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ABSTRACT Network security becomes indispensable to our daily interactions and networks. As attackers
continue to develop new types of attacks and the size of networks continues to grow, the need for an effective
intrusion detection system has become critical. Numerous studies implemented machine learning algorithms
to develop an effective IDS; however, with the advent of deep learning algorithms and artificial neural
networks that can generate features automatically without human intervention, researchers began to rely on
deep learning. In our research, we took advantage of the Convolutional Neural Network’s ability to extract
spatial features and the Long Short-Term Memory Network’s ability to extract temporal features to create
a hybrid intrusion detection system model. We added batch normalization and dropout layers to the model
to increase its performance. Based on the binary and multiclass classification, the model was trained using
three datasets: CIC-IDS 2017, UNSW-NB15, and WSN-DS. The confusion matrix determines the system’s
effectiveness, which includes evaluation criteria such as accuracy, precision, detection rate, F1-score, and
false alarm rate (FAR). The effectiveness of the proposed model was demonstrated by experimental results
showing a high detection rate, high accuracy, and a relatively low FAR.
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INDEX TERMS Intrusion detection system, deep learning, convolutional neural network, long-short term
memory, accuracy, false alarm rate, binary classification, multiclass classification.

I. INTRODUCTION16

The rapid growth of technologies and information, such as17

the internet of things, big data, and cloud computing, as well18

as the increasing reliance of our daily communications on19

networked services, have made networked computing essen-20

tial, thereby increasing the significance of network security.21

Any vulnerability or threat will affect the entire network [1].22

Firewalls and encryption techniques are traditional security23

mechanisms that face challenges where the attackers keep24

developing complicated attacks [2]. Moreover, cybersecu-25

rity researchers found the importance of developing efficient26
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network intrusion detection systems (IDS) to provide secured 27

networks. Intrusion detection systems intend to provide avail- 28

ability, confidentiality, and integrity for the data transmitted 29

in networked computers by preventing unauthorized access 30

to a network, protecting the information and communication 31

systems in the network [3], and, most important, being able 32

to detect known and unknown attacks and threats with high 33

accuracy and a minimum false alarm rate [4]. 34

Two approaches comprise the intrusion detection system: 35

misuse detection and anomaly detection. Misuse detection, 36

also known as signature-based detection, is the initial detec- 37

tion model where detection is based on known and stored 38

attacks and threats. This model has a low rate of false alarms 39

and a high detection rate. With the expansion of networks 40
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and services, unknown new attacks are being developed by41

attackers, which makes the model susceptible to these attacks42

[5]. To provide security for these networks, an intrusion43

detection systemmust be effective and intelligent in detecting44

and preventing known and unknown attacks, such as anomaly45

detection. Despite a high false alarm rate, anomaly detection46

can detect known and unknown attacks.47

Artificial Intelligence (AI) has made it possible for com-48

puters and machines to learn from a dataset with minimal49

human intervention; intrusion detection systems have taken50

advantage of this capability. Both machine learning (ML)51

and deep learning (DL) are sub-fields of artificial intelligence52

(AI), and both were utilized in the creation and development53

of an effective intrusion detection system. The classification54

and detection of network traffic in a machine learning system55

are based on manually extracted features. While the deep56

learning system, with its neural network, can extract features57

from the dataset and then perform classification and detec-58

tion, deep learning can enhance and improve the detection59

accuracy of the model in comparison to machine learning [1].60

Based on various approaches and learning techniques,61

numerous models have been and continue to be developed to62

create an effective intrusion detection system. Existing mod-63

els have poor precision, low detection, and high false alarm64

rates. In this paper, we attempt to address these concerns and65

develop a more effective detection model. This paper pro-66

poses a deep learning-based intrusion detection system that67

employs two deep learning algorithms, Convolutional Neural68

Network (CNN) and Long-Short Term Memory (LSTM).69

Both algorithms extract temporal and spatial features of70

network traffic to reduce the false alarm rate and increase71

the detection rate. This paper evaluated the model using72

the CIC-IDS2017, UNSW-NB15, and WSN-DS datasets and73

compared the outcome to the CNN model, LSTM model,74

and other learning algorithms. Our results demonstrated that75

integrating two deep learning algorithms will improve the76

detection rate and accuracy, making the model more accurate77

and resistant to threats and attacks.78

This paper is structured as follows: Section 2 provides79

an overview of machine learning for network intrusion80

detection. Our hybrid CNN-LSTM model is structured in81

Section 3. Section 4 describes the dataset utilized in the82

model’s development. Section 5 describes the experimental83

design and evaluation of themodel, while Section 6 concludes84

this paper.85

II. INTRUSION DETECTION SYSTEM86

Cybersecurity researchers are attempting to create a model87

that can detect known and unknown network attacks and88

prevent them from causing damage to the network. As will89

be demonstrated next, the algorithms developed for IDS can90

be divided into machine learning and deep learning.91

A. MACHINE LEARNING-BASED IDS92

Machine learning played and still plays a vital role in93

intrusion detection systems. ML algorithms are based on94

supervised learning, such as Decision Tree, SVM, and 95

Naïve Bayes, and unsupervised learning, such as K-means 96

clustering and Self Organized Map [4]. The primary func- 97

tion of machine learning algorithms is to enhance a sys- 98

tem’s detection capability. The trained data is used to detect 99

attacks and threats. Machine learning algorithms are typically 100

employed to solve regression, classification, and clustering 101

problems. Most prior work on machine learning relied on 102

the NSL-KDD, DARPA, and KDD-CUP99 datasets. Some 103

models produced satisfactory results, but these datasets are 104

out-of-date and contain only simple types of attacks [1], 105

[4]. Training an IDS for the current, continuously expanding 106

network requires a large dataset, and relying on traditional 107

machine learning algorithms that function correctly on small 108

datasets will not result in an efficient model [4]. 109

B. DEEP LEARNING-BASED IDS 110

Deep learning is a subfield of machine learning that inter- 111

acts with multi-hidden-layer artificial neural networks [4]. 112

In addition to data representations, deep learning algorithms 113

can also learn from unlabeled or unstructured data [6]. Deep 114

learning has many performance features that allow it to be 115

efficient enough to develop an IDS, such as the robustness 116

of the DL algorithms with high scalability and the ability to 117

deal with different types of data [7]. Deep learning algorithms 118

were mainly developed to solve complex problems, pat- 119

tern recognition, search engine, and machine translation [8]. 120

Algorithms such as Deep belief networks (DBN), Restricted 121

Boltzmannmachines (RBM), andAutoencoder (AE) are used 122

widely for extracting features [9]. Multi-Layer Perceptron is 123

used in different fields and mainly to minimize the error rate 124

during training [10]. 125

Convolutional Neural Networks (CNN) and Recurrent 126

Neural Networks (RNN) are the most prevalent deep learning 127

algorithms. CNN’s primary advantage is its ability to auto- 128

matically recognize spatial features without human interven- 129

tion, avoid overfitting by reducing the number of trainable 130

parameters, and improve generalization [8]. RNN is primarily 131

used in Natural Language Processing (NLP), speech process- 132

ing, and video analysis due to its ability to utilize sequential 133

network features [7], [11]. Due to the memory blocks in 134

RNN’s neural network, LSTM was developed as a solution 135

to the RNN’s vanishing gradient problem [11]. 136

III. METHODOLOGY 137

In our research, we construct an intrusion detection system 138

using CNN-LSTM layers. The IDS model’s methodology is 139

depicted in Figure 1. 140

A. DATASET PREPARATION 141

The initial step in constructing an effective intrusion detection 142

system is to select an appropriate dataset. The dataset should 143

include normal and malicious records representing what the 144

model will encounter in the real world. Our research uses the 145

CIC-IDS2017, UNSW-NB15, and WSN-DS datasets, all of 146

which are newly accessible. These datasets contain normal 147
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FIGURE 1. Methodology flowchart.

and malicious traffic data that is regarded as new and does148

not contain a significant amount of redundant information.149

1) CIC-IDS2017150

CIC-IDS2017 encompasses eleven new attacks, including151

Brute Force, PortScan, DoS, web attacks including XSS and152

SQL Injection, FTP-Patator, and SSH-Patator. It was devel-153

oped in 2017 by the Canadian Institute for Cybersecurity, and154

its eighty features are used to monitor benign and malicious155

traffic [6], [12].156

2) UNSW-NB15157

This dataset contains records of benign traffic and nine158

types of attacks, such as Fuzzers, Analysis, Backdoor, DoS,159

Exploits, etc. The Australian Centre for Cyber Security160

(ACCS) created it in 2015. The records were collected from161

three real-world websites, including BID (Symantec Corpo-162

ration), CVE (Common Vulnerabilities and Exposures), and163

MSD (Microsoft Corporation) (Microsoft Security Bulletin)164

[4], [12].165

3) WSN-DS166

WSN-DS was developed in 2016 to detect normal and mali-167

cious traffic by monitoring the number of nodes in wireless168

networks with sensors. This dataset’s records are extracted169

using the LEACH routing protocol, represented by 23 fea-170

tures. There are standard records and four DoS attack types,171

including flooding, Grayhole, blackhole, and TDMA [13].172

B. DATA PREPROCESSING173

1) LOAD DATASETS174

The datasets we used were publicly available. The data is175

stored in a CSV file in pcap format. In this step, Pandas176

package was used to read each dataset’s details, and after177

reading each dataset’s details, it was cleaned of any null and178

duplicate values in preparation for the next step.179

2) DATA ENCODING180

This step is responsible for encoding labels in datasets. Deal-181

ing with a deep neural network means dealing with numerical182

values. Labels in each dataset are not numerical values, so by183

using the One-Hot Encoder, we encoded the label column by184

changing the values from benign or malicious to be repre- 185

sented by numerical values. 186

3) DATA NORMALIZATION 187

Normalizing the data is a preprocessing technique used to 188

optimize within-range characteristics. The variance of the 189

data read from the CSV file, which has different standard 190

derivations and means, will impact the learning efficiency. 191

In our model, we scaled the input data using Standard Scalar, 192

resulting in a mean of zero and a standard deviation of one. 193

Based on ‘sklearn. preprocessing’ library Standard Scalar 194

was used to normalize the datasets. 195

4) FEATURE SELECTION 196

Feature selection is also referred to as feature reduction and 197

is responsible for selecting a set of features based on criteria. 198

This process enables rapid model construction and training 199

based on specific features, which reduces training and testing 200

time and improves performance. In our work, we used a 201

method called SelectKBest. SelectKBest was imported from 202

the ’sklearn. feature selection’ library which selects the best 203

features based on the highest score. We chose the source 204

function to perform classification and the number of features 205

based on K values. The output is an array containing the score 206

and the name of the feature, and we chose our features based 207

on that array 208

5) DATA SPLITTING 209

Our model’s datasets have been divided into 80% training 210

and 20% testing set. In addition, we divide the training set 211

into training and validation sets to tune our hyperparameters 212

during training to improve the model’s performance. Using 213

the Stratified K -Fold Cross Validation technique, the size of 214

both sets was determined based on the factor K . 215

C. HYBRID DEEP LEARNING MODEL 216

CNN can extract spatial features, while LSTM can extract 217

temporal characteristics. Due to CNN’s ability to extract 218

high-level features from large amounts of data, the model 219

begins with CNN. The first layer is the CNN layer; the 220

data will then pass through the convolution layer, where the 221

filters will extract the most critical features to generate a 222

feature map. This map will undergo max pooling to pre- 223

serve the most dominant features, followed by batch nor- 224

malization. The output will be sent to an LSTM layer to 225

extract temporal features, followed by a dropout layer to 226

prevent overfitting. This combination of CNN and LSTM 227

layers will be repeated three times with varying numbers 228

of neurons and filters, followed by a fully connected layer 229

that uses the SoftMax activation function to perform classi- 230

fication. Figure 2 depicts the structure of our deep learning 231

model. 232

1) CONVOLUTIONAL NEURAL NETWORK 233

CNNhas two components: convolution and pooling. The con- 234

volution layer applies a set of filters through a mathematical 235
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FIGURE 2. CNN-LSTM layers structure.

operation. The process involves applying the filter to the236

input matrix to produce the feature map. It begins when the237

kernel slides over the input matrix in horizontal and vertical238

directions. At this point, the dot product between the input239

matrix and the kernel is calculated based on themultiplication240

of their elements and then summed into a single scalar value;241

this process is repeated until sliding is no longer possible.242

These new output matrix values represent the feature map. A243

threshold-based activation function will process the feature244

map to determine whether the neuron will fire or not [6],245

[7]. In our model, we used ReLU as an activation function,246

as follows: ReLU (zi) = max(0,zi). Therefore, the equation247

after the activation function will be:248

Z = h
(∑p×q

i
wivi + b

)
(1)249

where h represents the activation function, w is the weights,250

v is the input data, b is the bias, and p and q are the sizes251

of the input data matrix. Then pooling layer comes after252

performing the convolution on the data. The purpose of the253

pooling layer is to decrease the generated matrix’s size to254

prevent overfitting and enhance learning. The Max pooling255

technique will reduce the sample size without affecting the256

weights [14].257

2) BATCH NORMALIZATION258

Batch Normalization (BN) is primarily used to avoid covari-259

ance shifts resulting from changing the input from one layer260

to the next layer in a deep neural network, as these shifts261

make the learning process unstable and reduce the learning262

efficiency. BNwill accelerate the optimization procedure and263

reduce generalization errors [15]. In addition, it will adjust264

CNN output by scaling the data in the input layer to a unit265

norm, followed by LSTM layer processing. Themathematical266

representations of batch normalization are in the formulas267

next. X represents the data generated from the Max pooling268

layer, µB and δB are mean and variance of batch, respec-269

tively, ∈ to ensure that the denominator in the formula is270

FIGURE 3. Convolution process.

FIGURE 4. LSTM structure.

non-zero. 271

X̂ =
X − µB√
δ2B + ε

(2) 272

The result of equation 2 will be processed with two variables 273

γ and β. This process will generate an output Ŷ , where γ and 274

β are used for better learning output by training them in the 275

learning process. 276

Ŷ = γ X̂ + β (3) 277

3) LONG-SHORT TERM MEMORY 278

The central concept of LSTM is its capacity to translate and 279

cache inputs using memory cells over time. This memory 280

cell will be processed by gates whose activation function is 281

represented by gates. As shown in Figure 4, LSTM consists of 282

four gates: forget gate, update gate, tanh gate, and output gate. 283

In these networks, the learning process occurs by adjusting 284

the weights and the value of the activation function so that 285

the temporal features between input and output data can be 286

effectively produced [3], [16], [17]. 287

In the LSTM network, input and output values are the 288

vectors of the same size set by X (t). Forget gate will decide 289

which information to keep and which to delete by combining 290

X (t) with the previously hidden state X (t − 1). Moreover, 291

the output will be generated based on the sigmoid function 292

and multiplied with the previous cell state C(t − 1). The 293

update gate considers the input gate, which will determine 294
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TABLE 1. Confusion matrix.

the information needed to be added to generate C(t). This295

generation will be based on the sigmoid function and tanh296

function based on tanh gate. The multiplication of these gates297

will be added to the output resulting from multiplying forget298

gate withC(t−1) to generateC(t). The current cell stateC (t)299

goes through tanh activation function and then multiplied by300

the output of the sigmoid activation function of the output301

gate to generate the currently hidden state h(t) representing302

the output of the LSTM network. The following equation303

represents the formula of the output:304

O (t) = σ (b+ U × X (t)+W × h(t − 1)) (4)305

4) DROPOUT306

Neurons are dropped randomly during the training process in307

each epoch using this technique [9]. This process is necessary308

for deep neural networks to prevent overfitting, in which309

the network learns too well, limiting its capacity to identify310

variables in new samples [8]. In our research, we added a311

layer with a 0.2 dropout rate.312

5) FULLY CONNECTED LAYER313

The final layer operates on the extracted map features. Fully314

connected (FC) means that each neuron in this layer is con-315

nected to all neurons in the layer beneath it. This layer is316

responsible for implementing classification, performed using317

the Softmax activation function [3], [9]. The input data will be318

transformed into a one-dimensional layer to classify the data319

into the appropriate class and assign output probabilities, with320

the output from this layer representing the final output.321

D. EVALUATION322

The confusionmatrix indicators, as shown in Table 1, are used323

to evaluate the performance of IDS. TP represents benign324

records incorrectly classified as malicious, FP represents325

benign records incorrectly classified as malicious, TN rep-326

resents malicious records incorrectly classified as benign,327

and FN represents malicious records incorrectly classified as328

benign.329

From the confusion matrix indicators, we obtain accuracy330

(ACC), detection rate (DR), precision (Pr), and false alarm331

rate (FAR). ACC refers to the ratio of true predictions of the332

records. DR is the ability to predict only positive records in333

their entirety. Pr is the ability to avoid mislabeling negative334

records as positive, whereas FAR is the ratio of normal traffic335

misclassifications.336

ACC =
TP+ TN

TP+ TN + FP+ FN
(5)337

TABLE 2. Experimental scenario.

TABLE 3. Accuracy of CIC-IDS2017 binary classification based on different
learning algorithms.

DR =
TP

TP+ FN
(6) 338

FAR =
FP

FP+ TN
(7) 339

Pr =
TP

TP+ FP
(8) 340

IV. EXPERIMENTAL RESULTS AND ANALYSIS 341

We constructed our model on an evaluation platform com- 342

prised of a Dell Inspiron 15 3511 with an Intel(R) Core (TM) 343

i7-1165G7 processor running at 2.80 GHz and 8.00 GB of 344

RAM. The model for deep learning was implemented using 345

the TensorFlow, Pandas, and Keras libraries. 346

We have evaluated the models using two classification 347

methods: binary and multiclass. The datasets were divided 348

into two classes for binary classification: benign and attack. 349

As shown in Table 2, the dataset is labeled as benign or as one 350

type of attack for multiclass classification. 351

1) COMPARISON BASED ON DIFFERENT LEARNING 352

ALGORITHMS 353

In the initial phase of our research, we compared the per- 354

formance of datasets based on CNN-alone, LSTM-alone, 355

LSTM-CNN, and CNN-LSTM to determine which model 356

provided the best results. The outcomes are presented in 357

Tables 3, 4, and 5. 358

Table 3 shows the accuracy of the CIC-IDS 2017 binary 359

dataset. The highest accuracy achieved by CNN-LSTM struc- 360

tures with three layers was 99.59%, followed by LSTM-CNN 361
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TABLE 4. Accuracy of UNSW-NB15 binary classification based on
different learning algorithms.

TABLE 5. Accuracy of WSN-DS binary classification based on different
learning algorithms.

TABLE 6. Feature Selection based on binary CIC-IDS2017.

structures with three layers at 99.56 %. Finally, CNN-LSTM362

structures with two layers at 99.49 %.363

The results for UNSW-NB binary dataset are in Table 4.364

Three layers of CNN-LSTM achieved the highest accuracy at365

93.68 %, followed by three layers of LSTM-CNN at 93.67%,366

three layers of CNN-only at 93.65 %, and two layers of367

CNN-LSTM at 93.65 %.368

WSN-DS shows distinct behavior. The LSTM-CNN struc-369

ture with a single layer structure achieved the highest accu-370

racy of 99.64%, followed by CNN-LSTM with 99.61% for371

three layers and 99.62% for one layer of LSTM, as shown in372

Table 5. After comparing four learning algorithms, we con-373

tinued our research using the CNN-LSTM hybrid structure.374

2) CNN-LSTM BASED ON SELECTED FEATURES375

The second phase of our testing involved the selection of376

model-building features. Initially, utilizing the CIC-IDS2017377

dataset and only one layer of CNN-LSTM, we conducted five378

experiments with 24, 40, 50, 60, and 78 features. We con-379

ducted three experiments with 24, 32, and 42 features for380

UNSW-NB15. Based onWSN-DS, we tested six, twelve, and381

eighteen features; the results are presented in the following382

tables. The selection of features was determined by Selec-383

tKBest, which selected the highest score.384

The results based on the binary CIC-IDS2017 dataset are385

displayed in Table 6. 24 features scored 97.32 % for accu-386

racy and 99 % for detection rate, respectively. Forty features387

achieve an accuracy and detection rate of 99.4% and 99.3%,388

TABLE 7. Feature Selection based on binary UNSW-NB15.

respectively. For 50 features, the accuracy and detection rate 389

was 99.59 percent and 99.54 percent, respectively. For 60 fea- 390

tures, the accuracy and detection rates were 99.6 percent and 391

99 percent, while for 78 features, they were 99.56 percent 392

and 99.52 percent, respectively. Based on previous results, 393

60 features provided the highest accuracy, while 50 features 394

provided the highest detection rate, the lowest false alarm 395

rate, and the highest F1-score value. For the remainder of the 396

experiments, testing was conducted with 50 features. 397

The results based on the binary UNSW-NB15 dataset are 398

displayed in Table 7. For UNSW-NB15, we decided to utilize 399

all 42 features from this dataset. Starting with one layer of 400

CNN-LSTM, 24 features achieved an accuracy of 93.57 % 401

and a detection rate of 94.5 %. For 32 features, the accuracy 402

and detection rate was 93.69 and 94.80 %, while for 42 fea- 403

tures, they were 93.7 and 94.84 %, respectively. The lowest 404

FAR value among 42 features was 6. In addition, when we 405

examined the training time, 42 features required less time to 406

train the data than 32 features, so we continued testing with 407

42 features. 408

The final feature selection testing was based on binary 409

WSN-DS. Eighteen features determined the optimal perfor- 410

mance of a model. 18 features achieved 99.58 and 98.27 % 411

accuracy and detection rate, compared to 88.89 and 97.04 % 412

detection rate and 98.11 and 97.60 % accuracy for 12 and 6 413

features, respectively. In addition, the entire feature set was 414

used for this dataset to train the IDS model. 415

We evaluated the Adam optimizer and RMSprop-based 416

model. Adam optimizer was used to achieve the previous 417

results. The accuracy and detection rates for one layer of 418

CNN-LSTM based on RMSprop and CIC-IDS 2017 were 419

99.52 % and 99 % for CIC-IDS 2017, 93.57 % and 93 % for 420

UNSW-NB15, and 99.60 % and 98.27 % based on WSN-DS, 421

respectively. Therefore, we chose to continue using the Adam 422

optimizer due to its superior accuracy and detection rate. 423

3) CNN-LSTM BASED ON THE NUMBER OF LAYERS AND 424

HYPERPARAMETER 425

This section demonstrates the third portion of our testing, 426

based on the number of layers, neurons, FC layers, and 427

dropout layer rate. 428

The outcomes presented in Table 9 were very similar. The 429

best performance was 99.6 % for three layers with a dropout 430

rate of 0.2 and one FC layer, followed by 99.55 % for two 431

layers with a dropout rate of 0.2 and two FC layers, and 432

finally 99.56 % for one layer with a dropout rate of 0.2 433

and two FC layers. In order to select the structure with the 434
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TABLE 8. Feature selection based on binary WSN-DS.

TABLE 9. Structure selection based on the CIC-IDS2017 dataset.

TABLE 10. Accuracies of selected structure of CIC-IDS2017 dataset.

highest performance, we analyzed additional data, as shown435

in Table 10. Table 10 indicates that the optimal structure436

consists of three layers with a dropout rate of 0.2 and one437

FC layer. The validation accuracy was identical to the testing438

accuracy at 99.60 %, and the FAR was the smallest at 0.11.439

The same test was conducted on the binary UNSW-NB15440

dataset, and the outcomes are presented in Table 11. Accord-441

ing to the table, the three highest testing accuracies were442

93.71 % for one layer with a 0.2 dropout rate and one FC443

layer, 93.65 % for one layer with a 0.2 dropout rate and two444

FC layers, and 93.63 % for one FC layer with 0.2 dropout rate445

and three CNN-LSTM layers. Based on the results presented446

in Table 12, we decided to continue training based on three447

layers of CNN-LSTM for UNSW-NB15. Despite not having448

the highest testing or training accuracy, the three structures449

had the highest validation accuracy with 93.7 %, the lowest450

loss with 11, and the lowest FAR with 6.2.451

Based on WSN-DS, as shown in Table 13, the highest452

testing accuracy was achieved using one CNN-LSTM layer453

TABLE 11. Structure selection based UNSW-NB15 dataset.

TABLE 12. Accuracies of selected structure of UNSW-NB15 dataset.

TABLE 13. Structure selection based WSN-DS dataset.

with a dropout rate of 0.5 and two FC layers. Then, 2 454

CNN-LSTM layers with 0.2 dropouts were followed by 2 FC 455
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TABLE 14. Accuracies of selected structure of UNSW-NB15 dataset.

layers. And finally, three CNN-LSTM layers with a dropout456

rate of 0.2 and one FC layer.457

Comparing the highest three testing accuracy in terms of458

validation accuracy, loss, and FAR, we determined that the459

three layers had the highest validation accuracy at 99.60%460

and the lowest FAR at 0.90.461

4) CNN-LSTM BASED ON STRATIFIED K-FOLD CROSS462

After determining the optimal number of layers, neurons,463

FC layers, and dropout rate, we continued testing while vary-464

ing the Stratified K-Fold cross parameter. The metrics for465

CIC-IDS based on binary and multiclass classification are466

displayed in Table 15. The highest accuracy was 99.64 %467

at K = 8 and K = 4, while the highest detection rate was468

99.70 % for binary classification and 99.95 % for multiclass469

classification at K = 8. At K = 8 for binary classifi-470

cation and K=10 for multiclass classification, the smallest471

FAR achieved was 0.1. Tables also display the F1 score and472

precision values.473

According to Table 16, there is a discernible distinction474

between binary and multiclass in the UNSW-NB15 dataset.475

At K = 6, the highest accuracy for binary classes was476

achieved with 93.95 %, compared to 82.2 % at K =477

4 for multiclass. The highest detection rates achieved at478

K = 8 based on binary and multiclass classification were479

94.53 and 82.41 %, respectively. For FAR, the lowest value480

was found at K = 8 for binary classes and K = 4 for481

multiclass, with a value of 2.2.482

K had varying effects on the outcomes of the WSN-DS483

simulation. Based on Table 17, the best binary and multiclass484

accuracywere achieved atK = 10with 99.67% and 99.43%,485

respectively. The highest detection rates occur at K = 10 and486

K = 8, with 98.14 % and 98.83 %, respectively. The lowest487

FAR achieved with K = 6 in binary and K = 2 in multiclass488

was 0.11 and 0.67, respectively.489

The effect of modifying K-Fold on each record type in the490

datasets is depicted in the following figures.491

Figures 5 and 6 illustrate the effect of training the model492

with CIC-IDS2017 data. Each type of record achieved a high493

detection rate and low FAR values, demonstrating robust494

implementation. There was a slight change in detection rates495

as K-Fold increased, but SFH-Patator had themost significant496

impact. For FAR, increasing K decreased the values of every497

record.498

FIGURE 5. Effect of K-Fold cross on detection rate based on CIC-IDS2017
dataset.

FIGURE 6. Effect of K-Fold cross on false alarm rate based on
CIC-IDS2017 dataset.

FIGURE 7. Effect of K-Fold cross on detection rate based on UNSW-NB15
dataset.

Figure 7 demonstrates that the detection rate for most 499

record types at UNSW-NB is effective, particularly for 500

records with a large number of records. Worm and DoS have 501

the lowest detection rates, with detection rates approaching 502

zero as K increases. The model classified these attacks as 503

reconnaissance attacks based on the confusion matrix results. 504

Figure 8 depicts K-fold versus FAR for the identical records, 505

where DoS obtained the highest values of FAR. 506

Figure 9 and Figure 10 illustrate theWSN-DS performance. 507

Increasing the number of K-Folds enhanced the performance 508

of Blackhole attacks while decreasing the performance of 509
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TABLE 15. Changing K-Fold cross based on CIC-IDS2017 dataset.

TABLE 16. Changing K-Fold cross based on UNSW-NB15 dataset.

TABLE 17. Changing K-Fold cross based on WSN-DS dataset.

FIGURE 8. Effect of K-Fold cross on false alarm rate based on
UNSW-NB15 dataset.

Grayhole attacks. Similar detection rate values were observed510

for other records. Almost every K-Fold yielded poor results.511

We aim to enhance the model’s ability to detect all attack512

types.513

5) CNN-LSTM BASED ON EPOCH514

After observing the impact of increasing the K-Fold cross,515

we examined the impact of increasing the number of epochs.516

FIGURE 9. Effect of K-Fold cross on detection rate based on WSN-DS
dataset.

Based on the previous values, we decided to continue testing 517

with K = 8. 518

Figures 4.11 and 4.12 illustrate the effect of increasing 519

the number of epochs on the binary classification detection 520

rate and FAR. On UNSW-NB15, the number of epochs had 521

the most significant impact, as the detection rate increased 522

from 94.53 % at 5 epochs to 95.81 % at 60 epochs (refer to 523

Figure 4.11). At 5 and 60 epochs, the accuracy of CIC-IDS 524
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FIGURE 10. Effect of K-Fold cross on false alarm rate based on WSN-DS
dataset.

FIGURE 11. Effect of changing epoch on detection rate based on binary
classification.

FIGURE 12. Effect of changing epoch on false alarm rate based on binary
classification.

was 99.7 and 99.93 %, while that of WSN-DS was 98.14 and525

97.86 %, respectively. Figure 4.12 demonstrates that the526

UNSW-NB15 dataset and other datasets obtained the highest527

FAR values.528

FIGURE 13. Effect of changing epoch on detection rate based on
multiclass classification.

FIGURE 14. Effect of changing epoch on false alarm rate based on
multiclass classification.

Figures 13 and 14 show that multiclass and binary clas- 529

sification performance is identical. UNSW-NB15 obtained 530

the lowest detection rate values and the highest FAR values. 531

As shown in the figures below, increasing epochs did not 532

affect CIC-IDS2017 and WSN-DS. 533

The confusion matrices of the three datasets are shown in 534

Figure 15. It demonstrates that the classification of the major- 535

ity of record types was accurate, but PortScan attacks were 536

predicted to be normal records. Figure 16 demonstrates that 537

the most prevalent attack types were Exploits, Fuzzers, DoS, 538

and worms, which the model classified as Reconnaissance 539

attacks. 540

Due to the model’s ability to accurately classify all types of 541

records in the dataset, as depicted in Figure 17, the majority 542

of records in each type were accurately predicted. 543

6) BENCHMARKING EVALUATION 544

As shown in the following tables, we compared the efficacy 545

of our model to that of prior studies. The overall performance 546

of our model surpasses that of other recent studies. 547
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FIGURE 15. Confusion matrix for CIC-IDS2017 based on 5 epochs and
K=8.

FIGURE 16. Confusion matrix for UNSW-NB15 based on 5 epoch and K=8.

Based on the dataset with 5 epochs, K = 8, and548

binary classification, we conducted a comparison. Beginning549

with UNSW-NB15, our model’s performance exceeded other550

machine learning and deep learning structures. The accuracy551

of our CNN-LSTM-based model is 93.78 %, compared to552

85.77 % for the Deep Belief Network (DBN) and 89.08 % for553

the Autoencoder with Deep Neural Network (ICVAE-DNN),554

and 82.42 % for the Support Vector Machine model (SVM).555

CNN-LSTM achieved the lowest values for FAR, with iden-556

tical results. The detection rate yielded a slightly lower value557

than other models. However, the overall performance of our558

model was superior to that of other studies because we559

stacked CNN and LSTM layers, as shown in Table 18, based560

on UNSW-NB15.561

The CIC-IDS2017 data set is utilized for another com-562

parison. Table 19 demonstrates the robustness of our binary563

classification-based CIC-IDS2017 model. CNN-LSTM564

achieves 99.64 % accuracy, which is higher than Multilayer565

FIGURE 17. Confusion matrix for WSN-DS based on 5 epoch and K=8.

TABLE 18. Benchmarking based on the UNSW-NB15 dataset.

TABLE 19. Benchmarking based on the CIC-IDS2017 dataset.

TABLE 20. Benchmarking based on the WSN-DS dataset.

Perceptron (MLP) with 85.24 % accuracy, Rep Tree 566

with 96.67 % accuracy, and K-Nearest Neighbor (kNN) 567

with 80.16 % accuracy. FAR and detection rate based on 568

CNN-LSTM also produced superior results compared to 569

other models. 570

Results in Table 20 show the performance base on the 571

WSN-DS dataset. The accuracy achieved by our model was 572

99.58% outperforming other machine learning algorithms, 573

whereas 97% was achieved by Logistic Regression (LR), 574

83.1% based on Naïve Bayes, and 99.1% based on Decision 575

Tree (DT). Also, CNN-LSTM obtained the highest detec- 576

tion rate with 97.77%. Our results outperformed the bench- 577

marked studies due to the structure of stacking layers of 578

CNN and LSTM followed by DNN, cleaning the dataset, 579
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choosing the best features, adding dropout, and adding batch580

normalization.581

7) DISCUSSION582

The primary objective of the research is to create an effec-583

tive intrusion detection system that can distinguish between584

normal and malicious traffic. The number of new attacks585

discovered every day has increased the complexity of cyber-586

security problems and traditional intrusion detection systems587

have a high false alarm rate, causing security analysts to588

ignore harmful attacks and leaving the system vulnerable to589

any type of attack. Data used to train intrusion systems is590

considered out of date and contains redundant information591

resulting in insufficient training and an ineffective training592

and evaluation process. Researchers have recently begun to593

develop intrusion detection systems based on deep learning.594

Recent research shows that deep learning outperforms con-595

ventional learning techniques in terms of detecting malicious596

traffic and classifying received traffic in massive data and597

continuous attacks. Many studies have used CNN and LSTM598

configurations, the difference is that they did so separately.599

In our model, we created a hybrid structure in which we600

combined the two algorithms, which means that in each601

step, CNN and LSTM will be used to process the data.602

In our study, we employed the Convolutional Neural Network603

(CNN) and Long Short-Term Memory (LSTM) algorithms604

(LSTM). Using three layers of hybrid CNN and LSTM, the605

structure of themodel achieved our goal of delivering amodel606

with a high detection rate and low accuracy. Preprocessing607

steps on datasets were performed, including encoding, nor-608

malizing data, and selecting the best features to train the609

model. The output was fed to the first layer of CNN to610

perform spatial feature extraction, then the LSTM layer to611

perform temporal feature extraction, and finally the FC layer612

to perform classification.613

CIC-IDS2017 achieved the highest accuracies of 99.64 %614

for binary classification and 99.60% formulticlass classifica-615

tion throughout 5 epochs. At the same time, the precision and616

F1- scores were 99.56 % and 99.6 % for binary classification617

and 99.84% and 99.98% formulticlass classification, respec-618

tively. Based on the binary and multiclass classification, the619

highest detection rate was achieved at K = 8 with 99.70%620

and 99.95%, and the lowest false alarm rate was achieved at621

0.10% and 0.12%.622

Based on 5 epochs of UNSW-NB15, the highest binary and623

multiclass detection rates at K = 8 were 94.53 and 82.41 %,624

respectively. The highest binary and multiclass classification625

accuracies achieved were 93.95 % at K = 6 and 82.20 %626

at K = 4, respectively. In contrast, the highest precision627

and F1-score for binary classes were 94.69 and 94.77 % at628

K = 8, whereas they were 82.69 and 80.87 % at K = 10 and629

K = 8, respectively, for binary and multiclass classification.630

The lowest false alarm rate for binary was 6 % at K = 8 and631

2.22 % at K = 4.632

Based on 5 epochs of binary WSN-DS at K = 10, the633

highest accuracy, detection rate, and F1-score were achieved:634

99.67 %, 98.14 %, and 98 %, respectively. The highest 635

precision and lowest false alarm rate were also achieved: 636

98.86 % and 0.11 %, respectively. On the other hand, Mul- 637

ticlass classification achieved the highest detection rate and 638

F1-score at K = 8: 98.83 and 98.44 %, respectively, and 639

the highest accuracy and precision at K = 10: 98.43 and 640

99.12 %, respectively. K = 2 had the lowest rate of false 641

alarms, 0.67 %. 642

V. CONCLUSION AND FUTURE WORK 643

This study developed an intrusion detection system based on 644

the CNN and LSTM deep learning algorithms. We stacked 645

CNN and LSTM layers in our model and took advantage of 646

CNN’s ability to extract spatial features and LSTM’s ability 647

to extract temporal features. We implemented batch normal- 648

ization, dropout layers, and standardization to improve our 649

model. The model was evaluated using the UNSW-NB15, 650

CIC-IDS2017, andWSN-DS datasets, all of which contained 651

benign and attack records. As a first step, we tested the behav- 652

ior of these datasets based on CNN, LSTM, CNN-LSTM, 653

and LSTM-CNN. The results indicated that the CNN-LSTM 654

hybrid model provided the highest detection rate and accu- 655

racy. Based on this, we evaluated the hybrid model based on 656

binary and multiclass classification scenarios. With 5 epochs, 657

we obtained 99.64 %, 94.53 %, and 99.67 % accuracy for 658

binary classification using the CIC-IDS2017, UNSW-NB, 659

andWSN-DS datasets, respectively. Although the model was 660

unable to provide a high detection rate for certain types of 661

attacks, such as web attacks in CIC-IDS2017 and worms, 662

backdoors, and analysis in UNSW-NB15, the detection rate, 663

and FAR results are encouraging. The effect of K-Fold 664

cross-validation and increasing the number of epochs were 665

examined, and the results indicated that the performance 666

would initially improve before becoming stable. In the future, 667

we intend to improve the model’s performance in terms of its 668

low detection rate and high FAR resulting from the dataset’s 669

imbalanced records. 670
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