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Abstract: This paper presents the likely changes in the thermal bioclimate of Egypt under the
Paris Agreement, which aimed to restrict global warming to increase by 1.5–2.0 ◦C. A mean multi-
model ensemble (MME) of eight global climate models were employed to evaluate the two shared
socioeconomic paths (SSP) scenarios SSP1-1.9 and SSP1-2.6, which indicated scenarios for 1.5 and
2.0 ◦C rates of warming, respectively. The spatial distribution of the observed bioclimate indicated
higher values in the south and southeast regions. The findings showed that there was an increase in
Egypt’s mean temperature by rates of 1.3 and 1.5 ◦C for SSP1-1.9 and SSP1-2.6, respectively, with a
higher increase in the southeast. The SSP1-2.6 scenario showed a gradual temperature rise with time,
while SSP1-1.9 projected a decrease in the far future. The daily temperature variation decreased in the
same region, but this effect was amplified in the north by 0.2 ◦C. The seasonality decreased by −0.8
to −2.3% without any shift in isothermality. The maximum summer temperature increased more
(1.3–2.2 ◦C) than the minimum winter temperature (0.9–1.5 ◦C), causing an increase in inter-seasonal
variability. Most bioclimatic indicators more rapidly rose in the north and northeast regions of Egypt,
according to the geographical distribution of their projections.

Keywords: Paris Agreement; bioclimatic; CMIP6; SSP; climate change

1. Introduction

A bioclimate affects a region’s species distribution, plant cover, ecology, irrigation
requirements, and vulnerability to climate hazards, among other factors [1,2]. As a result,
understanding the bioclimate of a region is valuable for understanding how climate affects
living creatures on an annual and seasonal basis [3]. This information includes the mean
values, standard deviations, inter- and intra-annual variability, and seasonality of the
thermal environment. Climate factors such as temperature, humidity, and wind speed
significantly affect human comfort and energy levels [4,5]. Consequently, mapping the
spread of human comfort zones using thermal bioclimatic indicators provides valuable
information [6,7]. The indicators can help assess a region’s suitability for cultivating a
specific crop type [8].

Many climatic features associated with a biosphere have shifted due to climate
change [9–11]. The bioclimate is sensitive to minor changes in the climate; therefore,
climate change can significantly affect the biological distribution [12–15]. It may also lead
to a change in the species distribution and ecology of a region [16,17]. Climate changes
affect many climate variables (e.g., temperatures, precipitations, etc.) and their characteris-
tics, such as seasonality and intra-annul variability [4,18,19]. These have also altered the
environmental risks to human health and the biological habitat. Therefore, bioclimatic
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indicators have been increasingly assessed to understand climate change effects on bioenvi-
ronments [20–22]. Knowing the changes in bioclimate is also quite beneficial for climate
change adaptation and sustainable bioenvironment management [11,23].

Human-caused greenhouse gases (GHG) emissions and land-use changes will continue
to impact climate in the future. Simulating Earth’s climatic reaction to GHG emissions
and land-use changes requires global climate models (GCMs) [24–26]. These GCMs are
being released as part of the phases of the Coupled Model Intercomparison Project (CMIP).
The most recent project (CMIP6) differs from previous CMIPs as it incorporates much
more reliable Earth processes [27,28]. Moreover, the models project climate for different
scenarios that are labelled as shared socioeconomic pathways (SSPs). Two SSPs (SSP1-1.9
and SSP1-2.6) address the Paris Agreement’s goals of controlling global warming to only
a 1.5 and 2.0 ◦C increase above the pre-industrial era [29,30]. SSP1-1.9 demonstrates the
scenario where CO2 emissions would net zero around 2050, which is the most optimistic
scenario. This transition caused a shift in societal attention from economic growth to total
well-being. This scenario would limit warming to around 1.5 ◦C above pre-industrial,
dipping back to 1.4 ◦C by 2100. SSP1-2.6 is the second most optimistic scenario, which
projects CO2 emission reduction at a slower rate than in SSP1-1.9; it projects a steady rise in
global warming until it reaches 1.8 ◦C by 2100.

Egypt has a unique biogeographical characteristic due to its location at the heart of
the great Saharo-Sindian desert belt. It is also the intersection of four biogeographical
regions: the Mediterranean, Afrotropical, Irano-Turanian, and Saharo-Sindian. In addi-
tion, it includes six biogeographical sectors (Figure 1), including the Libo-Nubian, Nilotic,
Marioutico-Arishian, Sinaico-Arabian, Elbanian, and Suezian sectors [31]. Additionally, the
Nile River penetrates the country from south to north. The Red Sea and Mediterranean Sea
are linked by the Suez Canal, which has a long-term impact on the biotic diversity [32–34].
Egypt is home to highly diverse terrestrial habitats, flora, and fauna compositions. How-
ever, due to the arid and hyper-arid climates, a few species with some endemic species
can be found [35,36]. Recent changes in land-use [37], pollutants [38,39], and human
activities [40,41] have affected the biodiversity of several locations in Egypt.
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This study aims to quantify the bioclimate change in Egypt over time for the most
optimistic scenarios of limiting global warming according to the Paris Agreement. Eleven
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thermal bioclimatic indicators were projected for SSP1-1.9 and SSP1-2.6 using eight CMIP6
GCMs. The projections of the bioclimates would help ecologists and biologists to extend
the research on climate change responses to species. Furthermore, it can aid policymakers
in formulating climate change mitigation and adaptation policies for Egypt.

2. Research Area and Climate Data
2.1. Egypt

Egypt (21.7◦ N–31.7◦ N and 24.7◦ E–35.8◦ E) is a northeast African country with a
population above 100 million and an area of approximately one million km2. Egypt’s
terrain is almost flat, excluding the eastern Red Sea and Sinai Mountains, northern Qattara
Depression, and southwestern Al Jelf Alkabir Plateau (Figure 1). Egypt has an arid climate
with an annual precipitation of nearly 200 mm in the north and below 5 mm in the southern
desert, respectively [42,43]. The average Tmax and Tmin are 27.7 and 15.8 ◦C; the south is
relatively hotter than the north.

2.2. Climate Data

This study employed CMIP6 GCMs to evaluate the likely changes in the thermal
bioclimates of Egypt. Eight different GCMs were used, and are listed in the first table
(Table S1) in Supplementary Materials. They all shared a common initial variant label,
r1i1p1f1. The outputs of the GCMs (e.g., monthly accumulative precipitation and monthly
mean Tmax and Tmin) that were used were the historical (1975–2014) and future simula-
tions (2020–2099) under SSP1-1.9 and SSP1-2.6, which address the Paris Agreement’s goal.
SSP1-1.9 simulates the climate considering a global warming of lower than 1.5 ◦C at 2100,
following a mild increase (1.6 ◦C) at the mid-century. This scenario utilizes SSP1, which
models a sustainable choice for Earth’s future development; it represents the most opti-
mistic scenario. SSP1-2.6 shares the same SSP, but has higher Representative Concentration
Pathways (RCP) (2.6 W/m2) that considers global warming being limited to 1.8 ◦C at the
end of the century. To eliminate any potential for bias in geographical representation, the
results of both the historical and future GCMs were interpolated to a resolution of 100 km
× 100 km.

3. Methodology

The climatic and bioclimatic changes are very diverse among locations. The fast in-
crease in global temperature mainly affects the thermal bioclimates. Consequently, thermal
indicator changes must be urgently addressed. Climate change may be more effectively
monitored using bioclimatic markers. In light of the global warming objectives established
by the Paris Agreement, our analysis assessed how the future thermal bioclimatic indices
in Egypt will shift. Eleven thermal bioclimatic indicators (Table S2 in Supplementary
Materials) were adopted to address this aim, as listed in the Results subsections.

Bioclimatic indicators were computed using the climatic variables (rainfall, Tmax, and
Tmin) derived from the GCM simulations. The eight GCM outputs were used to create
a mean MME, which was utilized to calculate the bioclimatic indicators for the historical
(1975–2014) and two future periods, near (2020–2059) and far (2060–2099). Each thermal
bioclimatic indicator’s historical status was presented using the respective MME mean.
The projected changes in the MME in the two future periods compared with the historical
MME were computed to show the spatial distributions of the changes. The primary goal
of the MME mean is to reduce uncertainty in future simulations and accurately represent
climate change [44–46]. The changes in bioclimatic indicators were calculated at each grid
to create maps of the projected changes in the indicators for different periods.

4. Results
4.1. Annual Mean Temperature (Bio-1)

Figure 2 shows the Bio-1 distribution in Egypt. The Bio-1 ranged between 20.5 ◦C in
the northwest and 24.5 ◦C in the southeast. There is a steady rise in the mean temperature
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(Tmean) from the north to the south. The projections of Bio-1 showed a rise of 1.1–1.7 ◦C.
The projected near future change ranged between 1.2 ◦C and 1.6 ◦C; in the 2060–2099 range,
the increase was projected to be between 1.1 and 1.7 ◦C. The changes are lower during the
2060–2099 period compared with the 2020–2059 range for the SSP1-1.9 scenario. In contrast,
the changes are higher for the 2060–2099 range compared with the 2020–2059 range for the
SSP1-2.6 scenario.
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Figure 2. Maps of the mean changes (◦C) in Bio-1 in the near and far future periods for SSP1-1.9 and
SSP1-2.6 compared with the reference period.

4.2. Diurnal Temperature Range (Bio-2)

Bio-2 is the daily variation between the Tmax and Tmin, which significantly impacts
ecosystems. The lesser influence of the local climate on Bio-2 has made it a good indicator of
climate change for global warming [47]. According to some research, Tmin has significantly
increased above Tmax, decreasing the Bio-2 in various places [47,48]. On a global scale,
this phenomenon has been linked to climate change. The Bio-2 (Figure 3) of Egypt showed
a wide variation across the region, ranging from 6.0 to 19.0 ◦C. However, the projected
changes of this indicator were very low, ranging between −0.1 ◦C and 0.2 ◦C. The changes
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were positive in the north and negative in the south for both SSPs. The increase was larger
in the far future, particularly in the northern regions.

Sustainability 2022, 14, 13259 5 of 19 
 

 

significantly increased above Tmax, decreasing the Bio-2 in various places [47,48]. On a 

global scale, this phenomenon has been linked to climate change. The Bio-2 (Figure 3) of 

Egypt showed a wide variation across the region, ranging from 6.0 to 19.0 °C. However, 

the projected changes of this indicator were very low, ranging between −0.1 °C and 0.2 °C. 

The changes were positive in the north and negative in the south for both SSPs. The in-

crease was larger in the far future, particularly in the northern regions.  

 

Figure 3. Same as Figure 2, but for Bio-2. 

4.3. Isothermality (Bio-3) 

Bio-3 is regarded as an essential indicator in tropical and coastal locations as it is the 

proportion of Bio-2 (daytime temperature spread) to Bio-7 (yearly temperature spread) 

[49]. A low Bio-3 value suggests a lesser variability in the daily temperature than in the 

Figure 3. Same as Figure 2, but for Bio-2.

4.3. Isothermality (Bio-3)

Bio-3 is regarded as an essential indicator in tropical and coastal locations as it is the
proportion of Bio-2 (daytime temperature spread) to Bio-7 (yearly temperature spread) [49].
A low Bio-3 value suggests a lesser variability in the daily temperature than in the yearly; it
can range from 0 to 100%. Figure 4 depicts the geographical variability of Bio-3 in Egypt
during the reference period, along with the shifts for the future periods. The Bio-3 ranged
between 31.0 and 44.0% in Egypt. The lowest values were found in the coastal regions,
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especially along the Red Sea. The Bio-3 was projected to decrease for both scenario models
and future periods. However, the change would be very small (0 to −0.7%), indicating
a minimal influence of climate change on isothermality. Additionally, the changes were
projected to be lower for the far future period, indicating no change in isothermality if
global warming can be limited according to the Paris Agreement.
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4.4. Temperature Seasonality (Bio-4)

Figure 5 describes the geographical variability of the historical and future shifts in
Bio-4 across Egypt. The greater the seasonality, the greater the percentage change in
temperature over a year, indicating a greater temperature fluctuation, and vice versa [3].
The Bio-4 ranged between 26.0% in the southeast and 39.0% in the northeast. The analysis
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showed that the future changes ranged between −0.8 and −2.3% for the different SSPs and
periods. The average deviations were −1.3 and −1.7% for SSP1-1.9 and 1-2.6, respectively.
The region with the lower Bio-4 will likely experience a smaller shift and vice versa for
both SSPs. This indicates the future spatial heterogeneity in Bio-4 due to climate change.
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4.5. Tmax in the Hottest Month (Bio-5)

Figure 6 depicts the warmest monthly temperature (Bio-5) for Egypt’s historical and
climate change scenarios. The Bio-5 varied between 36.0 and 43.0 ◦C. The minimum was in
the Mediterranean (36.5 ◦C) region, while the highest value was in the southeast region.
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The temperature rise was projected to increase between 1.3 and 2.2 ◦C for the SSPs. The
shifts were projected to be lowest for SSP1-1.9 during the 2060–2099 period, with an average
of 1.3 ◦C, while the shift was highest (1.9 ◦C) for the SSP1-2.6 scenario during the 2060–2099
period.
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4.6. Tmin in the Coldest Month (Bio-6)

Figure 7 presents the present status and projections of the Tmin in the coldest month
(Bio-6). The Bio-6 in Egypt varied from 3.5 in the southwest to 9.0 ◦C along the Red Sea
coast. Both SSPs showed the future temperatures rising between 0.9 and 1.5 ◦C. The increase
for SSP1-2.6 was predicted to be more than SSP1-1.9 in both future periods. The greatest



Sustainability 2022, 14, 13259 9 of 19

change was observed for SSP1-2.6 in 2060–2099 (1.0 ◦C), while the smallest change was
observed for SSP1-1.9 in 2060–2099 (1.5 ◦C).
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4.7. Annual Range of Temperature (Bio-7)

Bio-7 is the subtraction of Bio-6 from Bio-5. Figure 8 depicts the historical and future
changes in Bio-7 in Egypt. The Figure shows that Bio-7 varied between 26.0 and 34.0 ◦C.
The Bio-5 in most study areas was more than 33 ◦C, while it was low in the coastal regions.
The likely shift in Bio-7 was projected to be between 0.3 and 0.4 ◦C. The greatest changes
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were observed in northeast Egypt, and the least change was observed in the south for both
scenarios.
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4.8. Tmean of the Wettest Quarter (Bio-8)

Due to the large diversity of Egypt’s climate, the wettest quarter experiences large
swings in precipitation. The wettest three months at each location were identified from
the total precipitation for three successive months. Figure 9 depicts the Tmean during the
wettest quarter. The Bio-8 increased from north (16 ◦C) to south (24 ◦C). Future projections
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showed an uneven distribution in the change in Bio-8 across the study area for both SSPs.
The increase in the Tmean was projected to be 1.5 ◦C for SSP1-1.9 in 2020–2059 and 1.3 ◦C
in 2060–2099. For SSP1-2.6, the Tmean was projected to rise by 1.8 ◦C in 2020–2059 and by
2.2 ◦C in 2060–2099.
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4.9. Tmean of the Driest Quarter (Bio-9)

The precipitation of three successive months was calculated in each location to find
the driest period. Figure 10 illustrates the geographical variability of Bio-9 for the historical
period and its likely changes for the two SSPs. The highest Bio-9 occurred in the middle
and north regions (>28.5 ◦C), and the lowest occurred in the southwest (nearly 16.0 ◦C).
The mean future change in Bio-9 was projected to be 1.1 ◦C and 1.4 ◦C for SSP1-1.9 and
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1-2.6, respectively, representative of the 2060–2099 period. The lowest increase in Bio-9 was
projected to occur in the Red Sea region, which increased by 0.2 ◦C for both SSPs in the
2060–2099 period. The northern part experienced the largest rise (>2 ◦C) for both scenarios.
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4.10. Tmean of the Warmest Quarter (Bio-10)

The Tmean for three successive months was computed to find the warmest quarter
in each location. Figure 11 presents the geographical variability in Bio-10 and its future
changes for the SSPs. The Bio-10 in Egypt varied between 27.0 and 33.0 ◦C. The Bio-10 was
the greatest in the southeast and the least in the Mediterranean areas. It was projected to
rise between 1.3 and 1.7 ◦C in the 2020–2059 period and between 1.2 and 1.5 ◦C in the far
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future period for SSP1-1.9. The mean change in Bio-10 for SSP1-2.6 was 1.7 and 1.9 ◦C in
the 2020–2059 and 2060–2099 periods, respectively, meaning a higher rise in Bio-10 for the
SSP1-2.6 scenario than SSP1-1.9 and a higher rise in 2060–2099 compared with 2020–2059.

Sustainability 2022, 14, 13259 13 of 19 
 

 

the 2020–2059 and 2060–2099 periods, respectively, meaning a higher rise in Bio-10 for the 

SSP1-2.6 scenario than SSP1-1.9 and a higher rise in 2060–2099 compared with 2020–2059. 

 

Figure 11. Same as Figure 2, but for Bio-10. 

4.11. Tmean of the Coldest Quarter (Bio-11) 

Figure 12 presents the geographical variability of Bio-11 for the historical period and 

its shifts in the two future periods for both SSPs. The Bio-11 ranged between 9.7 and 19.7 

°C in Egypt. The lowest Bio-11 was in the northeast, and the highest was observed in the 

southeast. The Bio-11 was projected to rise for both SSPs and future periods. The lowest 

mean increase was projected in 2060–2099 for SSP1-1.9 (1.0 °C). In contrast, the largest rise 

in the mean Bio-11 was projected in 2060–2099 for SSP1-2.6 (1.2 °C). The maximum change 

Figure 11. Same as Figure 2, but for Bio-10.

4.11. Tmean of the Coldest Quarter (Bio-11)

Figure 12 presents the geographical variability of Bio-11 for the historical period and
its shifts in the two future periods for both SSPs. The Bio-11 ranged between 9.7 and 19.7 ◦C
in Egypt. The lowest Bio-11 was in the northeast, and the highest was observed in the
southeast. The Bio-11 was projected to rise for both SSPs and future periods. The lowest
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mean increase was projected in 2060–2099 for SSP1-1.9 (1.0 ◦C). In contrast, the largest rise
in the mean Bio-11 was projected in 2060–2099 for SSP1-2.6 (1.2 ◦C). The maximum change
(>1.6 ◦C) was projected in the east of the study area for SSP1-2.6 in 2060–2099. The Bio-11
was projected to have a smaller increase than Bio-10, indicating more annual variation in
the temperature between the coldest and warmest quarters.
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5. Discussion

The future changes of the eleven thermal bioclimatic indicators in Egypt were pre-
sented in this study. The projections were made using the MME means prepared from
eight CMIP6 GCMs and the Tmax, Tmin, and precipitation for SSP1-1.9 and 1-2.6. They
represent the Paris Agreement’s goals of limiting the mean global warming to 1.5 and 2.0 ◦C.
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The projected future values of the indicators were compared with the reference period to
calculate their possible shifts in two future periods. This provided the likely response of
the indicators to the short- and long-term changes in the global mean temperature. An
increased sensitiveness of the bioenvironment to climate change was observed over the
entire research region, as shown by the geographical variability of the shifts for several
biothermal indicators (Table 1). Although the Paris Agreement shows that reducing carbon
emissions may considerably lessen climate change’s harmful consequences [50], several
of the future bioclimatic indicators in Egypt would significantly change even if the goal is
achieved. The high values of the bioclimatic indicators were mostly observed in the south
and southeast regions of Egypt for the reference period. This indicates that the region is
highly vulnerable to temperature-related extremes. The future projections showed different
distributions in the change of different indicators. On the other hand, most indicators
showed the greatest increase in Egypt’s northern and northeastern regions. For SSP1-1.9,
a rise of 1.3 ◦C in the annual mean temperature was projected; for SSP1-2.6, an increase
of 1.5 ◦C was projected, notably in the southeast region of Egypt. The daily temperature
variance was expected to decrease in the southeast region while increasing in the north
by 0.2 ◦C. The hot season maximum temperatures rose by 1.3–2.2 ◦C, whereas the winter
minimum temperatures rose by 0.9–1.5 ◦C.

Table 1. Summary of the results of the bioclimatic projection.

Indicator
Change

Increase Decrease

Bio-1 Entire study area. A higher increase was projected for
SSP1-2.6 in 2060–2099. -

Bio-2 North region. A higher increase was projected in
the northeast.

South region. A higher decrease was projected in
the southwest.

Bio-3 - All over the study area. The southwest has a greater
projected decline.

Bio-4 - All over the study area, with a greater decline projected
in the northeast

Bio-5 All over the study area, with a greater increase projected
in the northeast -

Bio-6 All over the study area. The south and southeast have a
higher projected increase. -

Bio-7 All over the study area. The north has a higher
projected increase. -

Bio-8 All over the study area. A higher increase was projected
in the east (Red Sea). -

Bio-9 All over the study area. The north has a higher
projected increase. Red Sea region

Bio-10 All over the study area -

Bio-11 All over the study area. The southeast has a higher
projected increase. -

This study showed that there was a higher increase in the temperature in MENA
during the hottest quarter/month compared with the coldest quarter/month. These
phenomena caused an increase in the annual temperature range and variations in other
thermal bioclimatic indicators in the region. Cloud-free and hot weather conditions prevail
in the summer of the region [51]. The elevated greenhouse gases enhance the downward
component of the longwave flux, which is particularly relevant under clear skies [52].
Therefore, the temperature in the hottest month or quarter is projected to increase more in
MENA than the coldest month/quarter.

Regional temperature change is often associated with evaporation, which contributes
to surface cooling [53]. However, this is not the case for arid MENA regions due to the low
soil heat storage capacity. The surface heat budget in an arid region is primarily controlled
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by radiative cooling [54]. There is more cloud cover in the northern Mediterranean coastal
region, particularly in the elevated northeastern region of Egypt. These conditions reduced
the surface radiative cooling and contributed to a higher regional climate warming. The
greater increase in the hottest month/quarter temperature caused a greater increase in most
bioclimatic indicators in the north and northeast compared with other parts of Egypt.

The majority of economic activities in Egypt are concentrated in the north. Almost all
of the population also reside in the north. The spatial pattern of the projected shifts of the
bioclimates showed a higher increase in most of the indicators in the north and northeast
of Egypt. The increase in temperature and greater changes in the other thermal bioclimatic
indicators would affect a vast population and economy.

Few studies have projected the change in thermal bioclimatic indicators using CMIP5
GCMs [55–57]. However, none of them have inspected the changes in Egypt. Thus,
comparing the results obtained in this study with others is difficult. Recently, Nashwan and
Shahid [58] used an MME of CMIP5 GCMs, which showed that the Tmax rose by 1.6–4.2 ◦C
for RCP4.5 and RCP8.5 in Egypt. In contrast, the Tmin rose by 1.3–4.4 ◦C. Moreover, the
projected temperature rise in the cold month/season was higher than the hot month/season
in Egypt [59].

The results showed a greater change in the near future period for SSP1-1.9 than the far
future period for the different indicators. This is due to the integral core of the SSP1-1.9
scenario, which estimated a slight overshoot in temperature (1.6 ◦C) in 2050 [60]. However,
reducing emissions would cool the Earth and limit global warming to roughly 1.4 ◦C
by 2100 compared with the 1850–1900 period. Simultaneously, SSP1-2.6 showed global
warming limits of about 1.8 ◦C [60]. The 20-year global Tmean changes and other evidence
were used to show that global warming will reach 1.5 ◦C by 2025–2044 and 2023–2042 for
the SSP1-2.6 and SSP1-1.9 scenarios, respectively [61]. The purpose of this article was to
explain how the thermal bioclimatic indicators would change if the net-zero CO2 emissions
were achieved by the middle of the century in line with the Paris Agreement.

6. Conclusions

This study was conducted to examine how the regional thermal bioclimatic indicators
would respond to limiting global warming by 1.5 and 2.0 ◦C by the end of the century
compared with the pre-industrial era, according to the Paris Agreement’s goals. Several
GCM outputs were integrated into a mean multi-model ensemble (MME) using two shared
socioeconomic paths (SSPs) (SSP1-1.9 and SSP1-2.6), which addresses the efforts made to
reduce CO2 and greenhouse gases to achieve the desired goals. The GCM MME projected
diverse changes in different thermal indicators, which may affect Egypt’s terrestrial habitats,
flora, and fauna compositions. The ecological niche of many species is significantly limited;
therefore, the shifts in the thermal bioclimatic indicators may have acute influences on
Egyptian biodiversity. This is the first effort to explore the likely shift in the bioclimatic
characteristics in Egypt while considering the Paris Agreement’s goals. The maps plotted in
this study offer helpful bioclimate information, which could be significant for the ecological
climate change adaptation planning for Egypt. This study only presented the possible mean
changes in the bioclimatic indicators. In the future, the uncertainty of the projected changes
can be evaluated. This study employed a limited number of GCMs due to their limited
availability at the time of the study. Further work can confirm these results by including
other models when they become available in the future. Furthermore, the changes in the
thermal bioclimatic indicators can be explored using other SSPs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su142013259/s1, Table S1. CMIP6 GCMs used in the study;
Table S2. Description of thermal bioclimatic indicators, where Tavg is the mean temperature.

https://www.mdpi.com/article/10.3390/su142013259/s1
https://www.mdpi.com/article/10.3390/su142013259/s1
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