset to obtain a fair com- 597

parison with our proposed model. 598

The results were compared with StyleGAN to determine 599

the effective, efficient, and best training time and training 600

GPU. According to the findings, StyleGAN took five hours 601

of training time and a training GPU of 7.62 GB for batch- 602

size 8, which is considered a longer training time and large 603

training GPU to be compared with our proposed model. our 604

proposed model only took one hour of training time and 605

4.67 GB of training GPU, with a shorter training time and a 606

small GPU. The differences in training time and trainingGPU 607

for StyleGAN and our proposed model are varied for all the 608

computed batch sizes. For example, the batch size of 32 for 609

our proposed model took approximately six hours to train 610
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FIGURE 5. Types of augmentations for images with a mask and without a mask dataset: (a) variations of color and contrast, (b) various cutout for
occlusion images, (c) offset-x and offset-y for shift-variant images, and (d) horizontal translation, with an image size of 2562 and batch-size of 16.

10,000 iterations of images with only 9.12 GB of training611

GPU. The trainingGPU for a batch size of 32 is almost similar612

to batch size 8 for StyleGAN with only 2 GB GPU variance.613

We adopt StyleGAN with recent studies from [23], [45],614

[46], including the model configuration and differentiable615

data-augmentation, for the best training on few-sample616

datasets. We show that our proposed model not only achieves617

superior performance on the few-shot datasets but is also618

much more computationally efficient than the compared619

method. The training time and GPU performance are eval-620

uated based on the low resolution of 2562 and high resolution621

10242 for a batch size of 8, as tabulated in Table 4. StyleGAN622

took 39 hours of training time, which is more than 24 hours to623

execute 100 images for 10,000 iterations. Limited access to624

high-memory virtual machines, GPUs, and RAM may result625

in a long training time with frequent disconnections. Hence,626

our proposed model produced the best training time and GPU627

as our objective is to reduce the computational time and GPU628

training size.629

The training loss of the model for batch sizes 8 and630

32 with an image size of 2562 was computed to determine631

the effectiveness and efficiency of the model. Our proposed632

model’s strength is the self-supervised discriminator, which633

optimizes both the decoder and the discriminator to achieve634

rapid restoration loss. Therefore, the self-supervised loss is635

compared with the generator loss and discriminator loss for636

every 1000 iterations until it reaches 10,000.637

Fig. 7 presents the discriminator, generator training loss,638

and self-supervised loss for a batch size of 8 with an image639

size of 2562. The results show the self-supervised loss of our640

proposed model obtained zero loss for every 1000 iterations641

for batch-size eight iterations. The generator loss started with642

a considerable loss value at 45.97 and decreased to 1.85 at643

10,000 iterations, which was a good training loss. The dis-644

criminator loss began at 6.01 and was reduced to 0.06.645

Meanwhile, Fig. 8 presents the training loss for a batch646

size of 32 with the image size of 2562. The results showed647

a similar training loss as batch size 8, exclusive of the gen-648

erator loss. The generator loss began from the negative value649

of -35.77, which increased the graph to a positive loss value650

of 2.37. Nevertheless, the discriminator loss showed a var- 651

ied gap between batch sizes 8 and 32 for every iteration. 652

At 10,000 iterations of batch size 32, the discriminator loss 653

produced a high discriminator loss at 0.29, beginning at 7.47, 654

slightly higher than the batch size of 8. The self-supervised 655

loss has obtained a 0.00 loss at 10,000 iterations. Therefore, 656

our proposed model can optimize the training loss using the 657

proposed self-supervised discriminator. 658

Furthermore, self-supervised training results improve our 659

proposed model’s robustness and generalization ability. From 660

the viewpoint of GANs, self-supervised methods improve the 661

representation efficiency for machine learning, which results 662

in better auto-coding. The results of the training loss show 663

a better training loss for batch size 8 with a decreasing loss 664

value to zero. 665

B. QUANTITATIVE EVALUATION 666

We also tested our model on facemask datasets with sufficient 667

training samples for a more thorough evaluation. We trained 668

the full StyleGAN for approximately four to five days on 669

the facemask dataset with a batch size of 8 on two Tesla 670

P100 GPUs. Instead, we trained our model for only 24 hours, 671

with a batch size of eight on a single GPU. The standard 672

method for calculating FID is to generate 50,000 images 673

and use the entire training set as the reference distribution. 674

We computed the FID for 1000, 2000, 3000, and 5000 images 675

at 10242 resolution. Compared with StyleGAN, as tabulated 676

in Table 6, the results show that LiWGAN can work with 677

many datasets with a minimum computer budget. In addition, 678

the FID results proved that LiWGAN boosts distance perfor- 679

mance consistently compared to StyleGAN. 680

We experimented with the two proposed modules in 681

Table 5, where both SLE and decoding-on-D (decode) 682

can separately boost the model performance. Results show 683

that the two modules are orthogonal to each other in improv- 684

ing the model performance, and the self-supervised D makes 685

the most significant contribution. Significantly, StyleGAN 686

diverges rapidly after the training time. In contrast, our 687

model is less likely to cause mode collapse among the tested 688

datasets. Furthermore, our model maintains good synthesis 689
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FIGURE 6. Style-mixing results of LiWGAN and StyleGAN with 2562 and 10242 resolutions. LiWGAN is trained
for only three to four hours on a single GPU.

quality and does not collapse after training for 20 hours.690

Finally, the decoding regularization on D prevents the model691

from diverging.692

In addition to the auto-encoding training for D, we show693

that D with other common self-supervising strategies boosts694

GAN’s performance by treating genuine images as a unique695

class and classifying them. For instance, we train D to pre-696

dict the original aspect ratio of the genuine image. Then,697

it reshaped to square when supplied to D. Auto-encoding698

causes D to pay attention to more regions of the input image,699

resulting in a more comprehensive feature map for the input700

TABLE 5. Comparison of FID at 10242 resolution for 1000, 2000, 3000,
and 5000 images.

image. In contrast, a classification task does not guarantee 701

that D covers the entire image. Instead, the task drives D to 702

focus only on small regions because the model can find class 703

93164 VOLUME 10, 2022



N. A. Mashudi et al.: LiWGAN: A Light Method to Improve the Performance of Generative Adversarial Network

TABLE 6. Comparison with state-of-the-art methods in terms of FID and processing time per iteration.

FIGURE 7. The training loss consisted of the discriminator, generator, and
self-supervised loss for a batch size of 8 with an image size of 2562.

FIGURE 8. The training loss consisted of the discriminator, generator, and
self-supervised loss for a batch size of 32 with an image size of 2562.

cues from small regions of the images. Focusing on limited704

regions or patterns is a typical overfitting behavior widely705

occurring for D in vanilla GANs.706

Furthermore, we compared LiWGAN with the state-of-707

art methods, including GL-GAN [42], DAG + Dist-GAN708

[61], CycleGAN [37], MSGAN [36], DRAGAN [26], and709

StyleGAN [23], in terms of FID score, type of image710

(synthesis or non-synthesis), and processing time per iteration711

as tabulated in Table 6. These state-of-art methods utilized712

various datasets with image synthesis and non-image synthe-713

sis. We compared the FID to analyze the methods based on714

the image quality of the original image. The FID is accept- 715

able when the image quality is almost zero. However, this 716

depends on the dataset used to compute the FID. Therefore, 717

our study analyzed the FID score for the datasets that consist 718

of non-image synthesis to produce a fair comparison with the 719

state-of-art methods. 720

The findings show LiWGAN generated a 142.78 FID score 721

for a non-image synthesis dataset, which is considered a high 722

score compared to the image synthesis dataset of StyleGAN, 723

with the lowest FID. StyleGAN generated an image synthesis 724

task using LSUN datasets as their training images. Image 725

synthesis has high-resolution images compared to non-image 726

synthesis. However, non-image synthesis embeds the training 727

images in a low dimensional space; thus, it comprises poor 728

quality image synthesis. 729

LiWGAN produced a slightly lower FID score than Cycle- 730

GAN using Zebra to Horse, MSGAN using Maps, and 731

DRAGAN using CelebA. In this case, the Zebra to Horse 732

dataset contained image synthesis, while other datasets are 733

non-image synthesis datasets. However, the processing time 734

per iteration shown by LiWGAN takes a few seconds longer 735

than CycleGAN to generate the image, while MSGAN and 736

DRAGAN are not stated the specific processing time by the 737

authors. 738

On the other hand, the processing time of GL-GAN is 739

longer than other state-of-art methods, including LiWGAN 740

at 12.24s for CelebA datasets, a non-image synthesis with a 741

good FID score. Furthermore, the author optimized the local 742

bilevel for poor image quality. Hence, GL-GAN enhanced the 743

poor-quality images to a high quality non-image synthesis. 744

Moreover, it helps to reduce the FID score nearly to zero in 745

generating the images. 746

Wevalidated LiWGANwith CelebA dataset for non-image 747

synthesis and compared the FID score and processing time 748

per iteration. The results tabulated in Table 7 show that LiW- 749

GAN produced a better FID score at 91.31 than GL-GAN and 750

DRAGAN methods. Furthermore, the processing time per 751

iteration is considerably increased from 1.03s for 142.78 FID 752

to 3.50s for 91.31 FID. Despite this, LiWGAN showed a 753

significant improvement in FID score and processing time 754

compared to GL-GAN. 755
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TABLE 7. FID and processing time per iteration results using CelebA
dataset.

The importance of the dataset selection mainly has a con-756

siderable impact on the FID score; we aim to generate good757

images for non-image synthesis in a low setting. GAN meth-758

ods require large memory in a real application. Hence, LiW-759

GANwas proposed as one of the best options for light-weight760

MEC because it requires less computing power than standard761

GAN methods.762

Fine-tuning from a pre-trained GAN [36], [62], [63] has763

been the norm for image generation on datasets with few764

samples. However, its performance highly depends on the765

semantic consistency between the new dataset and the avail-766

able pre-trained model. According to Zhao et al., fine-tuning767

performsworse than training from scratch inmost cases when768

the content from the new dataset strays away from the original769

one [64].770

VIII. CONCLUSION771

This study proposed a LiWGAN method to produce and772

generate more non-image synthesis in a low setting. LiW-773

GAN proposed two techniques, a skip-layer channel-wise774

excitation module (SLE) and a self-supervised discrimina-775

tor, to boost the performance of the GAN and reduce the776

computing power for mobile devices, as shown in Table 4.777

Comparing the resolution and batch size, such as batch sizes778

of 8, 16, and 32, with a resolution of 2562, including the779

highest resolution of 10242 into LiWGAN to analyze the780

FID score in identifying the genuine and fake images while781

generating high quality images. In addition, all batch sizes782

and resolutions are analyzed based on the computational time783

and memory of the GPU. To prove LiWGAN is adequate for784

light-weightMEC, some analyses have been carried out using785

the CelebA dataset and compared with other GAN methods786

in terms of FID score and processing time per iteration. As a787

result, LiWGAN is considerably fitted for less computing788

power due to its low processing time, which is suitable for789

mobile devices. In future work, LiWGAN can improve the790

FID score and the computational time required to work fast791

for multiple types of datasets.792
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