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Abstract: Over 114 million metric tons of bananas are produced each year. The peel, which accounts
for roughly one-third of the fruit’s weight, is commonly discarded as waste in the food industry.
For centuries, the peel has been prized for its potential to heal a host of ailments. This by-product
contains a large concentration of compounds with potent antioxidants linked to several health
benefits. Consequently, the extracted valuable components, such as pectin, from this by-product
could be applied to the pharmaceutical and food industries. More than 13% of pectin recovery is
extracted by current extraction methods, such as ultrasound-assisted extraction. Subcritical water
extraction also successfully extracts the pectin with high quality of extract. This review focuses on
banana production and the role of pectin. Significant factors affecting its presence within the banana
peel, the extraction methods, and current extraction applications are also presented and discussed,
highlighting future research into its potential uses.
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1. Introduction

Banana is a prominent tropical fruit with a high nutritional value [1,2]. It is freshly
consumed or processed into different products, such as a snack, pesticide, or food col-
orant [3–6]. The popularity of bananas as functional foods has significantly increased due
to their high carbohydrate content and low digestibility [7]. Globally, over 114 million
tons of fresh fruit is produced, as shown in Figures 1 and 2 [8]. According to Vu et al. [1],
the peel weight accounts for 35% of the total weight of the fruit. Thus, approximately
39.9 million tons of banana peel are produced each year.

Recent initiatives have been taken to substitute plant components with agro-industrial
waste as a further step towards the development of greener and more sustainable operations.
Research on banana waste, for instance, examined the acceptability of each waste portion,
including the seeds and peels [9]. The banana peels as waste have a high antioxidant
capacity and antimicrobial properties [10,11]. Burns, diarrhea, ulcers, and inflammation
are among several illnesses that the peel has historically been used to treat [12–15]. As
a result, it is a raw material with many potentials in the nutraceutical and medicinal
industries. However, due to inadequate valorization, the wastes are usually discarded into
landfill [16,17]. Furthermore, banana peels are commonly used for livestock feed, especially
for cow and buffalo. There are limited studies for the valorization of banana peels in a
health and wellness application.
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material has become a challenge to particular industrial experts. Demanding green 
extraction could result in a higher yield and quality of extract at a lower production cost. 
The formation of toxic residue and the use of an organic solvent could also be reduced 
[22–25]. 
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Meanwhile, high pectin content (9–22%) from bananas contributes to their uniqueness
by providing gelatinization, thickening, and stabilization properties [18]. Pectin is primarily
found in food, cosmetic, textile, and other industrial fields [19]. The practicality of the
pectin compound may be warned and prospected as a new possibility and alternative
source of commercial pectin (low and high methoxyl pectin), which is currently derived
primarily from citrus peel or apple pomace [20,21]. Pectin extraction was formerly done
using conventional extraction methods and a modern extraction method. The conventional
extraction methods include maceration and Soxhlet associated with an organic solvent.
Nevertheless, a ‘green extraction’ or modern technology of plant material has become a
challenge to particular industrial experts. Demanding green extraction could result in
a higher yield and quality of extract at a lower production cost. The formation of toxic
residue and the use of an organic solvent could also be reduced [22–25].
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Hence, significant advances in green extraction technologies, such as microwave-
assisted extraction (MAE) and subcritical water extraction (SWE), also known as
superheated water extraction or pressurized hot water extraction (PHWE), were
introduced [26–34]. An extraction method has been considered the most vital process
to ensure an excellent function of the end product. Although the conventional method
resulted in a higher yield, the long-term effects of employing SWE should be considered,
especially on our environment and health issues.

The originality of this study is the information on the present and historical valoriza-
tion of banana peels to generate a high-quality and -quantity extract. The present global
banana production as a supply of banana peels and pectin is also examined. The com-
parison of the sources of banana peels is also highlighted, which is why banana peels are
chosen as the pectin source. The latest study on the quality analysis of banana peel extract,
including its antioxidant and antibacterial properties, is also highlighted. Therefore, the
purpose of this study is to provide an overview of the pectin components in banana peel,
followed by a discussion of present extraction techniques, and a focus for future banana
peel research.

2. Banana Production

Banana is a Musaceae family that includes several varieties in the genus Musa, as
shown in Table 1 [35,36]. The banana plant is a climacteric fruit and one of the world’s
most extensive fruit plantations [13]. The plantation, which spans over 2.3 million hectares,
is the largest in the world [8,37]. The banana contributes 16.8% of the global fruit supply,
followed by the apple and orange, which accounts for 11.4% [8]. The demand has risen
from 113 million tons to 117 million tons in the last five years due to its processed products,
such as chips, ice cream, jelly, and cake [7,8,11].

Table 1. Classification of bananas [36].

Kingdom Plantae

Subkingdom = Tracheobionta
Superdivision = Spermatophyta

Division = Magnoliophyta
Class = Liliopsida

Subclass = Zingiberida
Order = Zingiberales
Family = Musaceae
Genus = Musa.L

Furthermore, population growth, as well as an increase in planted area and produc-
tivity, have all contributed to the rise in banana demand. Asian countries provided the
most banana production in 2018, with 62.48 million tons, followed by the United States
of America and Africa (Figures 1 and 2) [8]. India ranks fourth globally, with a cultivated
area of 722 thousand ha and an annual output of 26.51 million tons. Following China are
the Philippines, Ecuador, Brazil, and five other countries [8]. Therefore, more research of
bananas is necessary; more appropriately, extensive research is necessary.

3. Pectin

This section may be divided by subheadings. It should provide a concise and precise
description. In 1790, a pioneer discovered pectin’s complex polysaccharides in fruit juices.
Before the introduction of new terms such as “pectin”, the term “pectos” was derived
from the Greek word for coagulated or solidified substances [38]. The majority of pectin
research has been focused over the last decade. Pectin sources are typically found in the
intermediate layer of the lamella and the primary cell walls of various plants. The American
Chemical Society coined the term pectic to describe a complex substance composed of
colloidal carbohydrate derivatives found in plants or prepared from them [39].
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The methylated ester of 1,4-based galacturonic acid (GA) was compared to rhamnose
residues (main chain) and arabinose, galactose, and xylose (side chains) in pectin [40].
1,2-linked rhamnose contains side branches of either 1,4-linked D-galactose or 1,5-linked L-
arabinose. The branched galactose-rich hairy regions of pectin chains promote intertwined
complexes, whereas the rhamnose-rich improve cell-cell interactions. Any C-6 carboxyl
units in the GA backbone could be esterified with methoxyl groups or exist as uronic acid
salts [41]. Depending on the plant source, the GA residues might have methylated to
different degrees.

Naturally, the polysaccharides of pectic substance are higher in apples, citrus, blackber-
ries, cranberries, gooseberries, grapes, and plums. Emaga, Andrianaivo, Wathelet, Tchango
and Paquot [18] reported that the pectin contents in the banana peel are also higher in the
maturity stages compared to other fruits. Moreover, a plentiful source of pectin is also
found in various vegetables and fruits, revealing strength and flexibility in the cell wall
and the entertaining of biological functions

Basically, the substitution of pectin is made up from the non-sugar elements, namely
methanol, acetic acid, phenolic acids and occasionally amide groups. Besides that, they
are comprised of reduced carbohydrates, polyhydric alcohols, polyacids, polyesters, some
carboxyl groups that are polar, as well as non-polar methyl groups. Thus, some examples
of the general composition of pectin are described in Table 2 from different plant sources,
such as sugar beet pulp, apple pomace, citrus peels, and pea hulls.

Table 2. Recovery of pectin from various sources.

Plant Seeds Extraction Method Extraction Conditions Outcomes Ref.

Apple pomace Soxhlet/condensation
reflux

Solute/solvent = 1:50
Water-acidic solvent
pH = 2.5
Particle size = 250 to 150 µm

Apple peel pectin
showed a degree of
esterification 68.84%.

[42]

Grapefruit

Ultrasound-microwave

Solute/solvent = 1 g/30 mL
intermittent sonication
Time of sonication = 30 min; the
time of heating = 10 min
Power = 0.45 kW

Grapefruit pectin
showed a degree of
esterification 82.61%. [43]

Microwave
Power = 0.9 kW;
Time = 6 min;
Solute/solvent = 1 g/30 mL

Grapefruit pectin
showed a degree of
esterification 79.35%.

Grapefruit peel Ultrasound-assisted
heating

Power intensity = 12.56 W/cm2

Temperature = 66.71 ◦C
Sonication time = 27.95 min.

Grapefruit pectin
showed a degree of
esterification 27.34%

[44]

Lime peel Microwave
Solvent = hydrochloric
Peel-to-extractant ratios = 1:20 and
1:40

Methoxyl content and
galacturonic acid
content of lime peel
pectin was in the range
8.74–10.51%

[45]

Pomelo peel Subcritical water
extraction

Temperature = 90–120 ◦C
Pressure = 30–65 bar Pectin yield was 19.63% [46]

Potato peel Microwave Optimal conditions of temperature
93 ◦C, pH 2.0, and time 50 min.

Maximum pectin yield
reached 22.86 ± 1.29% [47]
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Table 2. Cont.

Plant Seeds Extraction Method Extraction Conditions Outcomes Ref.

Apple peel Ultrasound-assisted

Liquid-solid ratio = 10–25 mL/g
Time = 10–30 min
Temperature = 50–80 ◦C
pH of solution = 1–3

Maximum yield
pectin = 8.93% [48]

Ficus carica l. Skin Ultrasound-assisted Frequency = 20 khz
Maximum power = 400 W

Maximum yield
pectin = 13.9% [49]

Ponkan peel Microwave
pH = 1.6
Extraction time = 100 min
Liquid: solid ratio = 36 mL/g

Maximum yield
pectin = 25.6% [50]

Melon peel Soxhlet

Temperature = 35–95 ◦C
Time = 40–200 min
pH = 1–3
Liquid: solid ratio = 10–50 v/w

The yield and
DE-ranged from 2.87 to
28.98% and
1.33–29.33%,
respectively

[51]

‘apple pomace’ apple
pomace Ultrasound

Amplitude = 100%
pH = 1.8
Liquid: solid ratio = 1:10 g/mL
Time = 30 min

Yield of 9.183% pectin,
with a 98.127 g/100 g
galacturonic acid
content and 83.202%
degree of esterification

[52]

Jackfruit waste Waterbath Temperature = 50–90 ◦C
Time = 30 to 60 min

Maximum pectin yield
was 39.05 ± 0.59 g/g [53]

Sweet lemon peel Microwave
Power = 700 W
Irradiation time = 3 min
pH = 1.5

Highest pectin yield
was 25.31% [54]

Cocoa peel Microwave
Citric acid solution (pH of 1.5)
Power = 180–600 W
Time = 10–30 min

Highest pectin yield
was 42.3% [55]

4. Antioxidant Activities

An outstanding example of a functional advantage that plant extracts may provide
is antioxidant activity. Plants are known to contain a range of natural antioxidants that
maintain and preserve their physical and metabolic integrity, as well as their heredity via
the seeds they produce. Many of these plant extracts and chemicals are showing promise in
reducing the symptoms of ageing on the skin by minimizing the metabolic repercussions
of oxidation.

Vitamin C, vitamin E, anthocyanin, catechin, and rosmarinic acid (RA) are widely
utilized in foods and cosmetics because of their strong antioxidant action, which helps to
keep products stable [56–62]. However, the banana peel extract also provides significant
antioxidant properties [1]. Reduced oxidation provides an obvious advantage for both the
product and the skin, and antioxidants have a favorable consumer impression, making
them especially appealing as cosmetic additives. The problem is that a single antioxidant is
often marketed as a cure-all. Plant antioxidants vary not just in terms of redox potential and
solubility, but also in terms of how they work. Some ROS, such as superoxide, hydroxyl
radicals, and singlet oxygen, are quenched [63]. Others decrease oxidative enzyme activity
or expression, increase antioxidative compound or enzyme activity or expression, such as
catalase, or chelate oxidizing metal ions, or operate via various mechanisms, both known
and undiscovered. Given the wide range of chemical structures and biological processes
identified for antioxidants found in plants, it is not unexpected that not all antioxidants
provide the same level of skin protection. Compounds produced by skin cells or peels, such
as glutathione and ubiquinol, as well as those absorbed from plant sources in the diet, such
as vitamin E, vitamin C, and retinoids, are among the tiny molecular weight antioxidants
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naturally present in skin or peel. They work together in certain instances, but they also
work as part of separately controlled systems to handle challenges to the cell’s or tissue’s
redox state.

5. Antimicrobial Activities

The process of destroying or suppressing disease-causing microorganisms is referred
to as antimicrobial activity [64]. This is accomplished using a variety of antimicrobial
agents. Antimicrobials have antibacterial, antifungal, and antiviral properties. They all
have different modes of action by which they act to suppress the infection. Methods for
determining antimicrobial activity in food are as ancient as disinfectants and medicines. The
antibacterial activity of crushed garlic vapours against Mycobacterium species, Escherichia
coli, Serratia marcescens, and B. subtilus, for example, was investigated as early as 1936 [65].
On the lid of a Petri dish, crushed banana peels extract was put, and the bottom of the
dish with a nutritional medium was inverted over the top. For various durations of
exposure, the garlic vapours were allowed to enter agar with the test microorganism and
incubated to evaluate inhibition. The majority of techniques for assessing the activity of
food antimicrobials have been implemented, either completely or partially. An in vitro
or screening test is used to get preliminary information on the antibacterial activity of a
chemical that has not been applied to a product under normal usage circumstances. The
endpoint tests provide qualitative data on effective concentration levels. A microorganism
is challenged for an arbitrary length of time in this technique, and the findings represent the
inhibitory power of a chemical during the time period chosen. The descriptive screening
techniques, which include periodic sampling to assess changes in viable cell counts over
time, provide quantitative information about the growth dynamics. The antibiotic is applied
to real food in applied testing, and the antimicrobial’s effectiveness is assessed, especially
for banana peel extract [10].

6. Sources and Compositions

Apple peels (8.93%), pomelo peels (23.81%), lemon peels (25.31%), and lime peels
(10.31%) naturally contain more pectic matter called polysaccharides [45,46,48,54]. Accord-
ing to Lee, Yeom, Ha and Bae [19], the pectin content of mature banana peels is higher than
that of other fruits. Pectin is naturally abundant in a wide range of vegetables and fruits, as
the cell wall is solid and flexible, and biological functions are presented.

Non-sugar components, such as amide groups, phenolic acids, methanol, and acetic
acid, have been used to replace pectin [19]. Besides that, reduced sugars, polyhydric
alcohols, polyacids, polyesters, polar and non-polar carboxyl groups, and other carboxyl
groups were included. Table 2 shows several examples of pectin origins and extraction
methods from various plant sources, including sugar beet pulp, apple pomace, citrus peels,
and pea hulls.

Compared to research of Khamsucharit et al. [66], pectin from five different types of
banana peels using a citric acid solution was extracted. The pectin of banana peel (15.89% to
24.08%) is higher than grapefruit peel, apple peel and potato peel. Therefore, this substance
can be substituted to another pectin source. Although, grapefruit gives the highest pectin
recovery (82.61%), the grapefruit cannot be compared with banana peels. This is due to the
grapefruit skin not being considered agricultural waste and characterized as main product
of agriculture.

7. Method of Extraction
7.1. Soxhlet Extraction

Solvent extraction, also known as “solid-liquid extraction,” but more accurately re-
ferred to as “leaching” or “lixiviation” to best represent its physical-chemical foundation, is
one of the oldest concrete sample preparation techniques. Its goal is to separate the com-
pounds of interest from insoluble high-molecular-weight fractions and other compounds
that could interfere with the analytical process in the future. Maceration has historically
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been the most common type of leaching, relying on the correct solvent approach and heat,
either with or without agitation, to improve the solubility of substances and mass transfer
rate. Despite its widespread use, particularly for natural product isolation, maceration is
characterized by inefficient and time-consuming extraction protocols.

In 1879, Von Soxhlet invented a new extraction method (the Soxhlet extractor), which
has long been the most widely used leaching technique [67,68]. For more than a century,
Soxhlet extraction has been a popular technique, and methods based on it are still used to
analyze current leaching methods. The advantages and disadvantages of Soxhlet extraction
have been considered to reduce or eliminate the latter while maintaining or improving
the former. The majority of the documented improvements over the last few decades
have been aimed at bringing Soxhlet closer to current solid sample preparation techniques,
such as using auxiliary energies to reduce leaching times and automating the extraction
assembly [69]. In some of the previous studies, the enzyme assisted extraction combined
with the Soxhlet extraction to extract the phenolic and flavonoid compounds from agro-
waste material was utilized [70].

According to Singh and Prakash [71], the free radical scavenging activity of banana
crude extracts was significantly higher in acetone extract than in any of the other extracts
tested. A comparison of Soxhlet peel extract and soaking extracts revealed that the former
performed better than the latter. All of the extracts had lower antioxidant activity when
compared to the control group. Under optimal conditions, Hamid, et al. [72] reported
pectin extraction recovery from Musa aluminata balbisiana (MBS), Musa acuminata Cavendish
subgroup (MCS), and Musa acuminata Colla (MES) was 39.53%, 62.42%, and 39.53%, re-
spectively, and oil extracted, was 3.6 mL, 5.3 mL, and 3 mL. Morphological examination
of banana peel waste revealed the formation of a mixture of follicular gel (pectin), which
leads to the presence of oil.

According to Nasir et al. [73], the highest scavenging operation of banana peels
was reported at 1000 mg/mL, which was up to 94.13 ± 0.11%, while the lowest was
0.1 mg/mL. During phytochemical analysis, flavonoids, alkaloids, tannins, and glycosides
were discovered. On the other hand, GC/MS analysis detected antioxidant compounds,
such as pentafluoro propionic acid, 2-pentenoic acid, 4-hexadecyl ester, 3-ethyl-methyl
ester, 2-tetradecene, and 1-hexadecene. These compounds are essential in neutralizing free
radicals and lowering their ability to kill cells.

Okolie et al. [74] discovered that ethanolic extracts of the same banana varieties have
higher phenolic and flavonoid content (336.83 mgGAE/100 g and 242 mgRutin/100 g) than
methanolic extracts (299.42 mgGAE/100 g and 240.77 mgRutin/100 g). Methanolic extracts
have higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant activity (30.82 > 25.44%)
than ethanolic. The higher activity suggests that antioxidative substances other than phe-
nolics and flavonoids were involved in DPPH radical prevention. Wu et al. [75] found that
the following conditions were optimal for banana peel extraction: an ethanol concentration
of 75.44%, solid to liquid ratio of 1:35, time of 7.94 h, and temperature of 62.85 ◦C. The
estimated tannin extraction yield under optimal conditions was 58.55%, while the actual
was 57.42%, with a relative error of 1.13%.

7.2. Microwave-Assisted Extraction (MAE)

Microwaves are non-ionising electromagnetic waves with frequencies ranging from
300 MHz to 300 GHz between X-rays and infrared rays in the electromagnetic
spectrum [76,77]. Microwaves are used primarily for two purposes in contemporary
science: connectivity and energy vectoring. The latter application is concerned with the
physical interaction of waves with objects, and some of the electromagnetic energy ab-
sorbed might be converted into heat energy. Microwaves consist of two perpendicular
oscillating fields, viz. an electric and a magnetic field. The electric field is responsible for
heating, while the magnetic is responsible for cooling [78].

In contrast to traditional heating methods that rely on conduction and convection, a
substantial amount of thermal energy is lost to the environment. However, since MAE is
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used in a closed structure, the heating is concentrated and selective, with nearly no heat
lost to the environment. Compared to Soxhlet, this heating mechanism could significantly
reduce extraction time, generally less than 30 min [79]. Microwave heating involves
direct contact with polar materials/solvents and is regulated by two conditions: ionic
conduction and dipole rotation that usually occurs in parallel [80,81]. Ionic conduction is
the electrophoretic diffusion of ions under the influence of a shifting electric field. Because
of the solution’s resistance to ion migration, pressure builds up, causing the solution to
heat up. Dipole rotation realigns the molecule’s dipoles with the changing electric field.
Heating is influenced even at 2450 MHz, as the electric portion of the wave varies at
4.9 ± 0.104 times per second [82,83].

As this electrical component of the wave varies rapidly (frequency larger than
2450 MHz), the solvent molecules strain, realign themselves and begin vibrating, pro-
ducing heat through frictional energy. Thus, the molecules may not have enough time
to coordinate with the external environment, resulting in little heating. The electrical
portion changes even more slowly when the frequency is less than 2450 MHz, allowing the
molecules ample time to align themselves with the electric field to avoid heating. Based on
the mechanisms mentioned above, a microwave heats dielectric materials or solvents with
permanent dipoles. The dissipation factor (tan δ), which defines how effectively different
solvents heat up in the microwave, is a measure of the solvent’s ability to absorb microwave
energy and pass it on to the surrounding molecules as heat [84,85].

Pectin from banana peels was extracted using continuous and intermittent MAE [86].
Swamy and Muthukumarappan [86] used microwave power of 300–900 W, for a period
of 100–300 s, and pH of 1–3 in the continuous mode, and microwave power of 300–900 W,
pulse ratio of 0.5–1, and pH of 1–3 in the sporadic phase. The continuous method produced
the highest pectin content (2.18%) from banana peels with a microwave power of 900 W, a
period of 100 s, and a pH of 3. With a microwave power of 900 W, a pulse ratio of 0.5, and a
pH of 3, the intermittent method produced the highest pectin content (2.5%). It is believed
that the increase in microwave power and pH correlated to the rise in pectin content. The
plant tissue softens and the phenolic compound and protein/carbohydrate interface are
reduced when microwave power levels are raised. As a result, the solubility of phenolic
compounds improves. As a consequence, the diffusion rate is increased, resulting in a
significant increase in the extraction rate.

Rivadeneira et al. [87] discovered that by using response surface methodology (RSM),
the parameters for microwave-assisted pectin extraction from “Saba” banana peel waste
were screened and optimized. Pectin purification and characterization were carried out
at pH 3 of hydrochloric acid (HCl), 195 ◦C, and 8% solid–liquid ratio. These parameters
were the best extraction conditions, with predicted and actual yields of 12.8% and 14.2%,
respectively. Following purification, pectin’s purity increased by 300%. The pectin was
discovered to be low-methoxy with an average particle size of 300 nm.

The best pectin extraction conditions for the Box Behnken design were at 75 ◦C
(extraction temperature), 23 min extraction period, and a solid–liquid ratio of 1:33.3 g/mL
(Lin, Xia and Liu, [51]). Pectin obtained with or without optimized conditions had a degree
of esterification (DE) of 71.921 ± 0.38% and 76. ± 0.12%, respectively. Each pectin was
discovered to have a high methoxyl content. Pectin with the highest DE content gels rapidly.
Based on the findings, pectin yield and gelling time increased after optimization.

MAE was applied in a different study to recover pectin from banana peel waste
(Phaiphan [88]). They used a central composite design (CCD) to analyze the effects of
processing parameter variables (microwave irradiation, extraction period, and pH). Pectin
yield, DE, and galacturonic acid content (GA) extracted from dried banana fruit peel
with 0.05 M hydrochloric acid were studied and optimized. Microwave irradiation of
300–600 watts, an extraction period of 5–15 min, and a pH of 1–3 were used as extraction
parameters in this analysis. Based on the findings, all of the process parameters had a
significant impact on the responses. The optimal conditions for pectin yield (13.47%), DE
(92.45%), and GA (87.99%) were at a microwave irradiation of 580 watts, extraction period
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of 15.86 min, and pH of 1.71. This study revealed that the experimental and expected values
were in close alignment under ideal conditions.

Meanwhile, Khamsucharit, Laohaphatanalert, Gavinlertvatana, Sriroth and
Sangseethong [66] extracted pectin from five different types of banana peels using a cit-
ric acid solution. They assessed the capacity of banana peels as an alternative source of
industrial pectin. Furthermore, the chemical characteristics of banana peel pectin were
investigated and compared to citrus peel and apple pomace, which were collected under
the same extraction conditions. Based on the analysis, pectin yield from banana peels
ranged from 15.89% to 24.08%. Since solid methoxyl pectin was also derived from banana
peels, the DE varied from 63.15% to 72.03%, equivalent to those present in citrus peel
(62.83%) and apple pomace (72.03%). The study also reported anhydrouronic acid (AUA)
concentrations in banana peel pectin that ranged between 34.56% and 66.67%.

7.3. Ultrasound-Assisted Extraction (UAE)

Applying ultrasound has become a critical concern to achieve long-term “green” chem-
istry and extraction technique. Ultrasound has long been known to accelerate chemical and
food systems. Complete extractions could be completed in minutes with high reproducibil-
ity, which reduces solvent consumption, simplifies manipulation and work-up, improves
finished product purity, eliminates wastewater post-treatment, and uses a fraction of the
fossil oil in traditional extraction processes. Soxhlet extraction, maceration, and evaporation
are examples of these.

Natural product using UAE has been thoroughly studied [89–92]. However, processes
that lead to extraction changed due to the ultrasound application. This situation is barely
discussed in these reviews and the literature. Only a few reference papers [93,94] described
the effects of ultrasound propagation in a solid/liquid media.

As a consequence of the cavitation phenomenon, the media is exposed to substantial
shear powers. Micro-jetting is caused by the implosion of cavitation bubbles on a product’s
surface, which resulted in surface peeling, corrosion, and particle fragmentation. The
implosion causes macro-turbulence and micro mixing. Surprisingly, the yield in some
natural products has increased when employing the UAE due to cavitation effects during
ultrasonic irradiation.

Meanwhile, to further explain and demonstrate the ultrasound impact on a vegetal
matrix during UAE, several studies were analyzed. Toma et al. [95] reported that irradiation
caused matrix fragmentation and that ultrasound caused matrix hydration to increase.
They have found that sonicated samples had a higher extraction index than the non-
sonicated. They also discovered that ultrasound extraction works by a variety of separate
or combination processes, including capillarity, sonoporation, detexturation, separation,
and degradation. The following segment focuses on the physical effects of ultrasound on a
vegetal matrix, which can be attributed to an improvement in extraction yield. All of the
experiments used high-powered ultrasound with frequencies of 20 to 25 kHz.

Acetone concentration significantly impacted the recovery yields of phenolic com-
pounds, proanthocyanidins, flavonoids, and antioxidant properties, besides other extraction
parameters (Vu, Scarlett and Vuong [1]). The optimum conditions were 30 ◦C ultrasonic
temperature, 5 min ultrasonic duration, 150 W ultrasonic strength, 8:100 g/mL sample to
solvent ratio, and 60% acetone concentration. A total of 1 g of banana (M. cavendish) peel
could yield 23.49 mg of phenolic compounds, 39.46 mg of flavonoids, and 13.11 mg of
proanthocyanidins in these conditions.

Maran et al. [96] extracted pectin from forest banana industrial waste using an
ultrasound-assisted citric acid-mediated extraction process. The best extraction condi-
tions were an ultrasound capacity of 323 w, a pH of 3.2, an extraction period of 27 min,
and a solid–liquid ratio of 1:15 g/mL. The mean of the experimental pectin yield
(8.99 ± 0.018%) was in good agreement with those expected (9.02%). Another research has
generated similar results when extracting high tannin content and antioxidant activity from
an unripe Musa acuminata peel (Cavendish). The overall tannin content of crude extract of
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the unripe peel was 119.2 mg TAE per gram of the sample, and the optimum pectin yield
processing parameter was 14.9%. The flavonoid content was also 29.0 mg/gram of sample,
with a DPPH and scavenging activity of 80.8% and 84.7%, respectively [97].

Since the analysis of pectin recovery through UAE is minimal, filling this research gap
is crucial. Grape pomace, tomato, apple peel, dragon fruit peel, grapefruit, pomegranate
peel, and passion fruit are typical, and commonly, are sources of pectin recovery using the
UAE [48,98–103]. Therefore, to achieve the optimum pectin yield from banana peels, it is
necessary to select the appropriate extraction processes, process parameters, and solvent
used, to name a few.

7.4. Subcritical Water Extraction (SWE)

Subcritical water is defined as hot water under sufficient pressure to maintain a liquid
state at a temperature between 100 ◦C (the boiling point of water) and 374 ◦C (the critical
point of water) under pressure between 1 and 22.1 MPa [104–108]. The dielectric constant,
viscosity and surface tension decreased when the temperature rises. At high temperatures,
an adequate pressure will keep the water warm since it has a dielectric constant of 80 at
25 ◦C. Water has the same properties as organic solvents under these conditions and could
remove a wide range of medium and low polarity substances [109–113].

The advantage of SWE is that the dielectric constant could be varied over a wide
range of temperatures and pressures [114]. SWE also could induce mass transfer via
diffusion and convection [115]. During the desorption process, low activation energy is
required. However, it would disrupt the adhesive (solute–matrix) and cohesive (solute–
solute) relationships of the subcritical water’s energy [116]. Meanwhile, increased pressure
may aid extraction by forcing water into the matrix (pores), which would be difficult under
normal pressure [117].

A shift in temperature and pressure significantly impacts the properties and polarity
of water. As a result, non-polar, low-polar, medium-polar, and polar substances could
be distinguished, followed by a decrease in viscosity and improved diffusivity, allowing
greater matrix particle penetration. Water is constantly inflowed through the complex
extraction phase of subcritical water, improving mass transfer performance and extraction
yield. At elevated temperatures and pressures, a substance’s surface may be dissolved. The
solute–matrix interaction, which is caused by hydrogen bonding, van der Waals forces,
active sites in the matrix, and dipole attraction of solute molecules, could be overcome by
increasing the temperature.

The SWE process is divided into four stages. The first step is to desorb the solute at
high temperatures and pressures at various active positions in the sample matrix. The
second stage focuses on extract diffusion into the matrix. In the third step, the solutes could
partition themselves from the sample matrix into the extraction fluid. The sample fluid
is eluted and extracted from the extraction cell using a chromatograph [69,118]. Previous
research has shown that the SWE process follows the thermodynamic paradigm [119].
Finally, two steps are necessary to separate a compound from a matrix in this model.
(1) The compounds must be desorbed from the sample matrix’s initial binding position,
and (2) the compounds must be extracted from the sample using a method equivalent to
front elution chromatography.

A peak hold test and an interfacial double wall ring were used to evaluate the gelation
properties of banana peel pectin, as reported by Rasidek et al. [120]. The best extraction
conditions for pectin yield were a temperature of 140 ◦C, a period of 5 min, and a particle
size of 1.18 mm. The Fourier-transform infrared spectroscopy (FTIR) spectrum displayed a
high concentration of free esterified carboxylic groups, indicating a low in methoxyl pectin.
The most increased torque (168.97 N.m) and viscosity values (0.005 Pa.s) were obtained
using a gelation interaction combined with pectin extract and 80 mM/L Ca2+ methods,
respectively. These methods have led to a better gel by increasing the elastic (G’) and
viscous (G”) moduli to 0.170 and 0.018 Pa, respectively.
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Banana peel pectin is extracted from its waste using hot compressed water
(140–160 ◦C, 5 min, particle size 1.18 mm) [121]. Its moisture (7.44–8.47%), ash
(3.45–4.98%), protein (1.08–1.92%), fat (0.04–3.42), starch (83–86%), total sugar (1.77–3.41%),
energy (353–369 kcal/100g), and heat (1.42–1.62 kJ/kg ◦C) are in a close range as industrial
pectin. Pectin is commonly isolated from cacao, apple pomace, citrus peel, pomelo peels,
jackfruit peels, and passion fruit by SWE [21,46,122–124]. However, since research on
pectin recovery via SWE is scarce, more research is needed to understand the processes and
applications better.

8. Summary of Various Extraction Method to Valorize the Banana Peels

Table 3 provides a review of the advantages and disadvantages of different extraction
techniques to valorize the banana peels. Comparing Soxhlet to subcritical water, the
traditional Soxhlet process delivers a greater yield but of worse quality. Microwave-
assisted extraction (MAE) is superior than Soxhlet extraction in terms of extraction time
and the quality of the extract. This is because the MAE used a shorter extraction time at a
lower temperature.

Ultrasound-assisted extraction (UAE) is also an improvement over the Soxhlet ex-
traction process, offering less energy usage, a quicker extraction time, and a better quality
banana peel extract. However, ultrasonic waves have been shown to degrade certain
phenolic acids and generate extremely reactive hydroxyl radicals inside the gas, which are
drawbacks of this approach.

In terms of a green and sustainable extraction process, subcritical water extraction
(SWE) is a simple way to remove banana peels. This is because water is used to extract pectin
from banana peels using green solvent. In addition, the extraction time is reduced compared
to earlier techniques, such as Soxhlet, MAE, and UAE. Therefore, energy consumption may
be minimized. The downside of SWE is that it is unsuitable for thermolabile chemicals.
This is because of the high temperatures.

Table 3. Summary of advantages and disadvantages in pectin extraction.

Extraction Methods Advantages Disadvantages

Soxhlet

(1) Using auxiliary energies to reduce
leaching times.

(2) Less consumption of solvent.
(3) Offer high quantity of global yield.

Commonly, this method uses the toxic
solvent. High temperature condition
based on the bubble point of each
solvent and long extraction time. The
quality of extract is low due to long
extraction time with high
temperature.

Microwave-Assisted Extraction (MAE)

(1) Shorter extraction time, increase in
yield of extracted components,

(2) Less solvent consumption.
(3) improvement of the quality of extracts

compared to Soxhlet.

This method commonly uses the toxic
solvent (methanol, ethanol and
hexane) and high temperature
condition based on the bubble point
of each solvent.
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Table 3. Cont.

Extraction Methods Advantages Disadvantages

Ultrasound-Assisted Extraction (UAE)

(1) Low energy consumption.
(2) Less extraction times and active

compound damage
(3) High extraction yields as compared

with conventional extraction (Soxhlet)
methods.

(4) Faster leaching compared with MAE.
(5) In acid digestions, the ultrasonic

procedure is safer as it requires no high
pressure or temperature [68]. In many
cases, the whole procedure is simpler
as it involves fewer operations and is
thus less prone to contamination.

Ultrasonic waves have been reported
to result in the degradation of some
phenolic acids and the creation of
highly reactive hydroxyl radicals
within the gas.

Subcritical Water Extraction (SWE)

(1) Relatively new technique for extracting
less-polar compounds.

(2) Short extraction time in 30 min.
(3) Water at a higher temperature has a

lower dielectric constant, which
weakens the hydrogen bonds and
makes subcritical water more similar to
less-polar organic solvents such as
methanol and ethanol. The solubility of
less polar phenolics increased when the
temperature of subcritical water was
increased.

(4) SWE is an environmentally friendly
and efficient extraction method that
does not require the use of an organic
solvent to extract phenolics and
flavonoids.

(5) There has been an increasing interest in
the use of ecofriendly technologies.
SWE can provide high biological
activities of extracts while precluding
any toxicity solvents.

High temperature condition;
therefore, this method is not suitable
for extraction of thermo-labile
compounds.

9. Future Perspectives and Conclusions

Pectin is a polymer present in the cell walls of non-woody plant cells. It is commonly
used in the food business as a hydrocolloid because it can absorb water and form gels at
low concentrations. Additionally, it is fast expanding into other industries, with new uses
being found on a regular basis [121]. These applications are connected with structural and
functional features of extracted polysaccharides. Current pectin extraction techniques are
well-established. To satisfy increased demand, however, the process must be enhanced in
terms of efficacy, predictability, and consistency of product quality.

As noted in this study, Soxhlet, microwave, ultrasound, and subcritical water are
among the successful and dependable innovative tactics being researched for incorporation
into the pectin extraction procedure; although to various degrees of effectiveness. Although
these procedures are quantitatively and qualitatively adequate for laboratory usage, a lack
of knowledge hinders their typical industrial use. It cannot be used for scale-up, when the
continuous technique is still favored.

Some of these advances are too costly for new and small manufacturers; however,
this may not be the case for the most notable specialized chemical/ingredient producers.
However, it is necessary to carefully optimize the process parameters of these most recent
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approaches. Eventually, market participants will adopt one or more of these techniques
to produce customized pectin, most likely using microwave heating for fast mass transfer.
Several research institutions and labs have concentrated on discovering and using banana
peels as pectin processing raw materials, in addition to the industrially manufactured
banana peels described above. In addition, minimal study has been conducted on pectin
recovery from banana peels utilizing UAE and SWE. Pectin was often extracted using
conventional procedures, such as Soxhlet extraction and MAE. As a result, there is a
technology gap in pectin extraction methods that are greener and more sustainable.
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Nomenclature

AUA anhydrouronic acid
CCD central composite design
DE degree of esterification
DPPH 2,2-diphenyl-1-picrylhydrazyl
GA galacturonic acid
GC gas chromatography
HCL hydrochloric acid
MAE microwave-assisted extraction
MBS Musa aluminata balbisiana
MCS Musa acuminata Cavendish subgroup
MES Musa acuminata Colla
RSM response surface methodology
SWE subcritical water extraction
PHWE pressurized hot water extraction
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