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J ABSTRACT Sparrow Search Algorithm (SSA) is a kind of novel swarm intelligence algorithm, which
has been applied in-to various domains because of its unique characteristics, such as strong global search
capability, few adjustable parameters, and a clear structure. However, the SSA still has some inherent
weaknesses that hinder its further development, such as poor population diversity, weak local searchability,
and falling into local optima easily. This manuscriptproposes an improved chaos sparrow search optimization
algorithm (ICSSOA) to overcome the mentioned shortcomings of the standard SSA. Firstly, the Cubic chaos
mapping is introduced to increase the population diversity in the initialization stage. Then, an adaptive weight
isemployed to automatically adjust the search step for balancing the global search performance and the local
search capability in different phases. Finally, a hybrid strategy of Levy flight and reverse learning is presented
to perturb the position ofiindividuals in the population according to the random strategy, and a greedy strategy
is utilized to select individuals with higher fitness values to decrease the possibility of falling into the local
optimum. The experiments are divided into two modules. The former investigates the performance of the
proposed approach through 20 benchmark functions optimization using the ICSSOA, standard SSA, and
other four SSA variants. In the latter experiment, the selected 20 functions are also optimized by the ICSSOA
and other classic swarm intelligence algorithms, namely ACO, PSO, GWO, and WOA. Experimental results
and corresponding statistical analysis revealed that only one function optimization test using the ICSSOA
was slightly lower than the CSSOA and the WOA among the 20-function optimization. In most cases, the
values for both accuracy and convergence speed are higher than other algorithms. The results also indicate
that the ICSSOA has an outstanding ability to jump out of the local optimum.

° INDEX TERMS Adaptive weighting modification, cubic chaos mapping, levy flight, reverse learning,
sparrow search algorithm.

I. INTRODUCTION

Swarm Intelligence (SI) is a method to solve complex real-
istic problems by simulating biological communication and
cooperative behaviors and conveying information among
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approving it for publication was Ludovico Minati

individuals [1]. Recently, the SI has received wide attention
from different aspects and obtained fruitful achievements
because of its simple structure, easy implementation, good
robustness, and wide applicability [2], [3], [4]. As one of the
latest SI algorithms, a sparrow search algorithm (SSA) was
proposed in 2020 by imitating the foraging and anti-predatory

behaviors of sparrows [5]. Compared with other SI
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algorithms, the SSA has been successfully applied in various
fields because of its excellent characteristics, such as good
global search capability, few adjustable parameters, and clear
structure [6], [7], [8], [9], [10], [11].

Although the SSA has the mentioned unique highlights,
some inherent bottlenecks still hinder its further investigation
for resettling the industrial issues, such as poor population
diversity, weak local searchability, and the tendency to fall
into local optimal. Scholars have discussed a sea of studies
to improve the performance of the standard SSA from var-
ious viewpoints. For example, Zhang and Ding employed a
logical mapping to improve the population diversity in the
initialization phase and introduced adaptive hyperparameters
and mutation operators to enhance the optimal-seeking abil-
ity. Experiential results verified that the improved algorithm
was superior to similar SSA variants by optimizing 13 test
functions [12]. Ouyang et al. utilized a mirror reverse learn-
ing and a positive cosine mechanism in the global search
and local convergence phases to improve convergence accu-
racy. A differential evolution approach was also presented to
avoid missing high-quality solutions to enhance the ability
to escape local optima. Finally, the algorithm’s feasibility
was verified by comparing three SSA variants and three
classical Sl algorithms [13]. Wang etal. used Bernoulli chaos
mapping and adaptive weighting factors to improve the global
search range of the SSA and used a hybrid Cauchy mutation
and reverse learning to jump out of the local optimum. The
experimental phase used different test functions to compare
the two classical Sl algorithms and verified that the improved
algorithm has high convergence speed and solution accuracy
[14]. Zhang et al. proposed an improved semi-supervised
ensemble classifier using the SSA (AdaBoost-ISSA-S4VM)
to enhance lung disease diagnosis classification accuracy.
The experimental results illustrated that the classification
model performed well on both labeled and unlabeled lung
CT images [15]. Wu et al. presented a new greedy SSA.
Firstly, a greedy strategy was used to increase the diversity of
the initialized population. Secondly, a genetic operator was
utilized to update the position of each iteration, and finally
the adaptive weights were employed to improve the adapt-
ability of the algorithm. This improved algorithm outper-
formed other algorithms through experimental comparison
in terms of accuracy, optimization speed, and stability [16].
Other similar SSA variants and related applications could
be found in [17], [18], [19], [20], [21], and [22]. Details of
some ofthe above mentions of SSA improvements are shown
in Table 1.

These discussed SSA variants are focused on enriching
population diversity and avoiding falling into local optima.
The main improvement ideas could be summarized into the
following points: improving the initial population diversity
using different hybrid strategies to find the optimum, jump-
ing out of the local optimum dilemma, and that is how the
mentioned SSA variants succeeded in showing better results
than the standard SSA. However, the existing SSA variants
still have some shortcomings:
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(1) The convergence speed is still relatively slow.

(2) They do not consider how to balance the exploration
capability in the early iterations and the exploitation capabil-
ity in the late iterations.

(3) They only consider how to reduce the risk of avoiding
falling into a local optimum but do not propose a feasible
solution to how the algorithm can escape from the local
optimum after falling into a local optimum.

Based on the above findings, an improved chaos sparrow
search optimization algorithm (ICSSOA) is presented to bal-
ance the exploration capability in the early iterations and
the exploitation capability in the late iterations. The main
improvements of the ICSSOA algorithm could be separated
into the following points:

Firstly, the initial sparrow population is enriched with
diversity by using the Cubic function for chaos initialization
during population initialization.

Secondly, the introduction of adaptive weights balances the
searchability in the early stage and the development ability in
the later stage.

Finally, a hybrid strategy of Levy flight and reverse
learning is used to enhance the ability of the algorithm to
escape from the local optimum. The experiments are imple-
mented further to validate the performance of ICSSOA from
two dimensions. On the one hand, a longitudinal compari-
son is executed by optimizing the 20 benchmark functions
among the SSA, the ICSSOA, and other four SSA variants
(Chaos Sparrow Search Optimization Algorithm (CSSOA)
[23], Improved Spar-row Search Algorithm (ISSA(a)) [24],
Chaotic strategy and Adaptive inertia weight strategy Spar-
row Search Algorithm (CASSA) [25] and Improved Spar-
row Search Algorithm (ISSA(b)) [26]). On the other hand,
a horizontal comparison is also carried out by optimizing
the 20 benchmark functions among the ICSSOA and other
Sl algorithms (Grey Wolf Optimizer (GWO) [27], Particle
Swarm Optimization (PSO) [28], Whale Optimization Algo-
rithm (WOA) [29], and Ant Colony Optimization (ACO)
[30], [31], [32]). In short, a systematical analysis of the
ten algorithms is carried out by testing 11 unimodal and
9 multimodal test functions, thus verifying the superiority
of ICSSOA in terms of merit-seeking capability, solution
accuracy and convergence speed.

The rest sections of this paper are organized as follows.
Section two recalls the related notions. Section three dis-
cusses the proposed ICSSOA in detail. Section four reveals
the performance of the proposed algorithm throughout func-
tion optimization tasks and corresponding statistical analysis.
Section five concludes the entire paper.

Il. STANDARD SPARRPW SEARCH ALGORITHM
The SSA refers to the process of predation and anti-predation
behavior of sparrows for location updates, based on the fol-
lowing principles.

The sparrows in the population are divided into two
categories, producers and followers. The two identities of
the sparrow can be interchanged, and each sparrow has a
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TABLE 1. Literature analysis.

Reference number Features

Logistic mapping
Self-adaptive hyper -parameters
Reference [12] P . yper-p
Mutation operator
Regularization parameter
Reverse learning strategy
Reference [13] An improved sine and cosine guidance mechanism
A differential-based local search
Bernoulli chaotic mapping
Dynamic adaptive weightin
Reference [14] y P X g g
Cauchy mutation
Reverse learning
Sine cosine algorithm
Reference [15] .
New labor cooperation structure
Greedy algorithm
Reference [16] Genetic operators

Adaptive weight

Sine map
Reference [17] Adaptive adjustment of hyper-parameters

Mutation strategy

danger awareness mechanism. To be specific, each sparrow
is aware of approaching danger or natural enemies and will
immediately engage in anti-predatory behavior to ensure its
safety. The producers themselves are high in energy and good
at finding food, searching widely, leading other sparrows
in their search and foraging for food. Followers follow the
producer to obtain more food, and followers are always on
the lookout for the producer to increase their food intake by
grabbing food or foraging around the producer.

A. BASIC CONCEPTS
The standard SSA formula associated with part A is referred
according to the reference [5].

Assuming N sparrows in D-dimensional space, the popu-
lation matrix is shown in Eq. (1).

X = [XL, X2, mmm, XNJT , Xi = Xi2, mm Xid] (1)

where xi,D represents the position of the ith sparrow in dimen-
sion D.

Producers are typically 10% to 20% of the population size
and the location is updated using the Eq. (2).

et+l |‘xt1|-exp( r2<ST )
Xij = .
xlj + QL R2 > ST
where, t represents the current number of iterations.
j = 1,2, mmm, d. itermax represents the maximum number

of iterations. a is a uniform random number in the range
0 to 1. R2(R2e [0, 1]) and ST (ST e [0.5, 1.0]) represent
the alert and safety values for sparrows respectively. Q is a
random number that follows a standard normal distribution.
L is a matrix of 1 x d and each element of the matrix is 1.
R2 < ST indicates that the producer is surrounded by no

VOLUME 10, 2022

IEEEAXesS'

Advantages Application

. Model parameter
Enhance global search capability o
optimization

Enrich population diversity .
Path Planning
Improve search accuracy

Enrich population diversity Model optimization

Improv ability to jump out of local optima

Improve global search capabilit A
P g P y Data classification
Improved convergence ability
Increase the diversity of the population

Balance global search and local development  Traveling salesman

capabilities problem
Increase the adaptability of the algorithm

Improve the global optimization ability of the L
Image recognition

algorithm

natural predators and is in a relatively safe location and the
producers enters a wide-area search mode. Otherwise, R2 >
ST means that the producer is aware of the presence of a
natural predator, then the producer should go to another area
to forage.

The follower position is updated due to the Eq. (3).

Q mexp 2
Xi+ 1= ®)

Xp+ 1+ {(} %ﬁ“ iA+ « L otherwise
where, Xworst represents the current position of the least
adapted sparrow. Xp represents the position of the sparrow
with the best current producer adaptation. A represents a
matrix of 1 x d, and each element of the matrix is assigned
a random value of 1 or -1. A+ = AT (AATY . Moreover,
i > 2 means that the ith sparrow with the worse adaptation is
likely to be hungry and so needs to travel to another location
to forage.

B. DANGER AWARENESS MECHANISM

Some sparrows perceive the threat of predators when foraging
and will abandon their current position and fly to another
position. Sparrows that perceive danger generally make up
10%-20% ofthe population. The position ofthe sparrows that
perceive danger is updated as shown in Eq. (4).

Kbest best fi >.
t
i+l = worst (4)

xij + K fi =
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xbest is the current global optimum position. i is a standard
normally distributed random step control parameter. K e
[-1, 1] is a uniform random number.f is the current fitness
value of the sparrow.fg and fw are the current global best-fit
and worst-fit values respectively. e is the smallest constant to
avoid division by zero error.

Whenf > fg, indicating that the individual sparrow is at
the edge of the population and vulnerable to attack by natural
predators. When f — fg, the individual sparrow is in the
middle of the population and is aware ofthe danger and needs
to move closer to other sparrows to escape from predators.

C. BASIC SSA STEP

According to the above sparrow foraging process, the overall
execution process of the SSA algorithm includes the follow-
ing six steps.

Step 1: Randomly initialize the sparrow population. Set
parameters such as maximum number of iterations, popula-
tion size, number of discoverers, number of sparrows sensing
danger, safety value and set the objective function.

Step 2:Sort the sparrow population for fitness values to
find the best individual and the current worst individual.

Step 3: The producer performs a location update according
to Eq. (2).

Step 4: The follower performs a position update according
to Eq. (3).

Step 5: Some sparrows are randomly selected to perceive
danger and thus move, and their positions are updated as
shown in Eq. (4).

Step 6:Evaluate all individuals. If the updated individual
is better than the original one, replace the updated individual
with that individual. If the maximum number of iterations
is reached, the best sparrow position and the optimal fitness
value are output. Otherwise, the current number of iterations
is added by one and move to step 2.

Il. IMPROVED CHAOS SPARRPW SEARCH
OPTIMIZATION ALGORITHM

For the standard SSA, the producer does not maintain a
good balance between the search of the early iteration and
the development of the later iteration in the global search,
failing to search extensively for the optimal solution in the
early iteration and the slightly lower accuracy of the solution
in the later iteration. The followers blindly follow the pro-
ducer’s position, reducing population diversity and quickly
falling into the dilemma of local optimum. To address the
above problems, enriching the diversity of the population is
the primary mechanism to maintain the dynamic balance of
producer search and development, and improving the ability
to escape local optima is the focus of ICSSOA research. This
chapter will explain the ICSSOA in detail from the following
aspects.

A. CUBIC CHAOS MAPPING
The Chaos is a nonlinear phenomenon that exists in nature
and has been applied to optimize algorithms. It enriches the
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diversity of populations and facilitates the algorithm to jump
out ofthe local optimum because of its stochastic and ergodic
nature. Cubic mapping is a typical chaotic mapping, and its
standard form is shown in the Eq. (5) [33].

Xn+l — bxn - CXn (5)

where b and ¢ are chaotic impact factors.

When ¢ e (2.3, 3), the sequence generated by Cubic map-
ping isthe chaos sequence. Feng etal. analyzed the maximum
Lyapunov exponent for 16 common chaotic mappings such as
Cubic mapping and corrected the Cubic mapping expression
[34]. The experimental results demonstrated that the chaos
of Cubic mapping is similar to that of worm mouth mapping
and tent mapping, and it is better than the one-dimensional
mappings such as Sine mapping and Circle mapping. The
ICSSOA uses the corrected Cubic mapping initialized pop-
ulation specific expression as shown in Eq. (6) [35].

xn+l —pxn 1- x@ (6)

where, xn e (0, 1) and p is the control parameter.

B. ADAPTIVE WEIGHTING FACTOR

The producer performs global exploration as drastically as
possible in the early iterations to quickly find the global opti-
mal solution, so a larger inertia weight is needed in the early
iterations to lengthen the global search range of the discov-
erer. At the same time, a smaller inertia weight is needed in
the late iterations to improve the local exploitation capability
of the discoverer for accelerating the convergence speed and
avoiding falling into the local optimal solution. Therefore,
fusing adaptive weights proposes a new improvement to the
producer position update Eq. (2), and the producer position
improvement equation is shown in the Eq. (7).

xt+l — | « Wi, * en — e -1 R2 <

i )
mextj + QoL R2 > ST
The specific calculation of m is shown in Eq. (8) [36].
MO t <10
m — 1 0.9 (8)
‘ t > 10

where, mO is the given positive real number. t is the current
number of iterations. t0 is the given number of iterations.

In the sparrow search process, the producer improves its
global search range with a larger step size in the early iteration
and improves its local exploitation capability with a progres-
sively smaller step size in the late iteration.

C. AHYBRID STRATEGY OF LEVY FLIGHT AND REVERSE
LEARNING

Levy flight is a class of non-Gaussian stochastic processes.
The probability distribution of step length is a heavy-tailed
distribution of random walks. For Sl optimization algorithms
prone to fall into the dilemma of local optimum, Levy flight
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possesses the ability to let the algorithm jump out of the
local optimum by a giant stride with a higher probability of
occurrence in the random walk. The sparrow position update
formula based on Levy flight is shown in Eq. (9) [37].

xh+Wi= A + y ® Levy (k) )
where, y is the step control parameter. Levy (k) is a random
path search and satisfies Eq. (10).

Levy ~ u—t k1< k<3 (10)
The generation step is shown in Eq. (11).

S — 1<i <2
Mi

where, » and v are a random number that follows a normal

distribution. ~ ~ N (0, 5"). v.~ N (0,52). 5v — 1. The
calculation formula of parameter 5Mis shown in Eq. (12).

(11)

5 \ T(1+j) sin(nj/2)

50 1T[(L+i)/2]2(i-1)/2i I (12)

where, i usually takes the value of the constant 1.5.

Reverse learning is a method to find the corresponding
reverse solution by the current solution and retain the better
solution after evaluation, so reverse learning has the feature of
finding the better solution and is often used by Sl algorithms
to jump out of the local optimum. The sparrow position
update based on reverse learning is shown in Eq. (13).

Xbest (t) — ub + r ® (Ib - xbest (1))
Xtddi = Xf b ® (xbest (t) - xbest (t)) (13)

where, xbest (t) represents the optimal inverse solution of
the ith sparrow at the tth iteration. ub and Ib are the upper
and lower spatial boundaries, and r is a standard uniformly
distributed random number. b represents the information
exchange control parameter, and its calculation formula is
shown in Eq. (14).
t
b — 1- (14)
iterm

To further improve the SSA search capability, a dynamic
selection strategy is adopted to update the position of the
sparrow based on the above two methods, and Levy flight and
reverse learning are alternately used to update the position
with a certain probability. In the Levy flight strategy, the step
factor is used to expand the search range and jump out of the
local optimal dilemma. Meanwhile, in the reverse learning
strategy, the reverse solution is used to increase the diversity
of solutions and improve the algorithm’s search optimization
performance.

The dynamic selection strategy approach is as follows.

When rand e (0, 0.5), choose Eqg. (9) Levy flight strat-
egy for sparrow position update. Otherwise, choose Eq. (13)
reverse learning for sparrow position update. After that, the
greedy rule is used to decide whether the old position needs
to be replaced by the new one and enter the next generation
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by comparing the magnitude of the adaptation values of the
old and new positions. The greedy rule is shown in Eq. (15).

x\ (t+ 1)

Xi (t+ Df (xi (t+ 1)) <f (xnewi (t + 1))
fo(xi(t+ 1)) >f (xnewi(t + 1))

(15)

xnewi (t + 1)

where, xnewi (t + 1) represents the new sparrow generated by

the hybrid strategy. f (x) represents the current adaptation
value of the sparrow.

D. ICSSOA PROCESS

The proposed ICSSOA algorithm based on the above three
improvement ideas consists of the following eight steps.

Step 1. Initialize the sparrow population according to
the Eq. (6). Set each parameter such as objective function,
population number N, set problem dimension D, maximum
number of iterations, percentage of discoverer sparrows, and
percentage of warning sparrows.

Step 2: Sort the sparrow population for fitness values
to find the current best individual and the current worst
individual.

Step 3:Discoverer position update. The adaptive inertia
weight factor is obtained using the Eq. (8), and then the
producer location is updated by the Eq. (7).

Step 4: Follower location update. The follower position is
updated by the Eq. (3).

Step 5: Alert sparrow position update. A number of spar-
rows are randomly selected and the warning sparrow position
is updated by Eq. (4).

Step 6: Dynamic strategy selection. The sparrow position
is updated according to the random probability selection
strategy. When rand e (0, 0.5), the Levy flight strategy
is selected, the step size is obtained by the Eq. (11) and
Eq. (12), and then each sparrow position is updated using the
Eqg. (9). Otherwise, the reverse learning strategy is selected,
the information exchange parameters are obtained by the
Eq. (14), and then each sparrow position is updated using the
Eq. (13).

Step 7:Then positions before and after the update are com-
pared using the greedy rule and the fitness value is calculated.
The sparrow position with the better fitness value is retained.

Step 8:Termination condition. The termination condition
is determined by determining whether the current number of
iterations reaches the maximum number of iterations, and
the optimal solution is output if the maximum number of
iterations is reached. Otherwise, move to step 2 and add one
to the current number of iterations.

From the above steps, the algorithm flow chart of the
ICSSOA is shown in Figure 1.

E. ICSSOA TIME COMPLEXITY ANALYSIS
In SSA, the time magnitudes for population initialization and
parameter setting are n and C.

In the producer location update phase, the top 20% of spar-
rows need to be selected as producers for location update by
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FIGURE 1. ICSSOA algorithm flow chart.

ranking the sparrow fitness and judging whether each dimen-
sion is beyond the set spatial range, if the total dimension
is k dimensions, the sparrow fitness ranking and producer
location update time magnitudes are n x log2 xk and n x k.

The follower position update phase requires the posi-
tion update of the remaining sparrows as followers and the
determination of whether each dimension ofthe individual is
out of bounds, with a time scale ofn x k.

In the alert sparrow position update phase, some sparrows
are randomly selected for position update and judgment is
made on whether each dimension of an individual is out of
bounds, with time magnitude n x k.

In summary, the producer location update time magnitude
isn x log2 xk + n x k.Both the follower location update
time magnitude and the alert sparrow location update time
magnitude are n x k.

The time complexity of SSA is

O(mx k+nxlog2xk +nxk+nxk+nx k)

~ O (nx log2).

ICSSOA adds Cubic chaos mapping, adaptive weights for
producer location updates, and hybrid policies to the standard
SSA.

Chaos initialization uses chaos mapping for each sparrow
for population initialization. The time magnitude isn x k.

The adaptive weight judgment time magnitude is 1. The
improved producer location update formula time magnitude
isn x logn xk + n x k.
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The Levy flight step in the hybrid strategy calculates the
time magnitude as a constant 1, then the time magnitude of
Levy flight applied to each sparrow in the populationisn x k.
The time magnitude for determining whether an individual is
out of bounds for judgment is n x k. The time magnitude
of reverse learning to solve the reverse solution based on the
current solution is 1. The time magnitude of reverse learning
applied to each sparrow in the population is n x k. The time
magnitude for determining whether an individual is out of
bounds forjudgmentisn x k.

The time complexity of ICSSOA is

O(mx k+nxlognxk +nxk+nxk+nxk+nxk

+nx k)~ O(nxlog2).

IV. EXPERIMENT AND ANALYSIS

A. TESTFUNCTIONS

The experiments were conducted using acomputer running in
an environment such as ADM Ryzen 7 5800H @ 3.20GHz,
16G, Windows 10 operating system, and the implementation
ofthe functional code using the programming language MAT-
LABR2021b. The twenty benchmark functions used in use
(F1-F11 for unimodal functions and F12-F20 for multimodal
functions) are shown in Table 2. The unimodal function has
only one local minima in the bounded interval, while the mul-
timodal function has multiple local minima in the bounded
interval. The unimodal function tests whether the algorithm
can find the function’s minimum value quickly, while the
multimodal function considers whether the algorithm has
good enough performance to jump out of the local optimum.
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TABLE 2. List of test functions.

Number

Fl

F2

F3

F4

F5

F6

F7

F8

F9

F10

Fll

F12

F13

F14

F15

F16
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30,50,70

30,50,70

30,50,70

30.50.70

30.50.70

30.50.70

30,50,70

30,50,70

30,50,70

30,50,70

30,50,70

30,50,70

30,50,70

30,50,70

30,50,70

30,50,70
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[-100,100]

[-10,10]

[-100,100]

[-100,100]

[-30,30]
[-100,100]
-1
[-10,10]
[-5,10]

[-1.28,1.28]

[-4.5]

[-10,10]

[-500,500]

[-50,50]

[-50,50]

[-5.5] -39.165d
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TABLE 2. (Continued.) List of test functions.

f(X)=-20exp
F17

N
-expfi’g cos(2Mjg) +20+e
Kd = J

F18 - -
| Hit

-10 cos{2nxi)J

F19 f(x) =10d +

1=

F20

Iw = %_1-x<sin(>/H)
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(PS: All test functions were derived from http://www.sfu.ca/~ssuijano/)

TABLE 3. List of test functions.

Name
SSA
CSSOA
1SSA(a)
CASSA
ISSA(b)
ICSSOA
GWO
PSO
WOA
ACO

(2)30-dimension situation

FIGURE 2. Performance comparison on F1.

B. TESTFUNCTIONS EXPERIMENTAL RESULTS AND
ANALYSIS

To verify the performance of ICSSOA, the SSA and the four
SSA variants were compared longitudinally based on the
20 benchmark functions in Table 2. The five SSAs include
the SSA, CSSOA, ISSA(a), CASSA, and ISSA(b). Cross-
sectional comparison of four different SI optimization algo-
rithms. The four S| algorithms include GWO, PSO, WOA,
and ACO. Each algorithm was run 30 times independently,

96166

()50-dimension situation

30,50,70 [-32,32]

30,50,70 [-600,600]

30,50,70 [-5,5]

30,50,70 [-500,500] -418.98d
Parameter

N =30,PD =0.2,ST =0.8,SD =0.2
N =30,PD =0.2,ST=0.8,SD=0.2
N =30,PD =0.2,ST =0.8,SD =0.2,6 =0.05
N =30,PD =0.2,ST =0.8,SD=0.2
N =30,PD =0.2,ST =0.8,SD =0.2,w =0.9,vnin =0.3,<J=0.5
N =30,PD =0.2,ST =0.2,SD =0.2,c0"=1.5,f0=125,/? =2.595,/?=15
N =30,afit=2,0* =0
N =30, =¢c2=2,hu =09, = 0.2,v,N =-v,,,,
N =30>«to =23 fina = 0>P=05"h =1
N =30,Rho =0.9,P0 =0.2,step =0.05

(c)70-dimension situation

with 1000 iterations per run, and the parameters were set as
shown in Table 3.

Figures 2 to 16 record the convergence plots of each algo-
rithm while optimizing the benchmark functions F1 to F15.
Functions F16 to F20 can be algorithmically judged based on
the accuracy ofthe solutions in Table 4 because the algorithm
converges too quickly. Moreover, six folded including purple
solid lines, orange solid lines, cyan solid lines, blue solid
lines, green solid lines, and brick red asterisk solid lines,
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Iteration

IEEEAXesS'

(a)30-dimension situation (b)50-dimension situation (c)70-dimension situation
FIGURE 3. Performance comparison on F2.
Iteration Iteration
(a)30-dimension situation (b)50-dimension situation (c)70-dimension situation
FIGURE 4. Performance comparison on F3.
Iteration Iteration
(a)30-dimension situation (b)50-dimension situation (c)70-dimension situation
FIGURE 5. Performance comparison on F4.
Iteration Iteration
(@)30-dimension situation (b)50-dimension situation (c)70-dimension situation
FIGURE 6. Performance comparison on F5.
represent the SSA, CSSOA, ISSA(a), CASSA, ISSA(b), and Table 4 uses mean and variance statistics to further ana-
ICSSOA, respectively in the longitudinal comparison exper- lyze the performance of the six algorithms in the longitudi-

imental results, respectively. nal experiment. The results of the algorithms are obtained
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Iteration Iteration Iteration

(@)30-dimension situation (b)50-dimension situation (c)70-dimension situation

FIGURE 7. Performance comparison on F6.

Iteration Iteration Iteration

(2)30-dimension situation (b)50-dimension situation (c)70-dimension situation

FIGURE 8. Performance comparison on F7.

Iteration Iteration
(@)30-dimension situation (b)50-dimension situation (c)70-dimension situation
FIGURE 9. Performance comparison on F8.
Iteration Iteration Iteration
(a)30-dimension situation (b)50-dimension situation (c)70-dimension situation
FIGURE 10. Performance comparison on F9.
by running each algorithm 30 times independently in 30, Figures 17 to 31 record the convergence plots of
50, and 70 dimensions. The related results are recorded in each algorithm while optimizing the benchmark functions
Table 4, and the bolded font shows the optimal values in the F1 to F15. Functions F16 to F20 can be algorithmi-

algorithms. cally judged based on the accuracy of the solutions in
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I1SSA(a)
-CASSA
1SSA(b)
- ICSSOA

100 200 300 400 500 600 700 800 900 1000

Iteration Iteration

(a)30-dimension situation (bb)50-dimension situation (c)70-dimension situation
FIGURE 11. Performance comparison on F10.
Iteration Iteration Iteration
(a)30-dimension situation ()50-dimension situation (c)70-dimension situation
FIGURE 12. Performance comparison on F11.
(a)30-dimension situation (b)50-dimension situation (c)70-dimension situation
FIGURE 13. Performance comparison on F12.
SSA
CSSOA
. 1SSAa)
1 -CASSA
E ISSA(b)
S 10° - ICSSOA
Iteration
(a)30-dimension situation (b)50-dimension situation (c)70-dimension situation
FIGURE 14. Performance comparison on F13.
Table 5 because the algorithm converges too quickly. More- line, represent the ICSSOA, GWO, PSO, WOA, and ACO
over, five folded including red asterisk solid line, purple algorithms in the horizontal comparison experimental results,
solid line, orange solid line, cyan solid line, and green solid respectively.
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(2)30-dimension situation (b)50-dimension situation (c)70-dimension situation

FIGURE 15. Performance comparison on F14.

Iteration Iteratio Iteration

ation
(2)30-dimension situation (b)50-dimension situation (c)70-dimension situation

FIGURE 16. Performance comparison on F15.

Iteration Iteration

(a)30-dimension situation (b)50-dimension situation (c)70-dimension situation
FIGURE 17. Performance comparison on F1.
Iteration Iteration
(a)30-dimension situation (b)50-dimension situation (c)70-dimension situation
FIGURE 18. Performance comparison on F2.
Table 5 uses mean and variance statistics to further analyze Table 5, and the bolded font shows the optimal values in the
the performance of the five algorithms in the horizontally algorithms.
experiments. The results of the algorithms are obtained Longitudinal experiments are compared using the standard
by running each algorithm 30 times independently in 30, SSA algorithm and four SSA variants for 20 test functions,
50, and 70 dimensions. The related results are recorded in which were run 30 times under the same test environment,
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TABLE 4. Longitudinal experimental results of fixed dimensions.

IEEE/Iccess

SSA CSSOA ISSA(a) CASSA ISSA(b) ICSSOA
MEAN=SD MEAN+SD MEAN+SD MEAN+SD MEAN£SD MEAN£SD
30 9.63E-70+4.32E-139 0.00E+00+0.00E+00  0.00E+00+0.00E+00 0.00E+00+0.00E+00  0.00E+00+0.00E+00  0.00E+00+0.00E+00
FI 50 9.63E-90+1.55E-177 0.00E+00+0.00E+00 8.73E-120+3.81E-161 0.00E+00+0.00E+00 0.00E+00+0.00E+00  0.00E+00+0.00E+00
70 2.63E-75+4.87E-148 0.00E+00+0.00E+00  0.00E+00+0.00E+00  0.00E+00+0.00E+00  0.00E+00+0.00E+00  0.00E+00+0.00E+00
30 3.81E-44+1.94E-86 0.00E+00+0.00E+00 5.77E-119+1.00E-235 0.00E+00+0.00E+00 4.57E-182+0.00E+00 0.00E+00+0.00E+00
F2 50 157E-38+1.17E-74  0.00E+00+0.00E+00  4.61E-49+1.06E-95  0.00E+00+0.00E+00 1.30E-187+0.00E+00 0.00E+00+0.00E+00
70  3.79E-37+1.00E-71  0.00E+00+0.00E+00  1,25E-50+1.10E-38  0.00E+00+0.00E+00 7.43E-182+0.00E+00 0.00E+00+0.00E+00
30 1.34E-62+5.44E-123 0.00E+00+0.00E+00 4.44E-267+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00
F3 50 3.41E-58+5.81E-114 0.00E+00+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00  0.00E+00+0.00E+00
70 9.03E-61#5.71E-119 0.00E+00+0.00E+00  0.00E+00+0.00E+00  0.00E+00+0.00E+00 0.00E+00+0.00E+00  0.00E+00+0.00E+00
30 221E-41+7.91E-81  0.00E+00+0.00E+00 3.54E-319+0.00E+00 0.00E+00+0.00E+00 2.18E-188+0.00E+00 0.00E+00+0.00E+00
F4 50 1.16E-37+6.77E-73  0.00E+00+0.00E+00 1.86E-296+0.00E+00 0.00E+00+0.00E+00 1.33E-180+0.00E+00 0.00E+00+0.00E+00
70  1,32E-37%1.22E-72  0.00E+00+0.00E+00  4.13E-57+1.19E-17  0.00E+00+0.00E+00 9.60E-189+0.00E+00 0.00E+00+0.00E+00
30 9.12E-06+3.55E-10  6.08E-07+2.53E-10 1,79E-09+3.86E-17  5.71E-07+2.95E-10  6.76E-06+6.09E-11  1.22E-10+4.41E-19
F5 50 2.08E-05+2.06E-09  7.58E-06+1.39E-10  2.26E-07+2.35E-12  6.11E-06+1.97E-10  6.49E-06+£3.22E-08  1.82E-08+l.63E-14
70  2.19E-05+4.40E-09  8.77E-06+5.79E-10  2.41E-06+2.83E-10 1.89E-05+6.49E-09  3.22E-06+6.60E-09  2.27E-06+3.40E-10
30 132E-1146.14E-22  4.56E-12+1.45E-22  6.52E-09+2.81E-16  9.64E-12+5.48E-22  5.92E-lI+l.1lE-20  6.16E-34+3.53E-66
F6 50 1.23E-08+1.87E-15 1.11E-09+6.45E-18 1.71E-09+1.43E-14  2.79E-09+9.28E-17  3.59E-09+1.32E-14  9.88E-19+3.98E-35
70  2.04E-08+2.99E-15 1.23E-08+3.52E-15 1.18E-08+1.60E-14 131E-08+3.47E-15  2.25E-07+6.74E-13  4.35E-17+1.19E-31
30 1.15E-77+3.99E-153 0.00E+00+0.00E+00 1.19E-265+0.00E+00 0.00E+00+0.00E+00  0.00E+00+0.00E+00 0.00E+00+0.00E+00
F7 50 141E-86+6.67E-171 0.00E+00+0.00E+00 8.29E-173+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00  0.00E+00+0.00E+00
70 5.03E-76+1.62E-149 0.00E+00+0.00E+00  0.00E+00+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00  0.00E+00+0.00E+00
30 9.83E-83+2.89E-163 0.00E+00+0.00E+00 1.38E-175+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00 OOOEHOOIOOOEHO0O
F8 50 8.80E-72+3.87E-141 0.00E+00+0.00E+00 7.49E-78+2.81E-153  0.00E+00+0.00E+00  0.00E+00+0.00E+00 OOOEHOOOQOOEHO
70 4.54E-69+144E-135 0.00E+00+0.00E+00 0.00E+00+0.00E+00  0.00E+00+0.00E+00  0.00E+00+0.00E+00 OOOEHOOQOOEHOO
30 2.42E-44+1.75E-86  0.00E+00+0.00E+00 4.62E-74+6.42E-146 0.00E+00+0.00E+00 1.91E-307+0.00E+00 0.00E+00+0.00E+00
F9 50 7.72E-46+2.95E-89  0.00E+00+0.00E+00 4.26E-135+9.08E-268 0.00E+00+0.00E+00 4.18E-292+0.00E+00 0.00E+00+0.00E+00
70 5.70E-34+2.11E-65 0.00E+00+0.00E+00 1.61E-76+1.82E-150 0.00E+00+0.00E+00 2.78E-294+0.00E+00 0.00E+00+0.00E+00
30  1.79E-04+3.49E-08 1.05E-04+5.03E-09  8.86E-05+5.43E-09  2.15E-04+3.24E-08 1.06E-04+8.64E-09  4.87E-06+6.04E-09
F10 50 2.36E-04+1.86E-07  7.19E-05+1.18E-08  4.53E-05+5.30E-09  9.29E-05+1.69E-08 9.70E-05+1.67E-08  2.51E-06+1.59E-09
70  2,29E-04+3.63E-08 1.10E-04+1.04E-08  9.27E-05+6.11E-09 1.37E-04+1.74E-08 1,23E-04+9.66E-09  2.97E-06+7.82E-10
30 6.55E-57+9.22E-112 0.00E+00+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00 3.28E-318+0.00E+00 0.00E+00+0.00E+00
FIl 50 6.80E-65+2.30E-127 0.00E+00+0.00E+00 5.25E-320+0.00E+00 0.00E+00+0.00E+00  0.00E+00+0.00E+00 0.00E+00+0.00E+00
70 1,42E-77+142E-152 0.00E+00+0.00E+00 1.30E-168+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00
30 9.50E=12+2.35E-22  2.27E-12+1.88E-23 123E-1243.02E-15  2.88E-12+5.01E-21 1.03E-12+1.23E-19  5.19E-30+7.89E-58
F12 50 3.66E-09+1.56E-16 1.36E-09+1.05E-17  4.88E-10+4.09E-18  3.52E-09+2.03E-16  6.49E-10+1.94E-16  3.61E-17+6.53E-32
70  1.87E-08+3.78E-15  9.90E-09+8.50E-16  2.34E-10+3.35E-18 1.03E-08+1.16E-15  9.80E-09+9.14E-14  1.72E-12+2.04E-22
30 4.68E+03+5.00E+03  3.8E-04+2.26E-16  4.449E+03+3.80E+06 3.26E+03+1.33E+06 2.07E+03+3.52E+06 4.55E+02+3.01E+06
F13 50 4.89E+03+1.68E+07 4.47E-04+3.38E-07  3.84E+03+3.58E+07 3,40E+03+1.23E+07 2.07E+03+9.31E+06 9.86E+02+9.34E+06
70 4.89E+03+3.28E+07  9.48E-04+1.39E-05 6.88E+03+7.00E+07 3,47E+03+2.11E+07 2.42E+03+1.60E+07  1.53E+03+1.96E+07
30 7.65E-13+1.80E-24 1.69E-13+1.61E-25  7.77E-10+1.42E-17 1.37E-13+6.36E-25 8.06E-13+1.55E-24  1.03E-20+3.17E-39
F14 50 3.59E-11+7.29E-21 5.49E-12+2.43E-20  2.07E-12+1.67E-18  9.41E-1246.24E-20  8.84E-12+2.45E-20  1.78E-16+1.59E-30
70  8.30E-10+2.16E-17 1.32E-10+1.71E-19  8.22E-11+1.45E-19  6.72E-11+1.01E-19  8.23E-10+1.65E-17  5.77E-17+2.03E-31
30 1.80E-11+6.56E-21 4.26E-12+2.77E-22 1.31E-12+2.43E-17 1.89E-1249.81E-24  7.91E-11+6.25E-20  9.66E-15+2.80E-27
F15 50  158E-09+2.59E-17  6.36E-10+3.60E-18 123E-10+4.06E-19  2.08E-10+4.75E-17 1.33E-10£1.04E-15  2.70E-14+3.66E-26
70  7.06E-09+4.27E-16  3.91E-09+2.36E-16 169E-09+5.14E-17  2.60E-09+4.68E-17  2.85E-09+4.55E-15  9.21E-15+5.69E-27
30 -1.17E+03+2.44E-14 -1.17E+03+4.66E-15 -1.17E+03+1.40E-05 -1.17E+03+2.52E-15 -1.17E+03+7.00E-14 -1.17E+03+1.27E-20
F16 50 -1.17E+03+9.39E+05 -1.17E+03+9.39E+05 -1.17E+03+9.39E+05 -1.17E+03+9.39E+05 -1.17E+03+9.39+05 -1.17E+03+9.39+05
70 -1.17E+03+1.86E+06 -1.17E+03+1.86E+06 -1.17E+03+1.86E+06 -1.17E+03+1.86E+06 -1.17E+03+1.86E+06 -1.17E+03+1.86E+06
30 8.88E-16+0.00E+00  8.88E-16+0.00E+00  8.88E-16+0.00E+00  8.88E-16+0.00E+00  8.88E-16+0.00E+00  8.88E-16+0.00E+00
F17 50 5.32E-16+1.93E-31 5.32E-16+1.93E-31 5.32E-16+1.93E-31  5.32E-16+1.93E-31 5.32E-16+1.93E-31  5.32E-16+1.93E-31
70  3.80E-16+1.95E-31 3.80E-16+1.95E-31 3.80E-16+1.95E-31 3.80E-16+1.95E-31 3.80E-16+1.95E-31  3.80E-16+1.95E-31
30 0.00E+00+0.00E+00 0.00E+00+0.00E+00  0.00E+00+0.00E+00  0.00E+00+0.00E+00  0.00E+00+0.00E+00 0.00E+00+0.00E+00
F18 50 0.00E+00+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00  0.00E+00+0.00E+00
70 0.00E+00+0.00E+00 0.00E+00+0.00E+00  0.00E+00+0.00E+00  0.00E+00+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00
30 0.00E+00+0.00E+00 0.00E+00+0.00E+00  0.00E+00+0.00E+00  0.00E+00+0.00E+00  0.00E+00+0.00E+00  0.00E+00+0.00E+00
F19 50 0.00E+00+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00  0.00E+00+0.00E+00
70 0.00E+00+0.00E+00 0.00E+00+0.00E+00  0.00E+00+0.00E+00  0.00E+00+0.00E+00 0.00E+00+0.00E+00 0.00E+00+0.00E+00
30 -8.12E+03+2.74E+05 -1,25E+04+2.99E-16 -9.54E+03+3.38E+06 -8.99E+03+1.57+06 -1,04E+04+3.39E+06 -1.26E+04+1.41E+06
F20 50 -4.70E+03+4.08E+07 -1,25E+04+1.07E+07 -8.57E+03+2.55E+07 -8.86E+03+5.61E+07 -1.04E+04+8.06E+07 -1.28E+04+1.03E+07
70 -7.52E+03+7.70E+07 -1,25E+04+2.13E+07 -8.58E+03+5.45E+07 -9.52E+03+1.30E+07 -1,02E+05+1.48E+07 -1.28E+05+2.01E+07

respectively, and the specific results are analyzed and illus-
trated in Figures 2 and 16 and Table 4. The results further
indicate that the ICSSOA is much faster and more stable

than the other four algorithms in solving the F1-F4 function
test functions. It can be seen from Figures 6 and 7 that
the other five algorithms all fall into the problem of local

VOLUME 10, 2022 96171



*
|EEEAfC€SS X.-Y. Zhang etal.: ICSSOA Using Adaptive Weight Modification and Hybrid Strategies

Iteration

(@)30-dimension situation (b)50-dimension situation (c)70-dimension situation

FIGURE 19. Performance comparison on F3.

Iteration Iteration Iteration

(a)30-dimension situation (b)50-dimension situation (c)70-dimension situation

FIGURE 20. Performance comparison on F4.

FIGURE 21. Performance comparison on F5.

(a)30-dimension situation (b)50-dimension situation (c)70-dimension situation

FIGURE 22. Performance comparison on F6.

optimum in the process of solving F5-F6 functions, but the solution accuracy is better than the other algorithms. In the
ICSSOA algorithm can betterjump out of the local optimum F7-F9, the ICSSOA outperforms the other five algorithms
dilemma through the mixed strategy perturbation, and the both in speed and stability, and in the low-dimensional F10,
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Iteration

(a)30-dimension situation (b)50-dimension situation

(c)70-dimension situation
FIGURE 23. Performance comparison on F7.

Iteration

(a)30-dimension situation

Iteration

(b)50-dimension situation

Iteration

(c)70-dimension situation
FIGURE 24. Performance comparison on F8.

Iteration

(a)30-dimension situation (b)50-dimension situation

(c)70-dimension situation
FIGURE 25. Performance comparison on F9.

(a)30-dimension situation (b)50-dimension situation (c)70-dimension situation
FIGURE 26. Performance comparison on F10.

the ICSSOA also shows better convergence accuracy than
other algorithms, but in the high dimension, the ICSSOA’s
advantage is not obvious. The performance of ICSSOA is

slightly lower than that of CSSOA in the F13. In the F14-F20
function test, the convergence accuracy of ICSSOA is better
than that of the other five algorithms. The ICSSOA has a
VOLUME 10, 2022 96173
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Iteration Iteration Iteration

(@)30-dimension situation (b)50-dimension situation (c)70-dimension situation
FIGURE 27. Performance comparison on F11.

(2)30-dimension situation (b)50-dimension situation (c)70-dimension situation
FIGURE 28. Performance comparison on F12.

(a)30-dimension situation (b)50-dimension situation (c)70-dimension situation
FIGURE 29. Performance comparison on F13.

(a)30-dimension situation (b)50-dimension situation (c)70-dimension situation

FIGURE 30. Performance comparison on F14.

strong adaptive capability in optimizing single-peak func-
tions or multi-peak functions and can use hybrid strategies
to make the algorithm jump out of the current local optimal
solution’s dilemma to obtain higher convergence accuracy.

96174

The cross-sectional experiments are compared using four
different SI algorithms for 20 test functions, which are
run 30 times under the same test environment, respec-
tively, and the specific results are analyzed and obtained in
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TABLE 5. Horizontally experimental results of fixed dimensions.

Fl

F2

F3

F4

F5

F6

F7

F8

F9

F10

Fll

F12

F13

F14

F15

F16

F17

F18

F19

F20

Figures 17 and 31 and Table 5. In the F1-F4, F7-F9, and F11
functions, the ICSSOA outperforms the other four algorithms
in terms of convergence accuracy and convergence speed and
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4,02E+02+2.36E+03
4,80E+02+4.08E+03
3.07E+01+£2.59E+03
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1.85E-03+8.29E-06
8.51E-02+2.81E-02
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can find the optimal solution. In the F5-F6, all algorithms fall
into the local optimum at the early stage, butthe ICSSOA can
get rid of the local optimum dilemma by the hybrid policy
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TABLE 6. Wilcoxon test results of the experimental results fixed dimensions.
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perturbation, and the convergence accuracy of the solution other four algorithms in all cases. The ICSSOA is much better
is more than 15 orders of magnitude higher than the other than the other four algorithms in terms of convergence speed
four algorithms. In the 70-dimensional test of the F13, the and accuracy and shows excellent performance in 30, 50, and
convergence accuracy of the ICSSOA algorithm is slightly 70 dimensions.

lower than that of the WOA algorithm. In the F14-F20, the The function convergence diagram shows that ICSSOA
convergence accuracy of ICSSOA is much higher than the can perform a wide range of exploration and increase the
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(a)30-dimension situation

FIGURE 31. Performance comparison on F15.

diversity of optional solutions by adaptive weighting fac-
tors in the early iteration. As the number of iterations
increases, ICSSOA gradually reduces the search scope and
conducts regional small-scale exploitation to improve the
solution accuracy. At the same time, in order to prevent
the algorithm from falling into the dilemma of local opti-
mum, ICSSOA is able to jump out of the local optimum
better through the hybrid strategy, and thus find the optimal
solution.

Comparing the test data analysis of the nine algorithms in
the longitudinal experiment and the cross-sectional experi-
ment, the ICSSOA outperforms the other algorithms in terms
of overall convergence speed and accuracy of the solution
in low dimensions and high latitudes. Based on the function
convergence graphs, it can be observed that the proposed
hybrid strategy can better improve the ability ofthe algorithm
to jump out of the local optimum.

The Wilcoxon test was used to further analyze the experi-
mental results. ‘+ "means thatthe proposed algorithm outper-
forms the selected algorithm, ’-’ means that it is the opposite,
‘=’ means that both algorithms get the same results, and
the Rank column is the accuracy ranking of their average
solutions. The specific results are analyzed as shown in
Table 6.

From the data analysis in Table 6, the performance of
ICSSOA is only slightly lower than CSSOA and WOA in
the test of the F13 function, and it ranks first in the test
of other functions, and it ranks first in the overall rank-
ing of 20 test functions, which further indicates that the
performance of ICSSOA is significantly better than the
other nine algorithms. In summary, it can be seen that
the ICSSOA is better than the other nine algorithms in terms
of search capability, and has a strong adaptive capability and
robustness.

V. CONCLUSION

In this paper, an improved chaos sparrow search optimization
algorithm, namely ICSSOA, is proposed to compensate for
the shortcomings of the standard SSA of insufficient popula-
tion diversity, weak local searchability, and easily falling into

VOLUME 10, 2022

(b)50-dimension situation

IEEEAXesS'

(c)70-dimension situation

local optimum, and ICSSOA significantly improves the opti-
mization performance based on the following three points.
First, Cubic chaotic mapping is used in the population initial-
ization phase to enrich the population diversity and reduce
the risk of the algorithm falling into the local optimum.
Secondly, an adaptive inertia weighting strategy is used in
the discoverer location update stage to expand the global
search step in the first stage and shorten the local exploitation
step in the second stage to balance the global search and
local exploitation capabilities. Finally, after the population
location update, a Levy flight and reverse learning hybrid
strategy are used to perturb the population through a stochas-
tic strategy. A greedy strategy is used to select individuals
with higher fitness to improve the ability of the algorithm to
escape from the local optimum. The experimental results and
related statistical analysis show that the ICSSOA algorithm
has significant advantages over the other five SSA algorithms
and four different SI optimization algorithms in terms of
optimal seeking ability, solution accuracy, and convergence
speed. In the future, we will try to apply ICSSOA to industrial
problems to improve the versatility and applicability of this
algorithm.
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