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Abstract: The development of novel antifungal agents and, in particular, the widespread use of these
medications over the course of the past two decades, has had a significant impact on the treatment of
fungal infectious diseases. This has resulted in a complete transformation of the treatment of fungal
infectious diseases. However, the widespread development of antibiotic resistance has masked the
significance of such breakthroughs. Antifungal infection treatment with nanoparticles has been shown
to be effective. As a result of their unique characteristics, these substances, in contrast to antibiotics
in their purest form, are able to exhibit an increased anti-proliferative capacity while requiring a
lower concentration than traditional drugs do in order to achieve the same effect. Decreased drug
effectiveness, minimal tissue penetration throughout tissue, restricted tissue penetration, decreased
bioavailability, poor drug pharmacokinetics, and low water solubility are some of the major factors
contributing to the employment of antifungal medicines in delivery systems. Because of this, one of
the primary goals of incorporating antifungal medications into varying sorts of nanoparticles is to
reduce the negative effects of the drugs’ inherent qualities. This article provides an overview of the
many types of nanoparticles, such as metal, metal oxide, and non-metal oxide nanoparticles, carbon-
based nanoparticles, nanostructured lipid carriers, polymeric nanoparticles, solid lipid nanoparticles,
nanofibers, antifungal peptides, composites, and ZnO quantum dots, that can be used as antifungal
drug delivery systems, as well as the benefits that these nanomaterials have over purified medications.
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1. Introduction

From a medical perspective, the relevance of fungi in human infections is clear through-
out the world [1]. Fungi that were never infectious in humans before are now included in
the list of pathogenic organisms, the number of which is growing at an alarming rate [2].
Because of their capacity to adjust to a wide range of environmental circumstances, these
fungi are able to quickly pose a threat to the survival of immunocompromised patients,
and have become one of the most common causes of mortality in this patient population [3].
As a result, the accurate diagnosis and prompt treatment of infections of this kind are of
the utmost significance, necessitating exhaustive information in this respect. According
to recent studies, more than 300 million individuals worldwide are affected by dangerous
fungal infections, which are responsible for almost 1.4 million fatalities each year [4]. The
management of fungal infectious diseases has been completely transformed as a result of
the development of novel antifungals and the widespread usage of these medications over
the past two decades [5–8]. Unfortunately, on the other hand, growing rates of medication
resistance throughout the world have obscured such advancements. People living with
the human immunodeficiency virus (HIV) have seen a discernible decline in the frequency
of fungal infections as a direct result of antiretroviral therapy (ART), which has been im-
plemented in developed countries [9]. Additionally, in underdeveloped nations, where
such pharmaceuticals are not readily available, there has been a clear rise in the frequency
of fungal infections. Furthermore, the use of invasive therapeutic interventions in health-
care settings, the use of immunosuppressive medications after organ transplantation, the
increased need for antifungal prophylaxis with azole derivatives, the treatment of malig-
nancies, and the growing use of amphotericin B during empiric treatment have resulted in
considerable shifts in various forms of fungal infection occurrences with different patterns
and, particularly, drug resistance emergence [10]. Because of this, researchers have put
forth their fullest effort to reduce medication resistance and toxic effects through the use of
effective approaches.

Fungi are a varied group of eukaryotic creatures that colonize a variety of ecological
niches, each of which requires a specific set of morphological characteristics [11]. It has
been projected that there are between 3 and 5 million different types of fungi in the
environment and. of those, around 300 different species have the potential to cause diseases
in humans [12,13]. Because they most frequently infect people whose immune systems
are compromised, the majority of the members of this fungus group are classified as
opportunistic pathogens [14]. Meanwhile, only a select few species provide a significant
risk to people who are otherwise healthy. The human fungal pathogens are responsible
for a wide variety of infectious diseases, including those that affect the mucosa, the skin,
and the invasive tissue [15–17]. Because of their rapid development, resistance to high
temperatures (37 degrees Celsius), ability to exploit the host’s nutrition to their advantage,
ability to penetrate tissues, and ability to avoid the host immune system, pathogenic fungi
are successful in infecting humans and causing illness [18,19]. The Cryptococcus, Mucor,
Aspergillus, and Candida genus are some of the fungal species that are responsible for the
majority of the fatal illnesses that are caused by fungi [20–22].

It is absolutely necessary for the elimination of the pathogen to have a timely exposure
to a suitable antifungal treatment at a dose that is suitably high [23]. The majority of patients
diagnosed with fungal infections, on the other hand, have serious underlying conditions in
addition to a variety of co-morbidities, which results in an increased sensitivity to adverse
medication responses [15,24]. In addition, co-morbidities have the potential to influence
the distribution, metabolism, absorption, and removal of antifungals and other crucial
medications [25]. Absorption of orally given azoles or flucytosine may be affected, resulting
in sub-therapeutic exposure, if the gastrointestinal tract is compromised, such as when
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chemotherapy is used to treat cancer or when there is decreased perfusion of the gastroin-
testinal tract [26]. Impairment of renal and hepatic functioning may change metabolism
and elimination processes. Typical pathophysiological changes that occur during critical
illness, such as changes in tissue perfusion, tissue penetration, hydration, hemodynamics,
and plasma protein concentrations, may impact medication distribution [27,28]. Because
the great majority of people who have infectious fungal infections also have other medical
conditions and use other drugs at the same time, pharmacokinetic and pharmacodynamic
drug–drug interactions with antifungals are quite prevalent. The distribution and elimi-
nation of a medication may be altered by the use of extracorporeal organ support [29,30].
It is possible that the pharmacokinetics of these unique patient groups are substantially
different from those of healthy people or of patients with less severe impairments. Under
these unusual circumstances, determining the correct dosage of antifungal medication is
difficult because the relevant pharmacokinetic data is scant or perhaps nonexistent [31].

Nanoparticles have gained a lot of attention in recent years due to the diverse range
of uses they offer in a variety of biological, pharmaceutical, and medical disciplines [32].
In terms of their structure, their dimensions are only slightly larger than the range of
100 nanometers. These nanomaterials have the ability to exert control over a wide variety of
medications, including tiny pharmaceuticals that are either hydrophilic or hydrophobic, as
well as biological molecules and vaccinations [33,34]. Nanoparticles have found widespread
use in recent years, particularly in the fields of targeted drug delivery, tissue engineering
scaffolds, and disease diagnostics [35,36]. The use of nanoparticles in various forms, such
as carbon nanotubes, nanoliposomes, nanocapsules, nanofibers, as medication transporters,
as well as cellular scaffolds, has seen widespread application [37–40]. Manufacturing
nanoparticles for use as a drug delivery system has several goals, the most important of
which is to regulate the size of the particles, surface features, and the efficient distribution
of a particular medication at a certain time and location in order to obtain the maximal
impact possible from the nanoparticles [41,42]. Not only should the nanoparticles that
are utilized for drug administration contain biocompatibility as well as biodegradability
features, but their optimal mechanical characteristics, timely release, and simplicity of
manufacture are also all important considerations that need to be considered carefully [32].
Because of phagocytosis or systemic circulation, nanoparticles can become trapped inside
the body [43]. These nanomaterials can be traced by surface functionalization and, as a
result, are preserved in the systemic circulation [44].

Nanostructures can be classified according to a wide number of criteria, including
their shape, size, and the components that make them up (Figure 1) [45]. Even the pro-
cedures used to prepare nanostructures can result in the production of a wide diversity
of nanoparticles, each of which will have a unique load bearing capacity, distribution
mechanism, and half-life. When nanoparticles are coupled with medications, they show
unique therapeutic potential for treating particular illnesses, such as malignancies. There
are two methods in which these nanoparticles are bound to nanocomposites, as follows:
(1) The pharmaceuticals are conjugated across the surface of the nanoparticles. (2) The
medications are placed inside microcarriers [46]. Numerous polymeric materials have
been utilized as drug carriers thus far. These polymers include poly (alkyl-cyanoacrylates),
polyamino acid, polyorthoester, polycaprolactone, polyamide, polyurethane, polyester, and
polyacrylamide [47]. Among these, aliphatic polyester thermoplastics, such as polyglycolic
acid (PGA), polylactic acid (PLA), and as the copolymer of these two, poly lactic-co-glycolic
acid (PLGA), have been widely employed in comparison to others thanks to their superb
biocompatibility, as well as biodegradability features [48,49]. Langer and Folkman were
the first people to discover the controlled release of macromolecules through polymeric
materials [50]. This discovery paved the way for further development of the drug release
mechanism used in cancer treatments that target angiogenesis. Nanoparticles derived
from polymers are an appropriate instrument for the direction of biomolecules, genes,
medicines, and vaccinations [51]. By having the medications encapsulated inside nanos-
tructures, it is possible to improve both the pharmaceuticals’ solubility as well as their
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half-life [32]. By acting in this manner, the primary goals that may be accomplished are
focused medication transport using a specific dosage that falls within the therapeutic
window and, subsequently, the pleasure of the patient. Polymer transporters, on account
of their ability to perform a variety of activities and the possibility that they might be
surface modified, have garnered a significant amount of interest over the course of the
past several decades [52,53]. Generally, polymeric nanoparticles are miniature colloidal
frameworks wherein the medication is either chemically bound to their primary polymer
chains or physically disseminated throughout the structure [54]. The higher medication
solubility, as well as durability, is one of the advantages of using polymeric nanoparticles as
a pharmaceutical nanocarrier. Another benefit is the reduced risk of side effects [55]. Higher
permeability, bioavailability, lower treatment cost, improved solubility, longer half-life,
greater storage stability, and a sufficient dosage of medicine are some of the advantages
that accrue from employing these nanoparticles in conjunction with antifungals [56,57].
In this review, we will provide an overview of the most important studies pertaining to
nanomaterials, including carbon-based nanoparticles, metal, metal oxide, and non-metal
oxide nanoparticles, solid lipid nanoparticles, antifungal peptides, nanofibers, composites,
polymeric nanoparticles, nanostructured lipid carriers, and ZnO quantum dots (QDs), as
well as some of the approaches utilizing nanostructures to improve traditional methods
of therapy.
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Figure 1. Cutting-edge drug delivery systems that are mediated by nanocarriers and intended to
deliver therapeutic agents to particular locations are now being used in a wide range of applications.
In many aspects, nanotechnology can simplify the process of treating chronically sick patients.
One method is to ensure that the appropriate medications are delivered at the appropriate times
and locations.
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2. Fungal Infection and Biofilm Formation

In recent years, several researchers have focused their attention on the process of the
formation of biofilms by microorganisms [58,59]. Relative to free planktonic or cells, this
kind of proliferation predominates in nature. However, because of its increased vulnerabil-
ity to environmental variables and antimicrobial drugs, it poses a threat, particularly in
clinical settings. This is the case because of the nature of the environment. In recent years,
there has been a rise in interest in the biofilms that are produced when pathogenic fungi
are allowed to grow, and various species of yeast, filamentous, and dimorphic fungi have
been characterized as being able to proliferate into colonies [60–62].

Biofilms comprise sessile microbial populations that firmly attach to substrates or
surfaces and to each other [63]. They are safeguarded by an extracellular matrix with a
polymeric basis that is formed mostly of polysaccharides [64,65]. These cells have a higher
resistance to treatment and a distinct phenotype in comparison to planktonic or free cells;
they are also related to the continued presence of pathogens.

Infectious fungi are also capable of adhering to inorganic surfaces, including those
found on catheters and prostheses [58,66]. Yeasts, in particular, are positioned to take
control of this circumstance in order to obtain access to the patient’s circulatory system
and, eventually, their internal tissues. This is cause for concern given the high death risk
associated with spreading fungal infections [67].

Biofilms may be produced by yeast and also by filamentous fungus; nevertheless, fewer
investigations have been conducted on biofilms generated by filamentous fungi relative to
those produced by yeast [68,69]. According to Harding and colleagues, this is due to the
fact that, for a considerable amount of time, the biofilms created by filamentous fungus did
not meet the criteria for biofilms that were associated to bacteria [70]. Therefore, the authors
provided a model for the production of biofilm by filamentous fungi and suggested that,
despite the unique appearance, this design was comparable to the development of biofilm
by yeast and bacteria. Figure 2 provides a representation of the developmental phases of
biofilms produced by filamentous fungus. It includes the process of propagule adsorption,
which involves the interaction of spores, pieces of hyphae, or sporangia with a surface.
After that, active adhesion began, which is characterized by the secretion of adhesins
by spores during the germination process and also other reproductive mechanisms. The
subsequent step is the formation of the first microcolony, which includes hyphal extension
and branching, the formation of a monolayer and, thus, the development of an extracellular
matrix. The subsequent stage involves the production of a second microcolony or the
initiation of the maturation process. This step sees the formation of dense hyphae networks
in three dimensions and also the creation of water channels or an extracellular matrix. The
final maturity stage then takes place, which is marked by the formation of fruiting bodies
and, maybe, additional structures that help the fungus survive. The dispersion phase, also
known as the planktonic phase, has eventually occurred. During this phase, conidia and/or
hyphae fragments are expelled, which initiates a new cycle. In addition to this, filamentous
fungi are distinguished from other types of organisms by their capacity to secrete tiny
proteins referred to as hydrophobins. These proteins are important in the adherence of
hyphae to hydrophobic surfaces, which suggests that they may also be important in the
creation of biofilms [71].
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Figure 2. The five steps that are related to the biofilm formation in bacteria (a) and Candida albicans
(b) are as follows: (i) adsorption, (ii) adhesion, (iii) microcolony development, (iv) mature biofilm,
and (v) dispersal [70,72–74].

The number of studies that are connected to fungal biofilms has significantly risen,
and a number of different species have demonstrated the potential to build these popu-
lations [75,76]. The systemic fungal disease known as paracoccidioidomycosis is caused
by a dimorphic fungus called Paracoccidioides brasiliensis. This disease is indigenous to
Latin America. In their study, Sardi and colleagues characterized the biofilms that were
produced by this fungus while it was in the yeast phase [77]. They discovered that in vitro
community development was related not only to enhanced expression of genes of adhe-
sion molecules but also enzymes including glyceraldehyde 3-phosphate dehydrogenase
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(GAPDH), enolase, aspartyl proteinase, and glycoprotein gp43, and a lowered expression
of phospholipase.

Fungi known as dermatophytes are responsible for the development of dermatophy-
tosis, which is one of the most prevalent dermatomycoses found in humans and other
animals [78]. Onychomycosis is a kind of dermatophytosis that frequently recurs and
requires protracted therapy that is frequently futile. Given this background, as well as the
theory of Burkhart et al. [79], which argues that biofilm development by dermatophytes
might characterize dermatophytomas, Costa-Orlandi et al. [73] demonstrated in vitro
biofilm development by two of the most prevalent species found all over the world, namely
Trichophyton mentagrophytes and T. rubrum.

Pitangui et al. were the first to report the biofilm of Histoplasma capsulatum [80]. In
addition to displaying temperature dimorphism, this fungus is the causative agent of
histoplasmosis, a systemic and respiratory mycosis whose progression is dependent on
the survival of yeast in alveolar macrophages and its ability to replicate. As a result, the
authors decided to explore the biofilm development of two strains isolated in vitro, and
also their adherence to pneumocytes, as well as their ability to internalize them.

In the cases of Trichophyton, Paracoccidioides, and Histoplasma, additional research is
being conducted to characterize their respective biofilms. The purpose of these additional
studies is either to associate the populations with an increased resistance to select potential
biological markers utilizing “omics” methodologies or to antimicrobial agents [81,82].

Since the middle of the 1990s, research has been carried out on the biofilms that are
produced by pathogenic fungus of the Candida species [83–86]. In vitro investigations
are more common than in vivo ones, and they prove the heterogeneity of such biofilm
communities [87,88], which are made up of thick layers of pseudohyphae, yeast blastopores,
hyphals, and an extracellular matrix [89]. The quorum sensing, formation of an extracellular
matrix, morphogenesis, and adherence of biofilms are all controlled by a number of genes,
notably in Candida albicans. Furthermore, genetic study indicated that yeasts and hyphae
each play a distinct function in the production of biofilm by this species [90,91]. Paramonova
and colleagues demonstrated that the majority of filamentation is clearly connected to
enhancing the biofilm’s compressive force [92]. This results in biofilms being more resistant
to damaging circumstances, such as sonication and vortexing. Silva et al. investigated the
variations in the content, development, and shape of the extracellular matrix of biofilms
generated by Candida parapsilosis, Candida tropicalis, and Candida glabrata [93]. Regarding
the morphology, certain Candida parapsilosis biofilms were composed of yeast cells in
addition to pseudohyphae, whereas the biofilms created by other isolates consisted entirely
of yeast cells. In conclusion, the majority of the biofilms produced by Candida tropicalis
were exclusively made up of yeast cells, with a few exceptions revealing extended hyphal
filaments, whereas the biofilms produced by Candida species included only yeast cells.
When it came to the biofilms’ matrix composition, the three species that were examined
had varying levels of carbohydrates and proteins in their respective biofilms.

3. Preventive and Therapeutic Application of Antifungal Nanomaterials
3.1. Metal Oxide and Non-Metal Oxide Nanoparticles

It is well known that nanoparticles can be effective antifungal agents in certain situa-
tions [94,95]. Numerous studies have been conducted to examine the antifungal capability
of nanostructures, and the results have shown that these nanoparticles have a major suppres-
sive effect on the vegetative growth of fungal mycelia. For instance, gold nanoparticles have
been investigated for their potential antifungal action in Candida albicans biofilms [96,97].
This is due to the fact that, when combined with a photosensitizer, Au nanoparticles have
the ability to enhance the efficacy of photodynamic treatment. Through direct contact
with the pathogen’s lipids and proteins, Au nanoparticles have the potential to disrupt
the cellular membranes of the pathogens. In addition, the combination of photosensitizers
with metal nanomaterials might lessen the likelihood that infections will become immune
to the effects of photodynamic treatment [96]. Kischkel et al. investigated the effectiveness
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of Ag nanoparticles in combination with propolis extract (PE) against Candida species as
well as other fungus mature biofilms, discovering that the concentration needed for the
formulation’s fungicidal action was lower than the cytotoxic concentration [98].

People who are immunocompromised are believed to be at a greater risk of contracting
invasive fungal infections since, in most cases, immunosuppression is the cause of invasive
fungal infections in humans. Nevertheless, in light of the extremely restricted supply
of existing antifungal medications and the growing occurrence of multi-drug resistance,
it is imperative that research be conducted into the development of novel and different
antifungal agents. Because of their vast surface area and their ability to effectively adhere
to the fungal cell surface, biocompatible composites of QDs and metal nanoparticles have
drawn a great deal of attention from researchers working on the development of new
fungicidal agents [99,100]. The inhibitory mechanism of cadmium telluride QDs on yeast
Saccharomyces cerevisiae was found and described by Han et al., which was linked to the ac-
cumulation of Cd2+ inside the yeast Saccharomyces cerevisiae cells, which was then followed
by cellular dysfunction or deformation [101]. As a result of the cell wall being corroded, the
cell wall shrank, which made it possible for Cd2+ to enter the cell through a newly created
route. In addition, the growth rate of yeast was slowed down by photoelectron activation
of the orange light released by cadmium telluride QDs (17.07 nm/L), whereas the growth
rate of yeast cells was slowed down by 18.01 nm/L utilizing the green light emitted. In
light of this, the photosensitizing wavelength, as well as the fluorescent color of the light
that is emitted, are both regarded as key physiochemical parameters that determine the
inhibition rates of yeast employing cadmium telluride QDs. In an attempt to improve the
effectiveness of a naturally occurring cytotoxic agent, researchers loaded sesamol onto
cadmium sulfide QDs that had been modified by chitosan (10.1016/j.carbpol.2019.03.024).
As a result, the cytotoxic activity of sesamol was significantly enhanced, and it has the
potential to be an effective agent against disorders caused by fungi or a functioning drug
delivery system.

Recent discoveries in the structure and composition of fungal cell walls, in addition
to their role in the development of drug resistance, have paved the way for the discovery
of new targets for the treatment of fungal pathogens and contributed to a deeper under-
standing of the mechanisms underlying the evolution of antifungal resistance. Indeed, Ag
nanoparticles have the potential to play a significant part in overcoming such resistance.
The disintegration of the cellular wall, damage to nucleic acids and surface proteins caused
by generation and accumulation of free radicals or reactive oxygen species (ROS), and
the obstruction of proton pumps are the results of exposure to Ag nanoparticles. The
accumulation of silver ions, which inhibits respiration by preventing the outflow of in-
tracellular ions and, therefore, causes harm to the electron transport system, has been
thought to be triggered by Ag nanoparticles [102]. The antifungal action of nanoparticles
can be related to their smaller size in comparison to their larger surface area. These Ag
nanoparticles of a lower size are able to readily pass through the cell membranes of their
targets. To be more specific, silver nanoparticles with sizes ranging from 10 to 15 nm have
improved durability, biocompatibility, and antimicrobial activities [103]. The generation of
ROS, which ultimately results in apoptosis, is largely responsible for the toxicity of silver
nanoparticles. The in vitro toxic effects of silver nanoparticles have been hypothesized to
be induced either by the combined action of silver ions and Ag nanoparticles or by each
of their individual effects [102,104]. According to the findings of a study, silver nanopar-
ticles induce cellular damage to walls and also the cell membrane. They are capable of
penetrating inside the cells, damaging organelles, such as mitochondria and ribosomes,
and they are capable of inducing condensation and the margination of chromatin, which is
a marker of apoptotic cell death [105]. Additionally, because of their tiny size, the silver
nanoparticles have the potential to attach themselves to the cellular surface, enter the cells
directly without causing any damage to the cell wall, and ultimately result in the death
of the cell. It was demonstrated in a previous study on the bactericidal action of silver
nanoparticles that the breakdown of the membranes of Escherichia coli might lead to the
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death of these bacteria because silver nanoparticles dramatically increase their permeability,
which, ultimately, results in aberrant transport through the cellular membranes and cell
death [106]. It was previously assumed that silver nanoparticles with high surface areas
could readily generate Ag+, which would then attach to the functional groups (−SH) in
proteins and cause the proteins to become denaturized. By binding to the surface proteins
of fungi, silver nanoparticles have the potential to cause protein denaturation and also the
destruction of proton pumps. This occurs as a result of an increase in the permeability
of the protein–lipid bilayer or membrane, which ultimately leads to the disruption of the
cellular membranes [107,108].

Curcumin possesses extensive antibacterial action and it does not harm living organ-
isms in any way. Curcumin has already had restricted applicability as a treatment owing
to its poor solubility in the circulation [109]. This is because of a number of variables,
including disintegration and fast systemic clearance. As such, Ag nanomaterials have been
developed in order to improve the delivery of curcumin. The amount of suppression caused
by the curcumin in conjunction with Ag nanomaterials was proportional to the amount of
curcumin that was employed, and it was substantial against fluconazole-resistant Candida
glabrata and Candida albicans [110].

Antifungal activity can be found in high concentrations in the nanostructures of noble
metals, such as gold and silver. Nasar et al. investigated the widespread antibacterial effec-
tiveness of Ag nanoparticles against pathogenic bacterial strains (Bacillus subtilis, Escherichia
coli, and Klebsiella pneumonia), as well as a common fungal pathogen called Aspergillus
niger [111]. It has been discovered that Ag nanoparticles are efficient antifungals in the treat-
ment of cutaneous infectious diseases [112]. In addition, Candida albicans and Staphylococcus
aureus, which are the most common causes of oral microbial infections in humans, as well
as Trichophyton mentagrophytes, can be eliminated with the use of Ag nanoparticles [113,114].
The Ag nanoparticles were able to prevent the development of Fusarium oxysporum at
extremely low concentrations (less than 100 ppm), which resulted in a reduction in the
generation of mycotoxin [114,115]. Additionally, Kischkel et al. observed the antifungal
potential of the Ag nanoparticles against Candida albicans, Fusarium oxysporum, and Microspo-
rum canis [98]. An investigation was carried out with the objective of comprehending the
molecular and cellular processes of toxic effects induced by Ag nanoparticles in Candida albi-
cans, which is a prevalent fungal pathogen [116]. Upon tracking the intracellular generation
of ROS in the absence and presence of natural antioxidants, changes in surface topography,
cellular ultrastructure, membrane microenvironment, membrane fluidity, membrane ergos-
terol, and fatty acids were used to evaluate the effects of Ag nanoparticles on molecular
and cellular targets. At a concentration of 40 g/mL, spherical Ag nanoparticles (10–30 nm)
exhibited a minimal inhibitory level. This is the concentration that must be present to stop
the development of at least 90% of all organisms. According to the findings of our study,
Ag nanoparticles created dose-dependent intracellular ROS, which displayed antifungal
effects. Nevertheless, scavenging ROS with antioxidants was unable to provide protection
from the death caused by Ag nanoparticles. After treatment with Ag nanoparticles, the
surface morphology, cellular ultrastructure, membrane microenvironment, membrane flu-
idity, ergosterol concentration, and fatty acid composition were all changed. Oleic acid was
particularly affected. The Ag nanoparticles had an effect on many cellular targets in the
fungal cells, all of which were essential for drug resistance and pathogenicity. The research
uncovered additional cellular targets of Ag nanoparticles, some of which are fatty acids,
such as oleic acid, which are essential for the formation of hyphae (a pathogenic trait of
Candida). Due to the fact that the shift from yeast to hypha is essential for both virulence
and the creation of biofilm, it is possible that targeting virulence may emerge as a novel
approach in the process of creating nano silver-based treatments for clinical applications in
fungal therapies (Figure 3).
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Figure 3. The proposed model for the mechanism of action of Ag nanoparticles against Candida cells
is shown below in the form of a graphical representation. It illustrates various cellular targets, as well
as the existence of dependent and independent ROS mechanisms for the fungicidal activity of Ag
nanoparticles. It has been indicated that nanoparticles dramatically change drug vulnerabilities in
Candida albicans by acting on various cellular targets, which results in changes to the lipid composition,
the membrane’s physical state, the cellular ultrastructure, the membrane microenvironment, and
the surface morphology. The presence of change-induced Ag nanoparticles in cellular targets has
the possibility of having an effect on the pathogenesis, treatment resistance, and virulence of fungal
infectious diseases. Among the cellular targets of Ag nanoparticles, oleic acid, and fungal fatty acids,
in particular, appear to be fairly significant. As a result, targeting virulence and morphogenesis
through fatty acids could be one way to design a strategy for the treatment of Candida infections.

In light of the inert and harmless nature of gold nanoparticles, they are thought to
be a comparatively safer alternative to other types of inorganic nanoparticles. In addition,
the redox nature of gold is helpful in lowering the amount of ROS formed as a result of
exposure to nanoparticles, which is a positive effect [117]. The fact that gold has a high level
of biocompatibility is demonstrated by the fact that colloidal gold nanoparticles have been
utilized for medicinal purposes for millennia [118,119]. Recent findings from a number
of studies have provided conclusive evidence that gold nanoparticles have potent antimi-
crobial activity against a wide variety of clinical strains of the Candida fungus [120,121].
Extensive research on Candida led to the discovery of the antifungal mechanisms that are
associated with Au nanoparticles. One theory proposes that Au nanoparticles are capable
of interacting with the H+-ATPase-mediated proton pump of Candida, thus, disturbing
the maintenance of the proton gradient. This, in turn, leads to abnormalities in nutrition
transfer, which ultimately results in the death of the fungi [121]. Furthermore, gold may
interact with phosphorus and sulfur, which are both essential components of fungal DNA
and protein, and this can have a direct and deleterious impact on the functioning of those
components. According to a different hypothesis, endonuclear Au nanoparticles have the
capability to trigger karyopyknosis and DNA fragmentation, whereas cytoplasmic Au
nanoparticles interact with mitochondria, which results in a change in bulk, calcium ion



Sustainability 2022, 14, 12942 11 of 33

level, and the disordering of mitochondrial membrane potential (MMP). It was discovered
that the ROS level had remained essentially unaltered, which lends credence to the notion
that the fungi-killing function is independent of ROS [122]. The prevention of attachment
between substrate surfaces and adhesin is one of the mechanisms that may be linked to
the disintegration of fungal biofilms. This results in the disintegration of fungal biofilms
as well as an increase in the number of planktonic fungi. Pathogens can also be inhib-
ited or killed by Au nanoparticles because they release ions, rupture cell membranes or
cellular walls, produce ROS, and cause damage to DNA or mitochondria, among other
mechanisms [123,124]. Furthermore, microscopy using the potassium hydroxide technique,
which is the preferred method and most used approach for screening for fungi, allows for
direct identification of the organisms that cause fungal infections. Nevertheless, in order to
conduct this test, one will need skilled staff who are able to operate specialized equipment,
such as a fluorescence microscope and culture facilities. Since the majority of patients with
acute infections seek medical attention within the first few days of experiencing symptoms,
the best diagnostic test would be one that is both quick and self-diagnostic, which would
both simplify treatment and improve its effectiveness. Within two minutes, Aspergillus niger
may bring about a transformation in the morphology of gold nanoparticles that leads to a
shift in color from red to blue in solutions containing these nanoparticles. The supernatant
of human toenail samples that were disseminated in water exhibited a color shift that was
analogous to that seen in the samples themselves. The use of scanning electron microscopy,
ultraviolet–visible spectroscopy, and Raman spectroscopy is utilized in order to monitor
changes in the morphology of the nanoparticles as well as surface plasmon resonance. The
absorbance ratio at 520 nm/620 nm is used to conduct the investigation into the connection
between the change in color and the fungal infection. The ratio was observed to decrease
as the concentration of the fungus grew from 1 to 16 CFU/mL, with a detection limit of
10 CFU/mL. This was discovered by the researchers. This technique for the diagnosis
of fungal infections based on plasmonic gold nanoparticles monitors the change in the
form of gold nanoparticles and creates colored solutions with different tonality. With just
the naked eye, this application might let laboratories and hospitals with limited resources
self-diagnose and maintain hygienic conditions [125,126].

Abd-Elsalam et al. have explored the possible suppressive effect that a number of
different metal oxide nanostructures have on the development of fungi [127]. Zinc oxide
nanoparticles are the most attractive options among various metallic oxide nanoparticles
because they suppress the development of Candida albicans at extremely low doses, ranging
from 1.013 to 296.0 g/mL [128]. It has been shown that the structure and dimensions of
ZnO nanoparticles have a significant role in determining the level of antifungal potential
that they exhibit. At levels lower than 5 mM, ZnO nanostructures with flower shapes
prevented the growth of Aspergillus flavus, as well as the formation of aflatoxin [129,130].
Iron oxide nanoparticles are the next type of metal oxide nanoparticle that has significant
antimicrobial capability. In research involving magnetic (Fe2O3) nanoparticles, the antifun-
gal effectiveness against Aspergillus flavus and the inhibition of aflatoxin formation were
documented [130–132]. Although Mouhamed et al. established the inhibitory effects of
iron oxide nanoparticles on ochratoxigenic Aspergillus sp., other researchers have not been
able to replicate these results [133]. In addition, Abd El-Tawab and colleagues found that
the growth inhibitory capabilities of Fe2O3 nanoparticles were effective against the microor-
ganisms that are responsible for bovine skin disorders (T.mentagrophytes and Trichophyton
verrucosum) [134].

Surface functionalization or coating of metal oxide or metallic nanomaterials might
further enhance the antibacterial capabilities of the particulates. Chitosan nanoparticles,
which are formed from a deacetylated derivative of chitin, have the ability to inhibit the
development of fungi, such as Aspergillus niger, Rhizopus sp., and Fusarium sp., and, as a
result, they can be employed in place of chemical pesticides [135]. Chitosan nanoparticles
have also been shown to be effective at inhibiting pathogens when tested under in vitro
conditions [136]. Chitosan-based polymeric materials have also been used to generate
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surface coatings for metal oxide nanoparticles, which can enhance the interactions between
the biological membranes and nanoparticles, allowing for easier transportation of the
nanomaterials. Abd-Elsalam et al. discovered the strong antifungal potential of Cu nano-
materials against mycotoxigenic fungus, both alone and in conjunction with chitosan [137].
This resulted in the suppression of aflatoxin formation. Inhibition of the development of
Candida albicans can be achieved by the utilization of an acrylic resin that is fortified with
Ag and ZnO nanoparticles [138].

Combining distinct types of nanostructures with favorable biologically active sub-
stances is a common practice in modern nanocomposites manufacturing, which results in
the creation of pharmaceuticals that have significant uses in animal care [139]. The overlay-
ing or coupling of nanoparticles through other biological macromolecules are connected to
the chemical characteristics of the nanoparticles themselves and are exploited in the moni-
toring of infections inside the body. In this regard, Hassan and colleagues have discovered
that the antifungal potential can be greatly increased by conjugating metallic nanoparticles
with natural oils [140]. They found that in composites consisting of ZnO nanoparticles or
Ag nanoparticles, essential oils were able to successfully suppress the growth of bacterial
as well as fungal diseases. In the treatment of bovine skin and udder diseases, as well as
carbon nanoparticles, combinations of active carbon nanoparticles with essential oils were
used [141,142]. In order to effectively suppress the growth of toxigenic Aspergillus flavus
and Escherichia coli, as well as to prevent the production of related toxins, Hassan et al.
conjugated ZnO nanoparticles and Ag nanoparticles with cinnamon and olive oil [115,140].
Wang et al. have actually discovered that the hybridization of Au nanoparticles with
autoantibodies assist in immune–chromatographic research and detection of toxic AFM1
in milk [143]. It was observed that using QDs to monitor activities and events of body
cells was superior to using standard dyes, and this assisted in the release of medication to
the desired location of infection. Similar behaviors were achieved using QDs to monitor
activities of body cells [144].

Isolates tested of Candida albicans have been used to investigate the antifungal prop-
erties of amphotericin B and nystatin that have been coupled to magnetic nanoparticles.
According to observations made by Niemirowicz and colleagues, these magnetic nanoparti-
cles had substantial fungicidal activity and inhibited the formation of biofilm [145]. Because
a disruption in the redox balance may restrict the development of Candida albicans, the
detected effects may well be the result of catalase inactivation (Cat1) in cells that were
treated with nanomaterials. After that, magnetic nanoparticles covered with ceragenin
CSA-13 and peptide LL-37 also demonstrated fungicidal properties against Candida sp. This
was because enhanced production of ROS generation was connected with hole creation in
the cellular membranes, which let magnetic nanoparticles penetrate deeper into the yeast
cells [146].

Inorganic mesoporous silica nanomaterials, commonly known as MSNs, are capable
of functioning as nanocarriers for the transport of drugs to afflicted cells located anywhere
in the body [130,147–149]. The pharmaceutical molecules can be attached to function-
alized silica nanoparticles, or the nanoparticles can sequester or adsorb the medication
molecules within the nanopores or on their surface, therefore increasing the delivery of
therapeutics to the targeted locations [150]. In order to inhibit the creation of biofilms on
medical implants, Kanugala et al. created antimicrobial biomaterial surfaces based on
MSNs functionalized with phenazine-1-carboxamide [151]. In addition to their polymicro-
bial antibiofilm capability, the newly created MSNs demonstrated excellent anti-candidal
action. Silica nanoparticles also have the potential to be utilized in the creation of topical
cream compositions that cure skin fungal infectious diseases. An MSN-econazole topical
cream formulation functionalized with aminopropyl was developed and studied against
Candida albicans infections of the skin by Montazeri et al [152]. The researchers found
that the formulation increased antifungal effectiveness at decreased concentrations of the
packed medication.
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3.2. Polymeric Nanoparticles

As shown in Table 1, antimicrobial polymers have cidal effects on both filamentous
fungi and yeasts due to their cationic charge, which provides a high binding affinity to
the negatively charged microbial membrane surface. These polymers have garnered a
growing amount of interest in antifungal research as a result of the fact that they reduce
the difficulty of finding novel antifungal targets and broaden the range of possible uses for
both newly developed and already existing antifungal medicines. They are not expensive
or time-consuming to make, and they can be chemically modified for a wider range of uses
or incorporated into nanocomposites for controlled release [153]. As a consequence of this,
there has been a renewed interest in the design of novel antimicrobial peptides that have
enhanced physicochemical features.

Table 1. A table representing a summary of synthetic antifungal polymeric materials and the reported
targets of these compounds.

Polymeric Materials with
Antifungal Activity Cell Wall Membrane Intracellular

Targets Toxic Effects Ref

Synthetic peptides with
antimicrobial properties - Permeability to

membrane Likely Reduced haemolytic
activity [154]

Synthetic peptides with
antimicrobial properties -

Does not appear to
show permeability

for fungal cell
membranes

Capable of binding to
nucleic acids

Related to length of
hydrophobic region [155]

(Nylon-3 copolymers) - Permeability to
membrane -

Reduced toxic effects,
based on length of

hydrophobic region
[156]

Polyquaternium-1(PQ 1) Inhibits germination
of conidia species

Permeability to
membrane Likely - [157]

Polyoctamethylene guanidine
hydrochloride (POGH) - Permeability to

membrane Likely Slightly [158]

Polyethylenimine (PEI) - Permeability to
membrane

Likely depolarization
of cellular membrane,
capable of binding to

nucleic acids

Slightly, related to the
length of

hydrophobic region
[159]

Quaternary ammonium
chloride derivatives

of chitosan
- Permeability to

membrane Likely Reduced toxic effects [160]

(N-(2-hydroxypropyl)-
3trimethylammonium

chitosan chlorides) HTCC
- Permeability to

membrane Likely Reduced toxic effects [161]

Chitosan - Permeability to
membrane

Nucleus, capable of
binding to RNA

and/or DNA
Reduced toxic effects [162]

Polyhexamethylene
guanidine hydrochloride

(PHMGH) derivatives

Capable of targeting
cell wall

Permeability to
membrane Likely

Reduced toxic effects
but after

inhalation showing
serve toxicity

[163]

The use of amphotericin B deoxycholate as a medication in the treatment of severe
fungal infections is still significant. Nevertheless, because the medicine is unable to pass
across the blood–brain barrier, its application for the management of cryptococcal meningi-
tis is restricted [164]. In the quest to find a brain medication delivery mechanism, several
nanocarriers have been investigated, and some promising findings against Cryptococcus sp.
have been revealed [165,166]. Polysorbate 80 is a surfactant as well as an emulsifier that
increases nanoparticle absorption in the primary capillary endothelial cells of the brain in
human and bovine-related cells. It was employed in the early research of nanocarriers. As
a result of their ability to enhance the concentrations of the medication inside the brain
by up to 20-fold one hour after injection, polysorbate 80 covered particulates are regarded
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as an effective “activator” for the brain [167]. Xu and colleagues produced amphotericin
B-polybutylcyanoacrylate nanoparticles that were coated with polysorbate for use in a
mouse model of systemic delivery. The authors report that nanoparticles with a diameter of
about 69 nanometers were found in greater concentrations inside the brain 30 minutes after
the administration of liposomal amphotericin B. It is interesting to note that amphotericin B
deoxycholate was not found throughout the brain; however, the overall survival rates were
80% for these nanoparticles, 60% for liposomal amphotericin B, and 0% for amphotericin B
deoxycholate, respectively. According to Ren et al., polysorbate 80 increases the efficiency
of the entrapment of amphotericin B throughout the polymeric matrix when it is in the
form of PLA-b-PEG. In experiments conducted in vitro, 100% of the amphotericin B was
liberated between the periods of 35 and 40 h. Between 60 and 70 h after mixing, practically
all of the amphotericin B contained in the nanoparticles that included the polysorbate was
liberated [168]. In vivo and in vitro evaluations of the effectiveness, toxic effects, and oral
bioavailability of some of the abovementioned formulations were carried out with the use
of amphotericin B-encapsulated PLGA–PEG nanoparticles. The MIC of these nanoparticles
against Candida albicans cells was lower in comparison to the MIC of free amphotericin
B. When measured using a hemolysis assay, the toxicity of the nano-formulations was
significantly lower than that of Fungizone® (APOTHECON®, Ben Venue Laboratories, Inc.,
Bedford, OH, USA). After one week of oral administration of amphotericin B-encapsulated
PLGA–PEG nanoparticles to rats, plasma creatinine as well as blood urea nitrogen levels
were found to be normal. This was determined in vivo. Last but not least, the incorpora-
tion of glycyrrhizin acid resulted in an increase in the bioavailability of the encapsulated
amphotericin B [169]. Synthesized nanoparticles comprising PLGA with chitosan encap-
sulating amphotericin B attained nanoscale dimension, high encapsulation capacity for
amphotericin B, positive surface charge, and reduced polydispersity.

A variety of polymeric nanoparticles have been investigated as potential transporters
of amphotericin B for the therapeutic intervention of experimental aspergillosis [170,171].
Italia et al. were one of the research teams that revealed the usefulness of PLGA nanoparti-
cles for the oral delivery of amphotericin B [172]. In neutropenic experimental models of
widespread or aggressive aspergillosis, the oral bioavailability of PLGA nanoparticles was
found to be more effective than the parenteral injection of Fungizone® and Ambisome®

(Gilead Sciences, Inc., Foster City, CA, USA). It is important to note that standard am-
photericin B, also known as Fungizone®, does not work in this case. When compared to
amphotericin B on its own, the amphotericin B PLGA nanomaterials induced a higher oral
absorption of the compound. Because the nanoparticles were capable of protecting the
medicine from the degrading effects of digestive enzymes and pH, they were successful in
overcoming the effects of entering metabolism, making it possible for additional nanoparti-
cles to be taken up by lymph nodes. Thus, the oral delivery of amphotericin B could be a
potential technique for the treatment of widespread fungal infections, or even, at the very
least, oral thrush that is resistant to azole medications. Similarly, Van de Ven et al. dis-
covered that PLGA plus nanosuspension nanoparticles carrying amphotericin B delivered
intraperitoneally to mice were 3- and 2-fold more efficient than Fungizone® and Ambisome®

in lowering fungal burden in widespread aspergillosis studies, respectively [173]. In this
instance, the authors posited that the degree of aggregation of amphotericin B inside the
delivery mechanism would have an effect on the way in which nanoparticles interacted
with the ergosterol that is found within fungal membranes. By studying the UV/VIS
absorption spectrum of the assessed formulations, researchers were able to demonstrate
that there are distinct changes in the aggregating behaviors of the nanoparticles when they
are in solution. In addition, the authors hypothesized that PLGA as well as nanosuspension
nanomaterials may have been responsible for transporting the drug in a controlled manner
to the tissue compartment. This is due to the fact that the nano-formulation has an optimal
dimension for the circulatory system (less than 100 nanometers) and could start promoting
accelerated absorption even by the reticuloendothelial system, as seems to be the scenario
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with formulations, such as Amphocil® (Criticare Laboratories Pvt Ltd., Bangalore, India)
and Abelcet® (Leadiant Biosciences, Inc., Pomezia, Italy).

Salama et al. investigated the performance of cross-linked chitosan biguanidine that
was packed with silver nanoparticles [170]. As a result of the successful integration of silver,
the polymer thermal stability was enhanced and, thus, as a consequence, the nanoparticles
produced had relatively lower cytotoxic effects for MCF-7 cells, as well as continuing to
improve antibacterial and antifungal activities, in comparison to cross-linked chitosan
biguanidine or chitosan. Polymers and silver nanoparticles are typically combined in
this scenario with the intention of enhancing antimicrobial activity owing to the inherent
characteristics of silver in conjunction with prolonged delivery provided by polymers.
After the combination of cross-linked chitosan biguanidine with silver nanoparticles, the
nanocomposite began to degrade at increasing temperatures resulting from interactions of
these substances, which encouraged an increased stability in the framework but also led to
the deterioration of the nanocomposite.

The action potential of antifungal medications can be improved by encapsulating
the medications or developing new formulations for them that are in the form of nano-
emulsions. As discovered by Deaguero et al., miconazole nano-encapsulated in oleate
vesicles of cholesterol or sodium had substantial antifungal efficacy against a variety of
fungal infections [174]. As was described by Siopi et al., liposomes encapsulated with am-
photericin B have been shown to have great therapeutic effects against mycotic respiratory
infectious diseases in mice induced by A. fumigatus [175].

Spadari et al. investigated the efficacy of miltefosine-loaded alginate nanoparticles in
combating Candida and Cryptococcus species. Their goal was to minimize the cytotoxicity
associated with miltefosine while preserving its antifungal properties. When compared
to free miltefosine, miltefosine that was encapsulated in nanoparticles composed of 80%
alginate showed a marked reduction in its harmful effects when tested on Galleria mellonella
and also in an in vitro system. In addition, the administration of miltefosine–alginate
nanoparticles to Galleria mellonella larvae that had been infected by Candida albicans greatly
increased the amount of time that the larvae were able to survive. Since alginate-based
nanocarriers provide a continual delivery as well as delivery of the medication, this can
preserve the drug’s bioavailability and prevent any possible side effects. Another benefit is
that the diameter of the nanostructures that were generated in this investigation (the mean
diameter was 279.1 ± 56.7 nanometers), which is characterized as being advantageous for
both oral and mucosal delivery [176].

Yang et al. devised an antifungal food packaging material produced from charcoal
polymers and used it in their research. In order to create the charcoal polymers, charcoal
powders were mixed with plastic resin while the process was carried out in a vacuum [177].
In the presence of filamentous fungi, these polymeric materials were examined (C. globosum,
T. virens, and P. variotii). After being exposed to the substance, T. virens and P. variotii
exhibited a growth inhibition that was 10 and 30%, respectively. Conidia of C. globosum that
had been prepared with these polymeric materials likewise failed to germinate after being
exposed to them for a period of 5 days in culture. The Ca2+ adsorption into the nanoscale
pores of the charcoal is the strategy that these polymers employ in order to inhibit fungal
growth. Within five hours, 0.2 g/ml of polymers were able to successfully remove an
estimated 15 mM of Ca2+ from a solution containing CaCl2. These polymers lower the
quantity of easily accessible calcium that is necessary for conidia to germinate and for the
formation of fungal hyphae.

3.3. Carbon Nanoparticles

Antimicrobial properties may also be exhibited by various kinds of nanostructures
based on carbon against various fungal and bacterial infections [178]. Nanomaterials that
are based on carbon have the ability to thwart the growth of mycotoxigenic fungus and
Escherichia coli [140]. Chitosan–carbon nanotube hydrogels, which are used in biomedicine
for purposes, such as dressings, as well as medication delivery, were found to limit the
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growth of Staphylococcus aureus, Escherichia coli, and Candida tropicalis [179]. On a silicon
substrate, arrays of branched carbon nanotubes (also known as CNTs) were produced
by the process of plasma-enhanced chemical vapor deposition. Furthermore, Ni was em-
ployed as the catalyst, and it played a crucial part in the process of realizing branches
in nanotubes that were vertically aligned. Under visible light, their antifungal action on
Candida albicans biofilms was examined, and the results were compared to the activity of
TiO2/CNT arrays and thin films of TiO2. As compared to the TiO2/CNTs and the TiO2 film,
the TiO2/branched CNTs exhibited a photocatalytic antifungal activity that increased in
significance [180,181]. Carbon dots were created by Parya Ezati et al. by utilizing glucose
as a carbon source (GCD). In order to improve the functioning of the carbon dots, they
were doped with heteroatoms, such as sulfur, boron, and nitrogen. The GCDs were ex-
tremely hydrophilic and durable in an aqueous system; moreover, the nitrogen-doped GCD
(NGCD) exhibited the greatest polydispersity index with a value of 0.274. Every one of the
GCDs possesses remarkable antioxidant action, with the NGCD having the highest level
of activity. Both the sulfur-doped GCD (SGCD) as well as the boron-doped GCD (BGCD)
display antibacterial activity that is much more effective against Escherichia coli and Listeria
monocytogenes. The NGCD demonstrates the highest level of antibacterial activity and is
effective against both types of bacterial strains. The NGCD shows strong antifungal action
against Penicillium citrinum and Candida albicans, whereas the SGCD is more effective in
inhibiting the growth of Fusarium solani. In addition, even after being exposed to a signifi-
cant dosage of 500 g/mL for 72 h, more than 80% of the mouse fibroblast L929 cells are still
alive, demonstrating that the toxicity level is rather low [182]. Leudjo Taka and colleagues
created a nanosponge composite made of polyurethane cyclodextrin co-polymerized with
phosphorylated multiwalled carbon nanotube-doped Ag-TiO2 nanoparticles [183]. They
then tested the effectiveness of the nanosponge’s antifungal properties against two different
strains of Aspergillus. This nanocomposite had a MIC of 437.5 g/mL against both Aspergillus
ochraceus and Aspergillus fumigatus, and so this ratio is lower than the nanosponge that did
not include doped nanoparticles, which had a value of 1750 g/mL. The antifungal effect is
thought to be caused by the functional groups of the fungus membrane’s direct interaction
with the nanocomposite, which then causes ROS creation and the interruption of the cell
wall membrane. This is thought to be a probable effect of the addition of TiO2 and Ag
nanoparticles to the material.

3.4. Nanostructured Lipid Carriers

Nanostructured lipid carriers are biocompatible and biodegradable because they
are composed of a blend of solid lipid and a percentage of liquid lipid derived from
natural sources [184]. Nanostructured lipid carriers are second-generation nanocarriers
that have the potential to overcome the drawbacks of solid lipid nanoparticles (SLNs). These
drawbacks include drug loss and a reduced drug load bearing capacity as a result of the
formation and reorganization of extremely high crystallinity structures during storage [185].
Because the addition includes the liquid lipid fractions, nanostructured lipid carriers have
better properties. These enhanced attributes give increased drug retention capability as well
as long-term durability. Given that the majority of medications are lipophilic in nature, this
sort of strategy is more successful in drug delivery [186]. Itraconazole that was included in
nanostructured lipid carriers demonstrated an encapsulation effectiveness of more than
98% across several trials and maintained its integrity after being stored for a period of six
months [187]. Beloqui et al. investigated the biodistribution of nanostructured lipid carriers
in rats following intravenous administration of the substance and found that radiolabeled
nanostructured lipid carriers continue to circulate in the bloodstream up to 24 h after the
delivery of the compound [188]. The size of the particles and electrical charge are further
factors that play a role in the biodistribution of nanocarriers. The lung is responsible
for capturing larger nanoparticles, while the bone marrow and liver are responsible for
capturing microscopic particles. Positive nanoparticles are found throughout the kidney,
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whereas negative nanoparticles make their way back to the liver. As a result, nanostructured
lipid carriers have evolved into useful options in the field of drug delivery research.

It was possible to produce NLCs and SLNs that could be rapidly loaded with ampho-
tericin B. In addition, the nanoparticles demonstrated a decreased level of hemolytic poten-
tial in comparison to Fungizone®. When compared to free amphotericin B or Fungizone®,
the NLCs and SLNs loaded with amphotericin B demonstrated superior antifungal activity
against Candida albicans. According to the findings, these nano-formulations could improve
antifungal effectiveness, raise the solubility of amphotericin B, and lessen the treatment’s
harmful impact. This impact may well be caused by the continuous release of amphotericin
B inside the nano-formulations, as well as by its monomeric nature. Amphotericin B,
having a limited degree of agglomeration, is much more specific and attaches predomi-
nantly to ergosterol. Therefore, this property of amphotericin B may be responsible for this
action [189].

The antifungal activity of SLNs has been explored with Candida strains that are resis-
tant to many drugs. Against the species that were examined, SLNs packed with fluconazole
showed superior efficacy in comparison to free fluconazole. These specially constructed
SLNs demonstrated rapid drug release during the first half hour, followed by continuous
release for the full 24 h [190,191]. The efflux pump’s overexpression is one of the primary
mechanisms of resistance in yeasts. This process aids in the reduction in azole levels within
the cell. In this particular instance, the enhanced sensitivity to antifungal agents may be
connected to the fact that NLCs gave shielding to fluconazole, preventing the medica-
tion from being released from the cells and contributing to the heightened vulnerability.
Additionally, the hydrophobic surface of engineered NLCs has the potential to enhance
the amount of medicine that is able to penetrate yeast. The efficacy of NLCs containing
fluconazole as well as lipid core nanoparticles was investigated in C. albicans resistant to
fluconazole. Although the NLCs did not seem to be efficient, the lipid nucleus nanoparticles
did show some degree of activity at lower fluconazole doses. In addition, the lipid nucleus
nanoparticles containing fluconazole were effective in preventing fluconazole from being
recognized by the efflux pumps seen in fungal cells [192]. Table 2 presents a number of
examples of antifungal medications that have been encapsulated in either NLCs or SLNs.
Based on the findings, it was possible to produce drug-loaded NLCs as well as SLNs with
a particle size ranging from 50 to 450 nm. An encapsulation efficiency of up to 100% of the
drug was attained, proving that the preparation methods that were utilized were effective.

Table 2. Various NLC and SLN formulations used for the antifungal drug delivery purposes.

Lipid-Based
Formulation Drug Size (nm) The Drug Loading

Efficiency Ref

SLNs Fluconazole 179–279 50–75% [193]

SLNs Fluconazole 178 75.7% [194]

NLCs Fluconazole 134 81.4% [194]

SLNs Fluconazole 85 89.6% [185]

NLCs Itraconazole 192–240 83–95% [195]

SLNs Itraconazole 250–545 81–88% [196]

SLNs Itraconazole 126–199 68–94% [197]

NLCs Itraconazole 314 70.5 ± 0.6% [198]

NLCs Itraconazole 102–106 99.98% [199]

SLNs Clotrimazole 202–460 41–43% [200]

SLNs Clotrimazole 120 87% [201]

NLCs Clotrimazole 160 88% [201]
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Table 2. Cont.

Lipid-Based
Formulation Drug Size (nm) The Drug Loading

Efficiency Ref

NLCs Clotrimazole 50–150 85–89% [202]

NLCs Clotrimazole 202 97% [203]

SLNs Terbinafine 300 300 [204]

SLNs Voriconazole 139–334 139–334 [205]

SLNs Voriconazole 234–343 62–84% [206]

NLCs Voriconazole 210 86% [207]

SLNs Miconazole 244–766 80–100% [208]

SLNs Miconazole 23 90.2% [209]

SLNs Miconazole 206 90.8% [210]

SLNs Econazole 150 100% [211]

3.5. ZnO Quantum Dots

“Quantum dots” (QDs) are spherical nanomaterials that are typically within 10 nanome-
ters in size and have a size that is equivalent to or less than the Bohr radius of the sub-
stance [212]. This is the size range in which quantum confinement effects are most notice-
able. Quantum confinement in QDs leads to the formation of active sites and surface defects,
which, upon interaction with hydroxyl and oxygen ions, result in the formation of highly
reactive superoxide and hydroxyl radicals [213]. In addition to this, ZnO nanoparticles
facilitate broad spectrum antimicrobial action by targeting several molecular and cellular
processes. This has the potential to prevent the future development of drug resistance
in fungi. As a result, it is possible that the use of ZnO nanoparticles in conjunction with
several other antifungal medications might result in a decrease in the typical dosages
of antifungals, as well as the cost of therapy and the toxicity of the treatments [214]. In
addition, the size-dependent toxic effects of ZnO nanoparticles toward microorganisms
have been well reported, and it has been shown that a decrease in size results in an improve-
ment in antimicrobial activity. Due to their smaller dimensions, ZnO QDs are capable of
facilitating a significantly greater dissolution of Zn2+ ions throughout a solution [215,216].
This greater solubility of Zn2+ ions throughout a solution is thought to be accountable for
an increase in ROS, which in turn leads to the peroxidation of biomolecules, as well as the
death of cells in microbial pathogens [217]. Recent research demonstrated the broad array
microbicidal effect of ZnO QDs (5–6 nanometers) against multidrug-resistant pathogens
(Candida albicans and Escherichia coli). This finding suggests that the antibacterial activities
of nano ZnO may be controlled by modifying the diameter of the particles. Nevertheless,
in an investigation, Preeti Chand et al. illustrated the utilization of ZnO QDs in conjunction
with antifungal medications of separate classes against drug-resistant and drug-susceptible
strains of Candida albicans [218]. This was done in order to develop a biosafe, nano-based
multi-functional structure of combination treatment against multi-drug resistant fungal
pathogenic organisms, in which the concentration of drug can be reduced to minimize
toxic effects while simultaneously benefiting from the benefit of multitargeted activity to
restrict the development of fungal drug resistance. An essential theoretical goal for the
surface functionalization of tiny (1–3 nm) ZnO quantum dot nanoparticles was conducted
by Zahra Fakhroueian et al. in order to hinder the agglomeration and decomposition of
nanomaterials in aqueous conditions [219]. The majority of the reagents employed in these
processes include polymeric materials, organosilanes, PEG (polyethylene glycol), and oily
herbal fatty acids. This is due to the fact that all of these substances are entirely soluble
in water and have the potential to be utilized as biological probes in nanomedicine. The
vegetable fatty acid-capped ZnO (QD nanoparticles) were produced by dissolving ZnO
using the sol–gel technique with the involvement of nonionic surfactants as effective tem-
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plates at a pH that was appropriate for the process. In the current study, the cellular toxicity
of tiny ZnO QD nanoparticles bearing a specific blue fluorescence was the primary focus
of our investigation, as it related to the targeted delivery of HT29 and MCF7 cancer cell
lines. These studies demonstrated that ZnO QDs had minimal toxic effects on healthy cells
(MDBK) and may eventually have a possible application in the field of cancer treatment.
Due to the presence of these features, there is a possibility that a potential applicant in
the field of nanobiomedicine could be produced. Antifungal and antibacterial capabilities
were demonstrated by the robustly designed ZnO QD nanomaterials against Klebsiella
pneumonia, Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus anthracis bacteria,
as well as various fungi including Trichophyton mentagrophytes, Microsporum canis, Microspo-
rum gypseum, Candida tropicalis, and Candida albicans, in comparison with the standard
antibiotic toxicity. The ZnO QDs had a substantial growth-inhibiting effect on Candida
albicans cells [220]. Oxidative stress was implicated in the antifungal activity of ZnO QDs
against Candida albicans. This effect was mediated by the enhancement of endogenous ROS.
In addition, endogenous ROS generation by ZnO QDs, as well as their effect on destroying
fungal cells, was researched while an antioxidant known as ascorbic acid was present. The
findings demonstrated that the antioxidant did not provide complete protection against
the oxidative stress produced by ZnO QDs.

3.6. Peptides That Are Antimicrobial and Have Efficacy against Fungi

Antimicrobial peptides, or AMPs for short, are a component of the innate immune
response. They are also known as host defense peptides. Furthermore, AMPs are molecules
that can be created by plants, animals, and microbes, and they serve the purpose of de-
fending the host from invasive diseases. These amphiphilic peptides have short sequences
that are generally less than one hundred amino acids in length [221]. The AMPs have a
cationic charge, and those that are rich in the amino acid histidine have potent antifungal
action [222]. Cathelicidins are a good example of this behavior. This group of antifungal
AMPs is a component of the human innate defense system. They are typically deposited
inside the lysosomes of macrophages and, thus, are responsible for preventing fungal
infections [223]. Despite this, there are certain AMPs that have anionic charges and need
metallic ions in order to undergo biological activation [224]. Anionic AMPs are responsi-
ble for the formation of cationic salt bridges between anionic metallic ions and microbial
membranes, which allows for increased membrane permeability. In contrast to cationic
AMPs, our understanding of the antibacterial activity of anionic AMPs is still somewhat
restricted, despite the fact that this mechanism is ascribed to certain anionic AMPs [225].
The disruption of the cellular membranes that results from the interaction of electrostatic
attraction with anionic membranes is thought to be the primary antibacterial mechanism
that cationic AMPs possess. In addition to this, some AMPs have the ability to translocate
across the membrane as well as impacting on intracellular targets, therefore, inhibiting the
production of proteins and DNA [222]. Additionally, AMPs are unstable molecules with a
limited half-life, despite the fact that they have antibacterial actions. In the antimicrobial
peptides database, there are now 1211 peptides of natural, synthetic, or semi-synthetic
origins that have antifungal activities [226].

Synthetic Antimicrobial Peptides Having Antifungal Properties

Due to the fact that synthetic peptide-like polymeric materials are synthesized on the
basis of the structural moieties in AMPs, they often impede the growth of microorganisms
or destroy them thanks to the cationic surface charge they possess [227]. Polymers that have
intrinsic antimicrobial activity are included in this class. Some examples of these polymeric
materials are polymers containing N-halamines, quaternary nitrogen groups, and poly-ε-
lysine (ε-PL). Because of the potential for toxicity in humans, many synthesized AMPs are
rarely utilized in clinical settings, despite the fact that they are very effective antifungal
agents. As a result, there is continuing investigation into the synthesis and optimization of
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novel synthetic AMPs that have high antibacterial activity but lower toxicity. These AMPs
are intended to be safer.

Ramamourthy and colleagues synthesized peptides featuring varied numbers of lysine
as well as tryptophan repetitions (KWn-NH2) and then studied the antifungal efficacy of
these peptides against Candida albicans [155]. The length of these peptides has a direct
correlation with the strength of their antifungal and biofilm-removing properties. In
addition to this, the shortest peptide, KW2, did not exhibit any antifungal action, while
the longest peptide, KW5, exhibited toxic effects on human keratinocyte-treated cells. The
fungal cell membranes were not disrupted by the KW4 peptide. On the other hand, laser-
scanning confocal imaging revealed that KW4 was localized inside the cytoplasm of Candida
albicans, where it was shown to be bound to RNA from the fungus. This leads one to believe
that membrane permeabilization is not the sole antifungal mechanism possessed by these
peptides. Rather, these artificial AMPs are capable of entering fungal cells and localizing
within the cell, where they are capable of preventing biological processes via binding to
DNA and RNA, which ultimately results in the death of fungal cells.

In light of the morphological characteristics of antimicrobial peptides (pilosilin and
ponericin) collected from Dinoponera quadriceps (giant ant) venom, Dodou Lima and col-
leagues developed innovative synthesized AMPs featuring antifungal action [154]. Peptides
with properties similar to ponericin (Dq-3162), as well as pilosulin (Dq-1503 and Dq-2562),
were among the most effective antifungal peptides when used to combat Candida albi-
cans, Candida tropicalis, Candida parapsilosis, and Candida krusei. These synthetic peptides,
when combined with antifungal medicines, such as fluconazole, amphotericin B, ciclopirox,
nystatin, and miconazole, demonstrated synergistic effects while also exhibiting modest
hemolytic activity.

In a similar manner, Kodedová et al. synthesized antimicrobial peptides (hyla-
nines, halictines, and lasioglossins), focusing on the antimicrobial peptides found in bee
venom [228]. These peptides were effective against a wide variety of microorganisms. It
was shown that these peptides quickly permeabilized the cell membranes of several Can-
dida species, including Candida albicans, Candida parapsilosis, Candida dubliniensis, Candida
glabrata, Candida krusei, and Candida tropicalis, as well as Saccharomyces cerevisiae. Neverthe-
less, the sensitivity of the species to permeabilization was shown to be dependent on the
lipid content of the fungal membrane. Candida glabrata was shown to have greater resis-
tance to such synthetic peptides after being pre-treated with terbinafine, which reduced the
amount of ergosterol found in the fungal membrane. The cationic peptides demonstrated a
powerful electrostatic attraction with the membrane lipids of anionic charges (cardiolipin,
phosphatidic acid, and phosphatidylglycerol), as well as a partial interaction with the
neutral phosphatidylethanolamine and phosphatidylinositol. This resulted in improved
selectivity for the treatment of fungal infections. Therefore, synthesized AMPs that are
based on the functional and structural features of AMPs can address the drawbacks of
natural AMPs while keeping or increasing their antifungal actions.

3.7. Nanofibers

Due to their adjustable fiber diameter, adequate porosity, high specific surface area,
high encapsulation effectiveness, as well as good consistency and flexibility, nanofibers
have emerged as a focal point of study in recent years [229]. In a study by Hellen et al.,
the antibacterial activity of TiO2-CeO2 nanofibers against Candida glabrata, Candida albicans,
and Candida krusei was assessed. The findings demonstrated the successful manufacture of
mesoporous TiO2-CeO2 fibers with an average diameter ranging from 100 to 282 nanome-
ters. According to the results of the antimicrobial experiment, the TiO2-CeO2 nanofibers
considerably impeded the development of Candida glabrata, Candida krusei, and Candida
albicans biofilms. The antifungal reaction against Candida glabrata was enhanced with CeO2
levels, but there was no rising trend detected for Candida krusei or Candida albicans. The
TiO2-CeO2 nanofibers have intriguing antifungal capabilities and, as a result, they have the
potential to be utilized in a variety of antifungal applications [230]. The use of dynamic
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high-pressure homogenization was explored in order to find a straightforward approach
to the manufacturing of chitin nanofibers that is also environmentally friendly [231]. This
method has been shown to be an extremely straightforward approach to the production of
α-chitin nanofibers from yellow lobster. These nanofibers have a uniform width (below
100 nanometers) as well as a high aspect ratio, both of which could contribute to a signifi-
cant development in the field of chitin applications. In addition, the resultant alpha-chitin
nanofibers were studied and contrasted with natural alpha-chitin in terms of their thermal
degradation, chemical and crystalline structures, and antifungal activity. The antifungal
efficacy of chitin nanofibers against Aspergillus niger was investigated using biological tests,
which revealed that the nanoscale nature of the nanofibers plays a significant role in this
activity. Shinsuke Ifuku and colleagues manufactured silver nanoparticles on the surfaces
of chitin nanofibers by reducing silver ions with ultraviolet light [232]. Chitin nanofibers
have the potential to serve as effective substrates for the immobilization of silver nanoma-
terials in states of steady dispersion. Because of the action of the silver nanoparticles, the
dispersion as well as the nanocomposite film that was made with acrylic resin exhibited the
typical absorption behavior in the visible light area. Chitin nanofibers exhibited significant
antifungal activity thanks to the presence of silver nanoparticles. Semnani et al. explored
the in vitro antifungal effectiveness of eugenol-loaded polyacrylonitrile nanofibers as a
result of the desired qualities of polyacrylonitrile [233]. Polyacrylonitrile is the significant
phenolic component of clove essential oil used in the medical field. They conducted tests to
determine how efficient this combination is against Candida albicans. The findings revealed
that, when the ratio of eugenol was increased, there was an improvement in the average
diameter of the nanofibers, which varied from 127 to 179 to 218 nanometers. The drug
release characteristic of the specimens was progressive, and it was completed after 150 h.
According to the findings, these eugenol-loaded nanofiber mats can be used either as
a covering on a fabric substrate or even as a temporary wound dressing for cutaneous
mucocutaneous candidiasis treatment in high-risk patient populations.

3.8. Antifungal Nanocomposites That Have SMOOTH Surfaces, Which Helps Reduce the
Attachment of Microorganisms

In addition to providing other benefits, increasing the surface roughness of the sub-
stance can have an antibacterial impact since it reduces the number of locations where
microbes can thrive. Polymethyl methacrylate (PMMA) was given antifungal qualities
by Fouda et al. so that it could be used as dental filler. This was accomplished by using
nanodiamonds to smooth the surface of the resin [234]. This is comparable to the research
that was conducted by De Matteis et al., 2019, in which an increase in surface roughness led
to a decrease in the attachment of Candida albicans [235]. Fouda et al., 2019, observed alter-
ations in Candida albicans adhesion after adding biocompatible nanodiamonds to PMMA in
several concentrations (zero, half, one, and one and a half percent by weight, respectively).
A profilometer was used to determine the surface roughness, and a goniometer was utilized
to determine the contact angle [234]. The appearance of valleys and peaks on the surface
of PMMA was significantly reduced as a result of the incorporation of nanodiamonds
into the material. When compared to the control group, this resulted in a reduction in
the attachment of Candida albicans cells on the PMMA surface owing to a degradation of
settling sites; the level of attachment that was determined to be the lowest was at one
percent nanodiamonds.

4. Toxicity Effect of Nanoparticles

Nanoparticles are seeking employment in a wide array of industries, which is a
growing trend. The cellular toxicity, immunotoxicity, and genotoxicity of nanoparticles
have all been the subject of research. For the purpose of determining whether or not a cell is
viable, tetrazolium-based assays, such as MTS, WST-1, and MTT are utilized. Additionally,
ELISA is used to measure inflammatory biomarkers, such as tumor necrosis factor, IL-6,
as well as IL-8, in order to determine whether or not nanoparticles have triggered an
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inflammatory response in cells [236,237]. The lactate dehydrogenase test is employed to
evaluate the integrity of the cellular membranes [238]. In these in vitro toxicity assays,
researchers have utilized a wide variety of cell cultures, including lines derived from
cancerous cells. It is commonly accepted that nanoparticles cause interference, either with
the substances used in assays or with the detection instruments. Because they have so
many uses and may be applied in so many different contexts, human beings are going
to be exposed to nanomaterials in one way or another, whether purposefully or not. To
determine whether or not a nanoproduct is safe for human consumption, toxicological tests
are performed on it first [239]. A number of different experiments have been performed in
order to obtain sufficient data for these tests. In order to fulfill this regulatory need, some
of the dangerous consequences of nanostructures have been investigated. Nevertheless,
the toxicological statistics that have been produced thus far, according to studies, are
contradictory and inconsistent [240]. Investigations in toxicology offer a solid foundation
upon which to build safeguards not just for people but also for the environment. As a
consequence of this, it is possible that, on the premise of the laboratory models that are
now accessible, it is erroneous to identify some of the more useful nanoparticles as being
harmful to living organisms, and vice versa [236]. In light of the fact that nanoparticles may
find use in a wide variety of industries, but in an effort to close the existing knowledge
gap, it is imperative that the applicable negative impacts of nanomaterials be evaluated by
employing in vivo toxicological modeling techniques that are internationally accepted and
objective and that focus on the crucial systems [241,242]. Nevertheless, researchers are of
the viewpoint that thoughtful consideration should be given to the adaptation, design, and
validation of these unique prototypes in the upcoming years not only for the purpose of the
exposure route, the coating substance, and toxicology testing, but also for the sterilization
of nanostructures and the kinds of cell culture systems [243,244]. In addition, the Food
and Drug Administration (FDA) in the United States, which is a public health agency, has
lately taken into consideration the important problem of toxicities related to products that
encompass nanoparticles. The FDA does not take into account that these products are
either completely dangerous or secure for human use, and instead maintains that every
product must be applicable to the same regulations [237].

5. Conclusions and Future Perspectives

Over the course of the last few decades, breakthroughs in nanotechnology have
provided progressively unique opportunities to enhance both the health and productivity
of animals. In today’s world, fungal infectious diseases are gaining an ever-increasing
relevance due to the rising yearly rates of such diseases, as well as the increased death rate
which results from them. Despite the abundance of antifungal agents that are efficacious
in preventing these fungal infectious diseases, researchers have been looking for ways to
improve the available medications due to decreased bioavailability, poor solubility in water,
adverse effects, inadequate tissue penetration, drug resistance and drug effectiveness, and
inadequate pharmacological dynamics. Additionally, numerous different nanoparticles are
utilized as antifungal nanoparticles. These nanostructures also have other applications,
including the detection of disease, diagnostic testing, and therapeutics, as well as in
the addition of preservatives to animal feed and also the product lines that organisms
produce and, eventually, the protection of food. The key therapeutic and preventative
properties of antifungal nanoparticles, notably the copper and zinc nanostructures, have
been investigated for a wide range of fungal infections and mycotoxicosis in animals.
These capabilities have been shown to be effective. In addition, opportunities for initial
and precise detection of fungal infectious diseases, followed by thorough diagnosis and
treatment, are being found for semiconductor quantum dots, gold nanomaterials, and
super paramagnetic iron. Organic and inorganic polymeric nanoparticles have both been
exploited for the targeted delivery of a variety of vaccinations, as well as for the on-site
and rapid monitoring of fungal infectious diseases or their hallmark proteins and other
biological components. The mechanisms of action behind the antifungal activities of
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nanoparticles are connected to their capacity to break through the cellular membranes and
cause significant damage to the cytoplasmic contents, which ultimately results in the cells
losing their capacity to perform and eventually dying. In light of this, further research is
required to illustrate the cellular toxicity effects of activity that results in ROS damage and
contributes to genotoxicity and malignancies in order to conduct an in-depth examination
that will allow for the manipulation of the responsibilities that nanomaterials play in animal
health. In addition, the toxicological concerns of nanostructures need to be identified prior
to the application of nanoparticles in the medical field in order to protect the wellbeing
of creatures.

As a result, over the course of the past two decades, one of the most prominent focuses
on antifungal drug optimization has been involved in the employment of nanoparticles-
based drug-delivery strategies to broaden the spectrum of antifungal activities. The key
benefits of these nanoparticles are their tiny dimensions as well as their wide available
surface area, which makes them perfect alternatives for a variety of applications. They
are also capable of substantially overcoming the restrictions of the medications that are
already on the market. However, taking into consideration all of the research that has been
carried out in this area, with the exception of the few cases that have been described (such
as liposomal amphotericin B, which is sold in nano-formulations), neither of these active
ingredients are currently accessible for purchase in the marketplace. This is primarily due
to the preclinical challenges that have been associated with the interventional studies and
also the drawbacks that are associated with the application of these nanostructures.
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