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; ABSTRACT Missing values are highly undesirable in real-world datasets. The missing values should be 
estimated and treated during the preprocessing stage. With the expansion of nature-inspired metaheuristic 
techniques, interest in missing value imputation (MVI) has increased. The main goal of this literature is to 
identify and review the existing research on missing value imputation (MVI) in terms of nature-inspired 
metaheuristic approaches, dataset designs, missingness mechanisms, and missing rates, as well as the most 
used evaluation metrics between 2011 and 2021. This study ultimately gives insight into how the MVI plan 
can be incorporated into the experimental design. Using the systematic literature review (SLR) guidelines 
designed by Kitchenham, this study utilizes renowned scientific databases to retrieve and analyze all relevant 
articles during the search process. A total of 48 related articles from 2011 to 2021 were selected to assess 
the review questions. This review indicated that the synthetic missing dataset is the most popular baseline 
test dataset to evaluate the effectiveness of the imputation strategy. The study revealed that missing at 
random (MAR) is the most common proposed missing mechanism in the datasets. This review also indicated 
that the hybridizations of metaheuristics with clustering or neural networks are popular among researchers. 
The superior performance of the hybrid approaches is significantly attributed to the power of optimized 
learning in MVI models. In addition, perspectives, challenges, and opportunities in MVI are also addressed 
in this literature. The outcome of this review serves as a toolkit for the researchers to develop effective MVI 
models.

: INDEX TERMS Missing value, missing data, imputation, incomplete dataset, metaheuristic, systematic 
review.

I. INTRODUCTION
Data quality in machine learning has been intensively studied 
over the past decades. One of the data quality issues is missing 
values. Missing values can be defined as portions of the 
data that are either incomplete or absent in the dataset. The
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presence of missing values in the dataset diminishes data 
quality, reduces the power of data analysis, and induces bias 
in data science applications. Hence, dealing with incomplete 
information is critical for most data mining and machine 
learning techniques [1].

Numerous studies have been successfully conducted to 
address the issue of missing values. Little and Rubin [2] 
classified missing values into three mechanisms, missing
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completely at random (MCAR), missing at random (MAR), 
and missing not at random (MNAR). In the case of MCAR, 
the probability of missing values is independent. Any miss
ing value estimation technique could be applied due to the 
absence of data bias in the MCAR mechanism. In the type of 
MAR, the probability of data incomplete is not related to the 
missing value; instead, it is related to the part of the observed 
data. In the MNAR case, missing values are dependent on 
the missing variable, in which the incomplete values are 
associated with unmeasured events.

Furthermore, the missing value pattern explains how the 
data is missing in different ways. A univariate missing value 
pattern occurs when only one variable is missing. Data is 
missing monotone if the missing values follow a pattern. 
On the other hand, data is missing arbitrarily if the data is 
missing without a clear pattern.

Moreover, the percentage of missing values impacts the 
data quality. However, the existing literature does not have 
a standard cutoff for the acceptable proportion of missing 
values in a dataset for quality data analysis. For example, 
Bormann [3] suggested that 10% missing precipitation val
ues of the calendar days are the threshold for removing the 
whole winter observations from the analysis. In contrast, 
Tatar et al [4] stated that a threshold of 50% missing features 
was excluded from the prediction of low salinity waterflood- 
ing, while an imputation of mean value was applied for 
missing features below the missing threshold.

Equipment failure is a major cause of high missing 
rates. Eliminating high missing rates from the observations 
diminishes the representativeness of the samples. The miss
ing values can be higher than 50% in real-world scenarios. 
Therefore, missing value imputation (MVI) is used to address 
the problem of missing values. MVI is a procedure that 
is used to fill in missing values with substitutes [5]. Over 
the past decades, various machine learning techniques have 
been proposed to deal with incomplete datasets for different 
domain problems, such as medical [6], hydrology [7], [8], and 
transportation [9].

Consequently, a number of literature [10]-[12] discusses 
recent machine learning-based imputation techniques in solv
ing incomplete dataset problems. Nevertheless, with respect 
to MVI of nature-inspired metaheuristic techniques, the 
literature receives limited attention. Therefore, this liter
ature aims to review recent MVI designs of metaheuris
tic techniques used for handling and optimizing missing 
value imputation. This SLR follows the guidelines estab
lished by Kitchenham and Charters [13], thereby provid
ing significant insights for researchers working in the MVI 
domain.

The contributions of this literature are:
1) A comprehensive systematic literature review is pre

sented on the existing MVI designs for metaheuristic 
approaches, experimental design, dataset design, missingness 
mechanisms, missing rates, and evaluation metrics.

2) A guide to address, manage, and report MVI studies is 
introduced. This SLR serves as a toolkit for the researchers

to come up with solutions for challenges in implementing 
effective missing value imputation.

This research is organized as follows: Section II presents 
the SLR methodologies, whereas Section III summarizes the 
SLR findings. Section IV discusses the research trends and 
potential opportunities in MVI. Section V highlights the chal
lenges, and finally, the conclusion is presented in Section VI.

II. RESEARCH AND REVIEW METHOD
This section describes the systematic approach for review
ing recent articles on metaheuristic-based MVI techniques 
by adopting Kitchenham’s SLR standards. This SLR is 
inspected, analyzed, and evaluated according to the research 
questions and review protocols. Each phase of this SLR is 
explained in the following sections.

A. PLANNING THE REVIEW
This section outlines the review plan needed to undertake the 
SLR, which includes formulating research questions in accor
dance with the review’s primary objective, defining a search 
strategy, and designing a comprehensive review protocol.

1) RESEARCH QUESTIONS
This review aims to study the existing literature on 
metaheuristic designs and methods for optimizing and solv
ing missing value problems. The following Research Ques
tions (RQs) for this literature are formulated to accomplish 
this aim, as indicated in TABLE 1.

In the past ten years, several novel imputation techniques 
have been proposed. This SLR aims to identify the differences 
among the methods to enrich the understanding of MVI meth
ods, which can be taken as the basis for planning and devel
oping a new imputation model. RQ1 provides an overview 
of state-of-the-art metaheuristic techniques used to handle 
and optimize missing value imputation. Meanwhile, RQ2 is 
defined to explore the experimental designs of imputation 
and understand what factors affect the MVI design. RQ3 is 
outlined to understand what metrics are commonly used when 
evaluating the missing value imputation method.

2) SEARCH STRATEGY
The search strategy begins with selecting relevant databases 
(IEEExplore, ScienceDirect, Scopus, and other electronic 
databases) to track scientific papers that address research 
topics published in linked journals, conferences, and book 
chapters. The search string used to retrieve articles from the 
scientific databases is described as follows:

String: (‘‘metaheuristic’’ OR ‘‘optimization’’ OR ‘‘evolu
tionary’’) AND (‘‘imputation’’) AND (YEAR > 2010 AND 
YEAR < 2022)

3) INCLUSION AND EXCLUSION CRITERIA
A list of inclusion and exclusion criteria was constructed 
in this literature, as shown in TABLE 2. The inclusion and 
exclusion criteria are used as one of the review protocols to
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TABLE 1. List of research questions.

No Research Questions Motivation

1 What are the existing 
metaheuristic techniques used 
for handling and optimizing 
missing value imputation?

Identify the state-of-the-art 
metaheuristic techniques 
used for solving missing 
value problems.

2 What are the factors affecting 
missing value imputation 
design?

Identify the experimental 
designs used for 
imputation.

3 What are the commonly used 
metrics to evaluate the 
performance of the missing 
value imputation?

Identify the most common 
metric used to assess 
missing value imputation 
performance.

TABLE 2. The inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

Articles that are published from 
2011 till 2021

Articles that are published 
before 2011.

All related articles that match the 
research questions

Articles that do not address the 
research questions.

All articles published in the 
English language

Articles that are published not in 
the English language

narrow the relevant studies to the most pertinent ones during 
the article review process.

4) QUALITY ASSESSMENT CRITERIA
Another review protocol is the quality assessment criteria. 
The quality assessment criteria are crucial to determining 
the selected articles’ quality. A quality assessment criteria 
constructed based on Kitchenham and Charters [13], Genc- 
Nayebi and Abran [14], and Yang et al. [15] are presented 
in TABLE 3. The quality assessment is evaluated on the 
responses of ‘‘Yes,’’ ‘‘No,’’ and ‘‘Partial applicable,’’ abbre
viated as ‘‘Y,’’ ‘‘N,’’ and ‘‘P,’’ respectively.

B. CONDUCTING THE REVIEW
The article selection was carried out by applying the 
mentioned search string. Initially, our search string found 
758 publications from different databases between 2011 and 
2021. The search results were then narrowed down to man
ually reviewing all the articles’ titles and abstracts, resulting 
from a total of 644 articles. Next, the potential articles were 
filtered according to the RQs, which yielded 181 articles. 
Further filtering was applied by removing irrelevant studies 
according to the detailed inclusion and exclusion criteria, 
as shown in TABLE 2. Additionally, the quality assess
ment was conducted, and we chose articles that affirma
tively respond to the nine quality assessment criteria listed in 
TABLE 3. The findings indicated that most selected articles 
satisfied all the quality assessment criteria. In the final selec
tion, a total of 48 articles fulfilled all the inclusion and quality

Article searching from 
databases = 758

Article after filtering title 
and abstract = 644

48 final selected full text 
articles

I
IEEE Xplore Science Direct Scopus Others

13 12 18 5

FIGURE 1. The process of article selection.

TABLE 3. Quality assessment criteria and results of selected articles.

No Quality assessment criteria Y N p

1 Are the objectives of the research clear and 
relevant?

48 0 0

2 Is the proposed technique described in 
detail?

47 0 1

3 Is the research design appropriate to address 
the aims of the study?

48 0 0

4 Is the incomplete dataset adequately 
described?

48 0 0

5 Is the missing mechanism described in 
detail?

38 10 0

6 Is the missing rate clearly defined? 41 7 0
7 Are the evaluation metrics used in the 

research well documented?
48 0 0

8 Are the findings of the research reliable? 39 0 9
9 Is the data analysis sufficiently rigorous? 37 0 11

assessment criteria used in this literature. The article selection 
processes are summarized and illustrated in FIGURE 1.

III. RESEARCH FINDINGS
This section presents and discusses the findings from the 
literature review conducted in response to the RQs identified 
in Section II. This section is divided into three subsections: 
the first illustrates state-of-the-art metaheuristic techniques 
for managing and optimizing MVI. The second subsection 
discusses the experimental designs and factors affecting MVI 
design. Finally, the third subsection explores the various 
evaluation metrics that are used to evaluate the performance 
of MVI.
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FIGURE 2. Year-wise distribution of publications relevant to studies.

A. SUMMARY OF METAHEURISTIC TECHNIQUES USED IN 
MANAGING AND OPTIMIZING MISSING VALUE 
IMPUTATION
This subsection mainly focuses on RQ1, which identifies 
metaheuristic techniques for handling and optimizing MVI. 
FIGURE 2 indicates the trend of publications over ten 
years. The graph illustrates the popularity of metaheuris
tic techniques in MVI research over time. As can be seen, 
studies on metaheuristic-based MVI have experienced con
tinuous growth since 2011 and show an emerging trend in 
MVI research. The growth is apparently due to the explo
sion of data science research involving high-quality data, 
which raised researchers' awareness of the importance of 
imputation.

Next, we summarize the metaheuristic techniques 
employed in handling MVI and highlight their primary ben
efits. We have categorized the metaheuristic technologies 
into three categories. The first category is a single objective 
approach, followed by multi-objective and hybrid approaches 
as the second and third categories. The taxonomy of meta
heuristic approaches in handling and optimizing MVI is 
shown in FIGURE 3.

From the literature, genetic algorithm (GA) has become 
one of the most widely used metaheuristic approaches in 
MVI tasks. Figueroa Garcia et al. [16] used GA imputation 
to estimate missing values by minimizing an error function 
derived from the covariance matrix and means vector, while 
Lobato et al. [17] improved GA imputation for the incom
plete multi-attribute dataset. Recently, Awawdeh et al. [18] 
performed imputation and feature selection simultaneously. 
GA was used to determine the most optimal features, while 
mean and mode imputations were used to fill missing numeric 
and categorical features. The advantage of this approach is 
that it is more tolerant of bias in MAR and NMAR miss
ingness types. In another study, Sivapragasam et al. [19] 
utilized mathematical models in genetic programming (GP) 
to reconstruct missing time series rainfall data. In [20], PSO 
imputation was proposed to infill missing gene expressions. 
The advantages of this approach are it is simple and easy to 
implement. However, the performance of the PSO imputation

cannot be generalized as it is only compared with conven
tional imputers such as K-nearest neighbor (KNN) and row 
averaging imputation at missing rates of 5%, 8%, and10%.

For multi-objective metaheuristic approaches, Lobato etal. 
[21] analyzed incomplete instances and modeled task infor
mation using multi-objective GA (MOGA-II) based non
dominated sorting genetic algorithm-II (NSGA-II) to infill 
mixed-attribute datasets. Both objective functions of root 
mean square error (RMSE) and classification accuracy signif
icantly improved the imputation performances for incomplete 
numeric and nominal features. On the other hand, recent 
work by Khorshidi et al. [22] proposed two objective func
tions of cluster validity function and correlation function 
to enhance the existing NSGA-II. The advantages of this 
approach are that it is robust and able to handle online imputa
tion and classification simultaneously for MAR missingness 
type. The proposed multi-objective particle swarm optimiza
tion (MOPSO) approach in [23] determined the optimal 
imputation algorithm based on the MCAR, MAR, and MNAR 
missingness mechanisms, in which the fitness function is 
adapted according to sensitivity and specificity. The proposed 
MOPSO improved the imputation accuracy by 16.52% to the 
delete missing, mean, expectation-maximization, multivari
ate imputation by chained equations (MICE), and missFor- 
est imputation approach. However, the shortcomings of this 
approach are that it is slow, and the imputation model is more 
dependent on variables than on records.

Several new methods have been proposed to improve 
imputation accuracy that combines metaheuristic methods 
with other techniques such as Bayesian, clustering, prob
abilistic, and neural network. Furthermore, most studies 
adopted hybrid approaches to address missing value issues. 
As for the bayesian category, several studies [24]-[27] have 
explored the idea of infilling MVI using the combination of 
metaheuristic and Bayesian algorithms. The bayesian fitness 
has the advantage of increasing the optimality of the solution. 
In [28], Nekouie and Moattar improved imputation perfor
mance using bayesian, tensor, and chaotic PSO. The approach 
significantly reduced the 4% error of the tensor method for 
missing numerical values and class imbalance problems.

On the other hand, some researchers combined prob
abilities and metaheuristics approaches to estimate miss
ing values [29]-[33]. KNN imputation was used to infill 
missing values based on neighbors’ data and optimized by 
GA [29] and PSO [30]. Recently, Nagarajan and Dhinesh 
Babu [31] proposed a feature weighting approach that com
bined an improved local search and whale optimization 
algorithm (WOA). The advantage of this approach is that 
the hybrid learned various k of nearest neighbor for dif
ferent testing values by examining the correlation matrix 
between the training and testing datasets. Moreover, the 
WOA avoided local optima and converged to a better solu
tion in final iterations. The findings indicated that missing 
values were predicted more precisely and improved clas
sification performance in electronic health records. How
ever, this approach is inefficient in large datasets with high
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Single objective 
approaches

GA
[16]-[18]

GP
[19]

PSO
[20]

Metaheuristic Techniques based MVI

Multi-objective
approaches

MOGA-II
[21]-[22]

MOPSO
[23]

1

Hybrid approaches

Bayesian

ACO+ 
bayesian [24]

ABC+ bayesian 
[25]

Max-min ACO 
+bayesian [26]- 
[27]

Bayesian+ 
tensor+chaotic 
PSO [28]

Probabilistic

GA+KNN
[29]

GMSA+MPSO+ 
WKNN [30]

KNN+LAHC 
AWOA [31]

PSO+ 
covariance 
matrix [32]

IDW+TR+ 
PSO [33]

MAIS+GA [49]

Clustering

ACO+ 
clustering [34]

FCM+GA 
[35] [36]

FCM+ 
SVR+GA [37]

GA+SOM
[38]

FCM+PSO
[39]-[42]

GFM+PSO
[43]

PSO-ECM+ 
AAELM [44]

ELM+PSO+ 
FCM [45]

PSO+K- 
means+ 

ontology [46]

SOM+FOA 
+LSSVM [47]

DE+
clustering [48]

GA+RF [50]

GA+ARO [51]

GP+tree vector 
[52]

PSO+levy 
flight+SVM [53]

PSO+LSVM [54]

GP+wrapper 
[55] [56]

— Neural network

GSO+MLP
[57]

GA+MLP, 
SA+MLP, 

PSO+MLP, 
RF+MLP [58]

SC-FITNET
[59]

-

SC-FDO+ 
MLP [60]

DL-CS [61]

-

DL-BAT [62]

DL-GSA [63]

FIGURE 3. Taxonomy of metaheuristic techniques based on missing value imputation.

dimensional features. Meanwhile, Krishna and Ravi [32] PSO. The approach achieved better classification accuracy
utilized a covariance matrix to reduce the error function of than the hybrid K-means and multilayer perceptron (MLP)
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and produced comparable results for regression tasks. In the 
time series problem, a combination of inverse distance weight 
(IDW), tolerance rough set (TR), and PSO [33] was proposed 
to determine the optimal influence factor value for each rec
ognized data point in the neighboring group, thereby reducing 
the error rate of the imputed time series data.

As for the clustering category, several researchers 
employed the clustering method with soft computing. In [34], 
Veroneze et al. proposed a combination of bi-clustering and 
ant colony optimization (ACO) to deal with missing data 
problems. The introduction of a bi-clustering strategy and 
optimal parameter selection in this approach enhanced the 
imputation quality for the missing gene expression datasets; 
however, the impact of long execution times increased the 
computational cost of this approach.

The works of [35] and [36] specified the use of Fuzzy 
C-means (FCM) with GA by generating a matrix-based data 
structure and optimizing it through a GA parameter optimiza
tion process to improve the accuracy of missing value esti
mation. Meanwhile, Aydilek and Arslan [37] demonstrated 
that combining an optimized clustering process with support 
vector training improved imputation performance. However, 
higher proportions of 25% of missing data were not con
sidered in the study. Then, Khotimah and Pramudita [38] 
implemented a self-organizing map (SOM) imputation with 
GA. The selection of SOM weights using GA with elite 
chromosomes determined the shortest distance between the 
data and the cluster centroid, resulting in a more accurate 
solution for incomplete data estimation.

In FCM imputation with the PSO method [39]-[42], the 
missing values can be estimated from the observed data with 
different optimized weights to improve data quality. Recent 
work by Hu et al. [43] presented missing values in hybrid 
numeric and granular forms. It used information granulari
ties to construct granular fuzzy models (GFM), while PSO 
optimized the optimal allocation of information granularities. 
The advantage of this approach is that the established gran
ular models improved numerical value prediction accuracy 
by extracting the essential target information from incom
plete data. On the other hand, Gautam and Ravi [44] imple
mented data imputation via a two-stage learning strategy: 
the first stage was based on local learning in particle swarm 
optimization-evolving clustering method (PSO-ECM), and 
the second stage was based on global approximation in auto- 
associative extreme learning machine (AAELM). Another 
approach is the ELM+PSO+FCM proposed by Sun et al. 
[45], which resulted in effective data imputation for byprod
uct gas flow data. These studies [43]-[45] demonstrated a 
positive impact on MVI accuracy, but the imputation results 
were only examined at missing rates under 50%.

To provide greater accuracy in predicting numerical and 
nominal missing values, the recent work in [46] extended the 
existing PSO imputation approach by incorporating ontology 
and K-means, where ontology eliminated irrelevant data, and 
K-means accelerated PSO convergence. In addition to PSO 
imputation, a fruit fly optimization algorithm (FOA) has been

proposed by [47] for solving missing time series values. First, 
SOM was used to cluster the time series and obtain a simi
larity matrix for the incomplete series. Then, this approach 
employed a cross-validation procedure and FOA strategy to 
determine the optimal parameter in the least-squares support 
vector machine (LSSVM) for building an optimal imputation 
model. In addition, Tran et al. [48] proposed an approach for 
classifying missing values that integrated imputation, clus
tering, and feature selection. The proposed clustering mini
mized the number of instances used by imputation, whereas 
differential evolution (DE) extracted relevant features of the 
training data. However, removing instances may result in data 
loss, and performing feature selection after initial imputation 
can be time-consuming, particularly when dealing with high
dimensional data.

Duma et al. [49] proposed a hybrid multi-layered artificial 
immune system and GA to fill in missing values for insurance 
datasets. In [50], the authors demonstrated that using random 
forest (RF) and GA-selected predictors to estimate missing 
forest inventory variables with data from target and auxil
iary stands significantly reduced model bias. The proposed 
hybrid GA and asexual reproduction optimization (ARO) 
approach outperformed the mean and original GA imputa
tion approaches by incorporating ARO imputation and GA 
optimization [51].

A published work in [52] recently improved the existing 
GP algorithm by designing a mixed tree-vector representation 
that can be used for selection and symbolic regression on 
missing data. The imputation performance was improved for 
medium-sized datasets; nevertheless, it was less significant 
for datasets with relatively small instances (< 300), a large 
number of instances (> 8191), or below missing rates of 
2%. In addition, this imputer model also has the drawback 
of requiring a large volume of data for training.

In [53], Ismail et al. incorporated levy flight into PSO 
to improve global exploration of PSO and helped PSO to 
escape from local optimum. The results indicated that sup
port vector machine (SVM) imputation, optimized by levy 
flight PSO achieved the lowest error for filling the incom
plete creatinine data than KNN, naive Bayes, and deci
sion tree imputation. Gao et al. also presented a variant of 
SVM-based imputation that employed LSSVM optimized by 
PSO to estimate incomplete dose rate and sensor rate data 
values. The results revealed that the PSO+LSSVM approach 
achieved better accuracy than the LSSVM model [54]. 
Furthermore, Al-Helali et al. [55]-[56] proposed wrapper- 
specific GP methods to improve imputation accuracy and 
symbolic regression performances.

The research done in [57] implemented a hybrid GSO 
and neural network system to perform missing time series 
data imputation tasks, and the results demonstrated that 
the approach could accurately predict incomplete traffic 
flow data for urban arterial streets. The authors [59] pro
posed a sine cosine algorithm to optimize a function-fitting 
neural network to impute incomplete rainfall data. A sig
nificant advantage of the method is that it outperformed
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TABLE 4. State-of-the-art metaheuristic techniques for handling and optimizing missing value imputation.

Category Technique Description Strengths Studies

Single objective GA Employed minimization of an error function 
derived from covariance matrix and means 
vector of related data to estimate missing 
values.

The proposed approach enhanced 
imputation for missing multivariate data

[16]

GA imputation to find the best estimate 
values for filling missing values in a multi
attribute dataset.

This approach improved the 
classification accuracy for mixed 
variable types.

[17]

Handling missing value imputation and 
feature selections simultaneously.

This approach can minimize bias when 
handling MAR and NMAR missing data 
types.

[18]

GP GP incorporated mathematical models such 
as sin, cos, exp, and log, to predict missing 
monthly rainfall data.

The approach was able to handle the 
nonlinear relationship of rainfall data.

[19]

PSO PSO-based imputation for missing gene 
expressions.

Simple and easy to implement. [20]

Multi-objective MOGA-II Employed multi-objective GA based on the 
NSGA-II, which can handle mixed-attribute 
datasets and incorporated information from 
incomplete instances and modeling tasks.

Significantly improved imputation 
performances and has a higher statistical 
ranking than the compared methods in 
both objective functions studied (RMSE 
and classifier accuracy).

[21]

Proposed multi-objective optimization 
model with two objective functions (cluster 
validity function and correlation function) 
for imputation and model selection.

Concurrently performed online 
imputation and classification. It is robust 
and works well in various situations.

[22]

MOPSO The approach proposed the optimal 
imputation algorithm based on missing data 
type.

The imputation accuracy was improved 
by 16.52% than the compared methods.

[23]

Hybrid Bayesian ACO+
Bayesian

ACO was hybridized with Bayesian 
principles to impute the missing values with 
the MAR mechanism.

The proposed approach performed better 
in estimating discrete and continuous 
missing values in large datasets under the 
MAR mechanism compared to multiple 
imputations, expectation-maximization 
and kernel imputations.

[24]

ABC+
bayesian

An average value of mean imputation, 
distance imputation, and random imputation 
was used to estimate the missing value. 
Further, Bayesian optimization was 
integrated into the ACO model.

Bayesian optimization employed 
posterior and prior probability values to 
evaluate the fitness function of the ACO. 
This approach successfully solved the 
discrete value imputation problems.

[25]

Max-min
ACO+
Bayesian

Hybridization of Bayesian min-max and 
ACO algorithm. The Bayesian fitness, 
which was incorporated into the proposed 
model, improved the optimality of the 
solution.

This approach outperformed the 
competitive imputation models at 
different percentages of missing rates, 
ranging from 5% to 50%.

[26], [27]

Bayesian+ 
tensor+ 
chaotic PSO

Bayesian networks were used to estimate 
initial missing values. The CRAPSO was 
used for sample generation to deal with 
tensor data insufficiency. Finally, a 
modified tensor factorization approach was

In missing numerical values and class 
imbalance, the proposed approach 
outperformed the compared methods for 
missing data estimation.

[28]

used to estimate the final missing values.
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TABLE 4. (Continued.) State-of-the-art metaheuristic techniques for handling and optimizing missing value imputation.

Probabilistic GA+KNN Handle missing value imputation using a 
genetic algorithm optimized KNN 
algorithm.

This approach can identify the optimal 
value of k and weight each attribute in 
the dataset.

[29]

GMSA+MP
SO+WKNN

WKNN was used to select neighbors’ data 
for missing data estimation, while GMSA- 
MPSO was utilized to optimize feature 
weights.

This approach showed better estimation 
accuracy for sensor monitoring 
manufacturing systems than the 
compared techniques.

[30]

KNN+
LAHCAWOA

Hybridization of an improved local search 
and WOA with feature weighted nearest 
neighbor imputation approach for missing 
health records.

This approach improved classification 
performances using the imputed health 
datasets.

[31]

PSO+
covariance
matrix

This approach reduced the error function 
derived from the covariance matrix and its 
determinant.

Better classification accuracy compared 
to regression.

[32]

IDW+TR+
PSO

TR employed the rough set concept to 
determine the neighborhood set for each 
unknown data point. This was followed by a 
PSO technique to find the optimal influence 
factor value for each known data point in 
the neighborhood set.

In comparison to other imputation 
techniques such as KNN, expectation- 
maximization, and traditional IDW, the 
proposed system significantly reduced 
the error rate of the imputed time series 
results.

[33]

Clustering ACO+
clustering

The nearest neighbor (Euclidean distance) 
technique was utilized in the pre-imputation 
stage. The pre-imputed dataset was then 
replaced by a new estimation using bi
clustering and optimal parameter selection 
strategies in ACO.

The use of a bi-clustering strategy and 
optimal parameter selection in ACO 
achieved higher imputation quality than 
KNN and SVD for MCAR and MAR 
missing mechanisms, despite its higher 
computational cost.

[34]

FCM+GA A hybrid method that combined FCM 
imputation method with the GA 
optimization method. This study proposed a 
matrix-based data structure and GA 
parameter optimization process to improve 
the missing data estimation.

This approach was superior to the 
competitive imputation models.

[35], [36]

FCM+
SVR+GA

This method employed fuzzy C-means 
clustering data, which combined SVR and 
GA to handle a low proportion of missing 
data.

The optimized clustering process 
combined with support vector training 
improved the imputation performance 
significantly.

[37]

GA+SOM Clustering-based imputation, in which the 
model's weights were updated via a 
chromosome elite search strategy in GA.

Chromosome elite search strategy was 
more effective and efficient than non
elite search in GA.

[38]

FCM+PSO This hybrid optimization of PSO and FCM 
employed a fuzzy clustering approach to 
impute missing values.

This approach improved traditional 
clustering imputation by incorporating 
PSO to find the most optimal values for 
filling the missing values.

[39], [40], 
[41], [42]

GFM+PSO This method utilized information 
granularities to construct granular fuzzy 
models, and PSO to optimize the allocation 
of information granularities.

The established granular models 
enhanced the prediction accuracy for 
numerical values.

[43]

PSO-ECM+
AAELM

This approach employed two-stage 
learning: the first stage was local learning in 
PSO-ECM and the second stage was a

The optimal parameter selection of ECM 
by PSO contributed significantly to the 
good performances of PSO-ECM and

[44]

global approximation in AAELM. PSO-ECM+AAELM. This approach also
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TABLE 4. (Continued.) State-of-the-art metaheuristic techniques for handling and optimizing missing value imputation.

improved the proposed models' local 
learning, global optimization, and global 
learning.

ELM+PSO+ Using the membership matrix and related
FCM cluster centers, prefilled missing values

were estimated using linear interpolation 
and FCM. An iterative PSO optimization 
optimized the clustering size and weighting 
factor parameters to enhance the accuracy 
of FCM. The missing value imputation was 
further enhanced in ELM by minimizing the 
Euclidean distance between the estimated 
and missing values.

This approach improved the model's 
accuracy by imputing missing values in 
the byproduct gas flow dataset.

[45]

PSO+K-
means+
ontology
model

Incorporated ontology and K-means in PSO 
imputation, in which ontology removed 
irrelevant data and K-means improved PSO 
convergence speed.

The use of ontologies and K-means in 
PSO imputation significantly reduced 
errors in predicting missing nominal and 
numerical data.

[46]

SOM+FOA 
+ LSSVM

Optimization techniques were combined 
with the clustering method to provide 
sufficient information and an optimal 
solution.

Higher imputation accuracy for dealing 
with missing spatial-temporal values.

[47]

DE + 
clustering

This study proposed a hybrid of DE with 
clustering and feature selection for 
classification with missing values.

The proposed approach achieved higher 
accuracy at a lower computational time 
by incorporating clustering and feature 
selection into imputation.

[48]

MAIS MAIS+GA A hybrid multi-layered artificial immune 
system and GA for partial missing value 
imputation.

This approach enhanced accuracy and 
robustness in the presence of different 
missing rates.

[49]

Random
forest

GA+RF This method is utilized to target and 
auxiliary stands (off-site samples) data for 
imputing missing forest inventory variables.

The use of GA-selected predictors and 
additional reference stands from the 
target dataset contributed to a reduction 
in model bias.

[50]

ARO GA+ARO This approach employed ARO to impute 
missing values for each feature. The output 
of ARO (best chromosome) will be used as 
an initialization input for GA. GA 
iteratively optimized the solution to find the 
best optimal solution.

This proposed technique performed 
better accuracy than the compared 
methods.

[51]

Tree vector GP+tree
vector

Improved version of GP, where a mixed 
tree-vector representation was proposed for 
performing instance selection, while GP 
was used for symbolic regression on 
missing data.

This approach improved imputation 
performance for a medium number of 
instances. However, this approach is less 
significant for datasets with relatively 
small or large instances.

[52]

SVM PSO+levy
flight+SVM

Levy flight method improved global 
exploration of PSO and helped PSO to 
escape from local optimum.

This approach performed well for filling 
missing creatinine values.

[53]

PSO+
LSSVM

This LSSVM model imputed missing data 
by combining the previous monitoring data 
from a node and the current monitoring data 
from a neighboring node. The parameters of 
imputation were then optimized by PSO.

There is a higher quality of imputation 
for missing dose rate and sensor notes in 
the wireless sensor network.

[54]

Wrapper GP+wrapper Proposed to enhance the symbolic 
regression performance of missing value 
estimation.

The proposed approach achieved the 
highest number of better cases than the 
competitive models at missing rates of 
50%, followed by 30% and 10%.

[55]

Incorporating noise sensitivity measure and 
wrapper into the GP imputation.

An improved GP-based imputation 
regression predictor.

[56]

Neural GSO+MLP This method employed a three-layer feed-
network forward neural network, in which GSO

optimized the weights and thresholds during 
missing traffic flow data imputation.

This method can accurately predict 
missing time series data.

[57]
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TABLE 4. (Continued.) State-of-the-art metaheuristic techniques for handling and optimizing missing value imputation.

GA+MLP,
SA+MLP,
PSO+MLP,
RF+MLP

Prediction and classification comparison for 
several MLP based auto-associative neural 
network with GA, SA, PSO and RF.

The GA+MLP, SA+MLP, and 
PSO+MLP algorithms performed better 
than the RF+MLP algorithm for 
prediction. However, the RF+MLP 
algorithm outperformed the GA+MLP, 
SA+MLP, and PSO+MLP algorithms for 
classification problems.

[58]

SC-FITNET The sine cosine algorithm optimized a 
neural network for imputing missing 
rainfall data.

Effectively imputed time series data at 
different missing rates and outperformed 
LSTM approach.

[59]

SC-FDO+ Proposed hybrid sine cosine and fitness
MLP dependent optimizer for missing rainfall

imputation.

The modified pace-updating position, 
random weight factor, and conversion 
parameter strategies significantly 
enhanced imputation accuracy for the 
high-low proportion of missingness.

[60]

DL-CS This study trained a deep autoencoder
network. The CS algorithm, which 
optimized the objective function in the 
trained network, was used to approximate 
the missing values.

Effectively imputed large datasets of 
handwritten digits.

[61]

DL-B AT A deep autoencoder network was used to
replicate the input data, and the bat 
algorithm was employed to estimate the 
missing data.

Effectively deal with high dimensional 
datasets of handwritten digits.

[62]

DL-GSA The proposed DL-GSA utilized a deep-
autoencoder and gravitational search 
algorithm to estimate missing handwritten 
digits.

The proposed DL-GSA outperformed 
DL-CS in terms of accuracy and 
efficiency.

[63]

the long short-term memory (LSTM) method in imputing 
time-series data at various missing rates. Recent work [60] 
extended the existing sine cosine algorithm by proposing 
a novel hybrid sine cosine and fitness dependent optimizer 
(SC-FDO) to approximate missing rainfall data. The mod
ified pace-updating position, random weight factor, and 
conversion parameter strategies significantly improved the 
searching accuracy and exploration-exploitation balance in 
the proposed SC-FDO. The findings revealed that the 
SC-FDO-based MLP trainer yielded higher imputation accu
racy for low and high missing rates compared to the 
sine cosine algorithm (SCA) and fitness-dependent opti
mizer (FDO) based MLP trainer.

On the other hand, Leke et al. [58] investigated 
hybrid MLP-based auto-associative neural networks with 
GA, simulated annealing (SA), PSO, and RF in the 
prediction and classification of missing values. The 
GA+MLP, SA+MLP, and PSO+MLP algorithms outper
formed the RF+MLP algorithm in prediction. However, 
the RF+MLP algorithm outperformed the GA+MLP, 
SA+MLP, and PSO+MLP algorithms for classification 
problems.

In addition to that, Leke et al. explored missing values in 
high dimensional datasets with the aid of deep learning (DL) 
and swarm intelligence approaches such as the cuckoo search 
algorithm (CS), and firefly algorithm (FA), and bat algo
rithm. The essential advantage of proposing hybrid models 
(DL-CS [61] and DL-Bat [62]) is that both models yielded 
more accurate estimates than the hybrid MLP models in 
[58] and DL-FA. One of the shortcomings is that it is time
consuming to train the deep neural network. As a result, the 
DL-CS and DL-Bat have higher computational time than the 
hybrid MLP approaches. The work in [63] further improved 
the imputer models of [61], [62] by proposing the hybrid DL 
and gravitational search algorithm (DL-GSA). The DL-GSA 
[63] outperformed the DL-CS [61] and DL-Bat [62] with 
higher accuracy and shorter computational time. A relative 
comparison of metaheuristic techniques for dealing with MVI 
is presented in TABLE 4.

B. EXPERIMENTAL DESIGNS
This subsection focuses on the RQ2 that identifies the exper
imental designs used for imputation. The three aspects to
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FIGURE 4. Distribution of studies based on the number of used dataset.

consider when dealing with missing data: are the dataset 
characteristics, missing mechanisms, and missing rates.

1) DATASET CHARACTERISTICS
TABLE 5 summarizes the datasets and the state-of-the tech
niques used in the selected articles. From the 133 datasets 
shown in TABLE 5, 88 % of the datasets are publicly avail
able, while a total of 16 datasets is real-world datasets from 
industry or agency sources. The findings revealed that the 
UCI Machine Learning Repository was the most often used 
dataset over the last ten years, followed by OpenML and 
Keel. Of all the UCI datasets used here, iris, forest fires, Pima 
Indian, and wine datasets are the most used datasets. How
ever, the famous databases are on a small scale, containing a 
number of feature dimensions of less than 15 and the number 
of instances less than 800.

FIGURE 4 further shows the distribution of studies accord
ing to the number of the used dataset. As illustrated in 
FIGURE 4, nearly 41.7% of the articles used a minimum 
of one dataset, while others utilized multiple datasets. The 
number of datasets used in comparing algorithms varied from 
one to 15 datasets.

2) MISSING MECHANISMS
From the findings, missingness can be grouped into two 
categories: real missing and synthetic missing datasets. A real 
missing dataset has the original missing data values, which 
it does not include any synthetic or artificial missing ratios 
in the dataset. A synthetic missing dataset contains artifi
cial missing ratios that have been inserted into the dataset 
according to the missing mechanisms. Nearly 79.2% (38/48) 
of studies in the last decade used synthetic datasets to eval
uate imputation performance, while only 8.3% (4/48) used 
real missing datasets. However, four studies using synthetic 
datasets did not clarify the missing mechanism, and six stud
ies did not report on the missing dataset category.

Among the synthetic missing datasets, MAR missing 
mechanism is the most popular mechanism, with 13 stud
ies accounting for 27.1% (13/48) of the studies, followed 
by MCAR (20.8%, 10/48), MCAR+MAR (12.5%, 6/48),

FIGURE 5. Distribution of studies based on the type of missing 
mechanism.

MCAR+MAR+MNAR (10.4%, 5/48). At the same time, 
the least attention is paid to MNAR missing mechanism. 
Although the MAR mechanism is the most famous, gener
ating missing values with the MAR pattern has been the most 
complex [18], [67].

A closer analysis revealed that approximately half of the 
studies (23/48) employed only one missing mechanism in 
their research, whereas 22.9% (11/48) used numerous miss
ing mechanisms. In the missing mechanism investigations, 
Rajappan and Rangasamy [27] discovered that all the datasets 
with MAR missingness have a higher classification accuracy 
than the imputation of MCAR and MNAR missingness for 
all the missing rate cases. Similarly, the studies were done 
by [31], [33], [49] revealed that the proposed techniques 
produced superior performance in most cases when the miss
ing data was MAR rather than MCAR. The reason is that 
the datasets with MAR missingness have a set of defined 
covariates, and the missing values can be filled in based on 
these covariates. As there are no defined covariates in MCAR, 
the missing values must be estimated using the approximate 
values. In addition, dealing with the MNAR mechanism is 
challenging and complex [27], [67], which led to the lowest 
amount of attention in the MNAR investigation. The rationale 
for the slightest attention to MNAR missingness is that no 
other feature has a defined influence on the missing values. 
Thus, careful design of the MNAR missingness is crucial 
to obtaining unbiased imputation performance. A detailed 
distribution of the studies based on the missing mechanism 
is depicted in FIGURE 5.

3) MISSING RATES
The missing rates used in the experiment can be divided into 
three categories: missing rates < =  30%, missing rates under 
30% -  50%, and missing rates > 50%. FIGURE 6 shows the 
distribution of studies based on the missing rates. According 
to the findings, the dataset with missing rates < =  30% cate
gory is the most frequently used missing rate for experimen
tation in the studies (45.8%), followed by 25% of the studies 
designed to impute missing rates under 30% -  50% category. 
However, nearly 14.6% of the studies did not reveal their
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TABLE 5. Benchmark datasets and their state-of-the-art techniques.

Dataset source Dataset No. of 
studies

Techniques

Kaggle Cancer
Diabetes
Heart
Spine

1
1
1
1

KNN+LAHCAW0 A [31]

KEEL California
Corel
Parkinsons
Stock
Treasury
Wankara

1
1
1
1
1
1

GFM+PSO [43]

MNIST Handwritten digits DL-CS [61], DL-BAT [62], DL-GSA [63]
NHLBI Framingham heart dataset FCM+PSO [40], [41]
OpenML Bank32nh (Bank) 1 GP+wrapper [56]

CPMP-2015-runtime-regression 
(CPMP)

1 GP+wrapper [56]

Fri_c0_100_25 (Fri) 1 GP+wrapper [56]
MIP 1 GP+wrapper [56]
Mtp 1 GP+wrapper [56]
Selwood 1 GP+wrapper [56]
Debutanize 1 GP+tree vector [52]
Weather_Izmir
Kin8nm

1 GP+tree vector [52]
GP+wrapper [55], GP+tree vector [52]

Pol 1 GP+wrapper [55]
Quake 1 GP+wrapper [55]

UCI Airfoil-self-noise (Airfoil) 1 GP+wrapper [55]
Arrhythmia 1 DE+clustering [48]
Audiology 1 GA [17]
Australian 2 MOGA-II [21], GA [18]
Auto mpg 3 PSO+covariance matrix [32],

PSO-ECM+AAELM [44], GP+wrapper [55], GP+tree vector [52]
Automobile 1 DE+clustering [48]
Autos 1 GA [17]
Balance scale 1 ABC+bayesian [25]
Body fat 2 PSO+covariance matrix [32], PSO-ECM+AAELM [44]
Boston housing 2 PSO+covariance matrix [32], PSO-ECM+AAELM [44]
Breast cancer 3 FCM+PSO [39], [42] 

KNN+LAHCAWOA [31]
Breast tissue 1 KNN+LAHCAWOA [31]
Bupa 1 FCM+PSO [39]
Car 1 ABC+bayesian [25]
Census-Income (KDD) 1 ABC+bayesian [24]
CCN 2 GP+wrapper [55], GP+tree vector [52]
Cleveland heart disease 2 GA [17], FCM+PSO [42]
Colonoscopy 1 KNN+LAHCAWOA [31]
Concrete 2 GP+wrapper [55], GP+tree vector [52]
Contraceptive 1 MOGA-II [21]
Covertype 1 ACO+bayesian [24]
Credit approval 1 DE+clustering [48]
CSM 1 GFM+PSO [43]
Ecoli 1 MOGA-II [21]
ENB2012 2 GP+wrapper [55], GP+tree vector [52]
Forest fires 5 PSO+covariance matrix [32], PSO-ECM+AAELM [44], 

GA+MLP, SA+MLP, PSO+MLP, RF+MLP [58], 
GP+wrapper [55], GP+tree vector [52]

German 2 MOGA-II [21], GA [18]
Glass 2 FCM+SVR+GA [37], MOGA-II [21]
Haberman 1 FCM+SVR+GA [371
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TABLE 5. (Continued.) Benchmark datasets and their state-of-the-art techniques.

Health records 1 GA+MLP, SA+MLP, PSO+MLP, RF+MLP [58]
Heart 1 GA [18]
Heart disease 2 DE+clustering [48], GA [18]
Hepatitis 3 GA [17], DE+clustering [48], GA+SOM [38]
Horse colic 2 DE+clustering [48], GA+SOM [38]
Housevotes 1 DE+clustering [48]
Hsv 1 GFM+PSO [43]
Imports-85 2 GP+wrapper [55], GP+tree vector [52]
Individual household electric power 
consumption

3 ACO+bayesian [24], Max-min ACO + bayesian [26], [27]

Insurance company benchmark 1 MAIS+GA [49]
Ionosphere 1 GA [18]
Iris 8 FCM+GA [35], PSO+covariance matrix [32], 

FCM+SVR+GA [37], MOGA-II [21], 
PSO-ECM+AAELM [44], MOGA-II [22] 
FCM+PSO [39], [42]

KDD Cup 1998 Data 1 Max-min ACO+bayesian [27]
Libras movement 1 GP+wrapper [55]
Liver 1 KNN+LAHCAWOA [31]
Liver-disorder 1 GP+wrapper [55]
Localizations data for person activity 2 ACO+bayesian [24], Max-min ACO+bayesian [26]
Lung-cancer 1 GA [17]
Lymph 1 MOGA-II [21]
Magic 1 MOGA-II [21]
Mammographic masses 3 GA [17], DE+clustering [48], GA+ARO [51]
Marketing 2 DE+clustering [48], GFM+PSO [43]
Muskl 1 FCM+SVR+GA [37]
New-thyroid 2 FCM+GA [35], MOGA-II [21]
Nursery 1 ABC+bayesian [25]
Ozone 2 GP+wrapper [55], GP+tree vector [52]
Parkinson's disease 1 KNN+LAHCAWOA [31]
Pima Indian ** 5 MOGA-II [21], GA [18], PSO+covariance matrix [32], 

PSO-ECM+AAELM [44], GA+ARO [51]

Poker hand 2 ACO+bayesian [24], Max-min ACO + bayesian [26]
Saheart 1 GA [18]
Satimage 1 MOGA-II [21]
SECOM 1 GMSA+MPSO+WKNN [30]
Shuttle 1 MOGA-II [21]
SkillCraftl 1 GP+wrapper [55], GP+tree vector [52]
Skin segmentation datasets 1 Max-min ACO+bayesian [26]
Sonar 3 GA [18], MOGA-II [22], GA+SOM [38]
Spanish 2 PSO+covariance matrix [32], PSO-ECM+AAELM [44]

Spectf heart 3 PSO+covariance matrix [32], PSO-ECM+AAELM [44], GA [18]

Temperature 1 GFM+PSO [43]
Thoraric 1 KNN+LAHCAWOA [31]
Tic-tac-toe 1 MOGA-II [21]
Turkish 2 PSO+covariance matrix [32], PSO-ECM+AAELM [44]

UK bankruptcy 2 PSO+covariance matrix [32], PSO-ECM+AAELM [44]
UK credit 2 PSO+covariance matrix [32], PSO-ECM+AAELM [44]

Unseen credit 1 GA+MLP, SA+MLP, PSO+MLP, RF+MLP [58]
US census data (1990) 1 Max-min ACO+bayesian [26]
V ertebral_column 1 MOGA-II [21]
Wdbc 2 GA [18], GA+SOM [38]
Website phishing 1 ABC+bayesian [25]
Wine 5 MOGA-II [21], FCM+GA [35], PSO+covariance matrix [32],

FCM+SVR+GA [37], PSO-ECM+AAELM [44]
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TABLE 5. (Continued.) Benchmark datasets and their state-of-the-art techniques.

Yacht hydrodynamics 2 GP+wrapper [55], GP+tree vector [52]
Yeast
Zoo

1 FCM+SVR+GA [37] 
1 MOGA-II [22]

Chu et al. [64] Microarray (Spo) 1 GA+KNN [29]
Clare and King [65] Seq 1 GA+KNN [29]
ECBDL competition ECBDL 14 (ROS) 1 Max-min ACO+bayesian [27]
Gasch et al. [66] Microarray (Gasch2) 1 GA+KNN [29]
Geo website Acute Myeloid Leukemia (AML) 1 PSO [20]
Germany Forest Ettlingen 

Forest Karlsruhe

1 RF+GA [50] 

1
Harbin, China Hourly traffic volume 1 FCM+GA [36]
Harvard University Gene expression (Yeast) 1 ACO+clustering [34]
IIUM Medical Centre Creatinine 1 PSO+levy flight [53]
Jahad Daneshgahi Research 
Center

Adult T-cell leukemia/lymphoma 

Gastric cancer

1 MOPSO [23] 

1
Malaysian Meteorological 
Department

Malaysia meteorological 1 SC-FITNET [59]

Melbourne, Australia Yarra river basin 1 GP [19]
Meteoblue website Basel weather 1 SC-FDO+MLP [60]
Minqin County, China Monthly groundwater level 1 SOM+FOA+LSSVM [47]
Omid Hospital, Iran Breast cancer 1 Bayesian+tensor+chaotic PSO [28]
Pascal Large Scale Learning 
Challenge

Epsilon 1 Max-min ACO+bayesian [27]

Princeton University Medical expenditure panel survey 1 MAIS+GA [49]
PKDD discovery challenge Hepatitis patient 

Thrombosis patient

1 IDW+TR+PSO [33] 

1
South Africa South African insurance (SAI) 1 MAIS+GA [49]
Texas Texas insurance 1 MAIS+GA [49]
Thailand Thai dengue 1 PSO+K-means+ontology model [46]
University in Bogota- 
Colombia

Student information 1 GA [16]

China Byproduct Gas Flow Byproduct gas flow 1 ELM+PSO+FCM [45]
China Nuclear Power Plant Hourly radiation dose rate 1 PSO+LSSVM [54]
Xujiahui, China Hourly traffic 1 GSO+MLP [57]
Note: ** Pima Indian dataset is no longer available due to permission restrictions.

FIGURE 6. Distribution of studies based on missing rates.

missing rates for the experimentation. The works in [40], [41] 
used the Framingham heart dataset with real missing values, 
but the authors did not disclose the dataset’s missing values.

Nevertheless, the missing rates greater than 50% category 
received the least attention, accounting for 14.6% (7/48) of 
the studies. The detailed metaheuristic techniques for dealing 
with high missing rates are presented in TABLE 6. The tech
niques include ACO clustering for imputing gene expression 
database [34], GA imputation for infilling missing multi
attribute dataset [17], MOGA-II proposal for estimating 
missing data patterns in classification [21], data imputation 
of spatio-temporal underground water [47], DE clustering 
and feature selection with incomplete data [48], GP+tree 
vector imputer model for instance selection and symbolic 
regression on incomplete data [52], and SC-FDO based 
MLP trainer for missing rainfall time series imputation [60]. 
In general, all the proposed approaches produced comparable 
results for the MVI tasks. Moreover, most studies investi
gated high missing rates under MCAR or MAR mechanism. 
6 out of 7 studies employed small-scale datasets of less 
than 10,000 instances among these imputation techniques. 
On the other hand, the work [60] utilized a large-scale dataset
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TABLE 6. State-of-the-art metaheuristic techniques for dealing with high missing rates.

Year Studies Techniques Dataset Instance Missing
dataset

Missing rates 
(%)

Metric Selected Top 
Results

2011 [34] ACO + 
clustering

Gene expression (Yeast) 2882 Synthetic
missing:
MCAR,
MAR,
MNAR

2, 5,10,15, 
20, 30, 40, 50, 
60, 70, 80, 90

RMSE *MCAR=25-120; 
*MAR~ 23-27

2015 [17] GA Audiology, autos, 
Cleveland heart disease, 
hepatitis, lung cancer, 
mammographic masses

32 - 961 Real
missing

1.98-98.23 Accuracy Hepatitis dataset, 
classifier C4.5: 
91.42%

2015 [21] MOGA-II Australian, ecoli, 
german, iris, magic, 
new-thyroid, pima, 
satimage, shuttle, wine, 
contraceptive, glass, 
lymph, tic-tac-toe, 
vertebralcolumn

148
6435

Synthetic
missing:
MCAR,
MAR

5-87 Accuracy MOGAImpACC-
87%

2017 [47] SOM +
FOA+
LSSVM

Monthly groundwater 
level

51 Synthetic
missing:
MCAR

10,20, 30, 40, 
50, 60, 70, 80

CV-
MAPE

Average: 5.6

2018 [48] DE + 
clustering

Arrhythmia, 
automobile, credit 
approval, heart disease, 
hepatitis, horse-colic, 
housevotes, 
mammographic, 
marketing, ozone

155 - 
8993

Real
missing

5-100 Accuracy Ozone dataset, 
KnnlFsCI 
imputation: 
97.03%

2021 [52] GP + tree 
vector

Yacht, forest, 
ENB2012, concrete, 
weatherlzmir, 
debutanizer, kin8nm

308
8191

Synthetic
missing:
MAR

30 Relative
square
error
(RSE)

Weatherlzmir 
dataset: 0.0312; 
Imports-85 
dataset: 0.3175

SkillCraftl, imports-85, 
auto-mpg, CCN

205
1994

Real
missing

1-84

2021 [60] SC-FDO+ Basel weather 13057 Synthetic 10,20,30,40, R Average R: 90%
MLP missing: 50,60,70,80,

MCAR 90

(over 10,000 instances) to fill in gaps for missing rainfall 
data.

To sum up, the MVI studies need to be addressed from 
the three aspects: the study’s dataset characteristics, missing 
mechanisms, and missing rates, as illustrated in FIGURE 7.

C. EVALUATION METRICS
To answer RQ3, this subsection identifies the most often used 
metrics for evaluating the MVI’s performances.

As illustrated in FIGURE 8, the nine most frequently used 
metrics for evaluating the performance of MVI were identi
fied as the root mean square error (RMSE), accuracy, correla
tion coefficient (R), mean square error (MSE), mean absolute 
error (MAE), error, mean absolute percentage error (MAPE), 
relative accuracy (RA), and specificity. Furthermore, 70.3% 
of the selected studies used these metrics. Many of the metrics 
are rarely used by the authors; therefore, these metrics have 
been categorized as ‘Others’.

The RMSE is the most frequently used metric for eval
uating imputation performance, mainly to measure the 
differences between the predicted variables and the actual

variables. For example, the works in [19], [20], [33], [36], 
[45], [46], [59], [60], to name a few, implemented this metric 
to determine how concentrated the predicted time series vari
ables would be around the line of the actual variables. This 
metric is widely reported in time series imputation literature, 
such as missing rainfall, groundwater level, traffic volume, 
byproduct gas flow, and radiation dose rate data. Nagarajan 
and Dhinesh Babu [31] also used this metric to measure the 
performance of imputation related to missing health datasets.

Other than that, accuracy is used to measure the perfor
mance of the imputation method with respect to classifier 
accuracy [17], [23], [27], [28], [40], [41], [48], [49]. The 
MOGA-II imputer [21] achieved an accuracy of 82.9%, out
performing the GA imputer [18] and GA+ARO imputer [51] 
when handling missing values for the pima Indian dataset. 
Moreover, using the naive Bayes classifier, the GA+ARO 
imputer [51] achieved the highest accuracy of 85% compared 
to GA imputer at 83.07% [17], and DE clustering imputer at 
80.82% [48] for the missing mammographic masses dataset. 
Another standard metric is the error for summarizing the 
performance of imputation and classification models. For
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FIGURE 8. Commonly used metrics in the studies.

example, researchers adopted error metric to measure the 
classification errors of the proposed imputation models in the 
missing iris dataset [22], [35], [39], poker hand dataset [24], 
[26], website phishing dataset [25] and health datasets [31]. 
On the other hand, RA is an indicator of how many esti
mations fail within a standard range [36], [37], [45], [61], 
[62], while specificity (also true negative rate) refers to the 
proportion of sample without the condition but obtained a 
negative result [18], [23], [28], [43].

The R metric assesses the linear correlation between 
predicted and actual values. A higher R-value implies a 
better imputation performance. The works of [19], [36], 
[54], [58]-[60] used R to assess the correlation and associ
ation of the predicted and actual values for infilling missing 
values in the river basin, weather, and traffic volume, and for
est fire datasets. MSE is another metric for assessing the mean 
squared difference between predicted and actual values. For 
example, Garg et al. [63] measured their proposed DL-GSA
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imputation with the works in [61] and [62] in terms of R 
and MSE. The results revealed that the DL-GSA imputation 
method produced more substantial correlation results and 
lower MSE than the works in [61] and [62]. Some researchers 
also adopted MAE to measure the proposed imputation meth
ods in terms of the average magnitude of the errors for 
continuous variables [53], [58]-[60].

Nevertheless, the shortcoming of the MAE metric is that it 
does not consider the direction of the mean error. As opposed 
to this shortcoming, Willmott [68] suggested that comparing 
average model performance error should use MAE because 
MAE is a natural measure of average error magnitude. 
In some instances, MAPE is essential to assess the prediction 
accuracy of the imputation models. Zhang [57] used MAPE to 
evaluate imputation results in missing spatio-temporal data. 
Concerning MAPE, the PSO-ECM+AAELM imputer [44] 
outperformed the PSO+covariance matrix imputer [32] for 
all 12 datasets, such as autompg, body fat, boston hous
ing, forest fires, iris, pima Indian, Spanish, spectf, Turkish, 
UK bankruptcy, UK credit, and wine datasets.

IV. DISCUSSION
This section discusses the research trends and potential 
opportunities in the metaheuristic approach for handling and 
optimizing MVI.

A. THE MVI APPROACHES
In reference to the RQs, which attempt to identify the existing 
metaheuristic techniques used for handling and optimizing 
MVI, it can be revealed that most techniques used to handle 
missing values were hybrid metaheuristics with clustering 
or neural networks. Each of the hybrids has characteristics 
that make it a good fit for a particular problem. For exam
ple, the hybrids of deep-autoencoder and metaheuristics pro
vide good results in imputing high-dimensional handwritten 
digits. In particular, the DL-GSA [63] imputer model was 
faster and more accurate than the DL-CS [61] and DL-BAT 
[62]. However, the computational times of the hybrids MLP 
and metaheuristics (GA+MLP, SA+MLP, and PSO+MLP) 
[58] were relatively shorter than the DL-GSA, DL-BAT, and 
DL-CS approaches.

On the other hand, the work in [59] indicated that the 
hybrid function of fitting neural network and metaheuris
tic (SC-FITNET) yielded more accurate estimates than the 
LSTM imputer model for missing rainfall data when R, MAE, 
and RMSE were taken into account. Therefore, selecting the 
suitable imputer model best suited for the incomplete datasets 
is essential. Additionally, the hybridization of the state-of-art 
metaheuristic and neural networks could be of interest to the 
researchers, therefore providing new studies.

B. FINE TUNING HYPERPARAMETER
Typically, researchers perform a series of studies to fine- 
tune parameters in imputer models, which requires consider
able effort. For instance, metaheuristic parameters [24]-[26], 
such as the population size and the iteration count, require

fine-tuning; parameters in neural network models [61]-[63] 
are the number of hidden layers in the neural network and 
the number of neurons in the hidden layer; and parameters 
in clustering [39] such as the fuzzification parameter, the 
number of clusters, and the number of nearest neighbors all 
require fine-tuning.

Consequently, several studies [69]-[71] investigate auto
matic parameter tuning methods to optimize the algorithm’s 
performance. However, there is no universally accepted 
guideline for selecting the optimal set of parameters to 
achieve the best performance. Therefore, future research 
could consider a semi-automatic or automatic parameter tun
ing approach for a given context and domain in the imputer 
model.

C. THE DATASETS
The most often used databases show various domain datasets; 
however, they are not on large scales, such as iris, for
est fires, pima Indian, and wine datasets. In contrast, large 
scale datasets (over 10, 000 instances) were used in the 
works of [26], [27] (discrete, continuous datatype), and [59], 
[60] (continuous data type). Meanwhile, handwriting digit 
datasets with high dimensions and scales [61]-[63] were 
used.

Dataset scales (the number of instances) in a dataset influ
ence the imputation performance. Data resources with few 
instances may cause imputed values to be underestimated or 
overestimated. For example, neural networks, especially deep 
learning algorithms, need many data to improve accuracy. 
Therefore, researchers must expand the size of the databases, 
as small-scale datasets can lead to biases and a lack of 
generalization. Furthermore, training on a large-scale and 
high-dimensional dataset is difficult due to computational 
complexity. Hence, dimensionality reduction approaches can 
help reduce computational costs and improve the accuracy of 
imputation performance.

On the other hand, imputation models [52] built on a rela
tively small number of instances (<300) or a large number of 
instances (>8191) were ineffective and inaccurate. For this 
reason, researchers need to comprehend the requirements in 
both the problem and solution domains before proposing an 
imputer model.

Furthermore, less attention has been paid to real-world 
datasets from industries or agencies. Therefore, real-world 
datasets from industries or agencies with larger scales (over 
10000 instances) and higher dimensions might be the areas 
worth exploring by future researchers.

D. THE MISSING MECHANISMS
The approaches to handling incomplete data are associated 
with the missing mechanisms. MAR and MCAR are the two 
most frequently used for evaluating imputation performance 
among the missing mechanisms. However, the MNAR miss
ing mechanism receives the least attention.

Domain-based imputation approaches are developed to 
deal with the problem of incomplete data. It is not envisaged
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that some features are missing for all patients in medi
cal datasets. In real-life cases, some features may be miss
ing by certain patients [49], [53], [72] in medical datasets. 
The occurrence of the missingness pattern depends on the 
observed values of other features in the dataset. For example, 
the salary feature for professional patients and the number 
of cigarette features for young patients are likely to be miss
ing. In this case, the MAR and MNAR missing mechanisms 
are appropriate for evaluating imputation performance on 
incomplete medical datasets. While in weather datasets, it is 
expected that a particular feature, for example, rainfall fea
ture [59], there may be a possibility of missing for all days 
when hardware failure occurs at a specific gauging station. 
However, the missing rainfall feature of one gauging station 
does not influence the other gauging stations. For this reason, 
the MCAR missing mechanism is appropriate for evaluating 
the incomplete rainfall datasets. Therefore, a domain-based 
imputation approach and missing mechanism for a given con
text should be investigated further to improve the adaptability 
and accuracy of the imputation models.

E. THE MISSING RATES
The ability of imputer approaches to handle complexity is 
tested using different percentages of missing values. Most 
studies reported that at lower missingness, the performances 
of MVI are relatively better. Imputation errors increased when 
missing rates increased, for examples in [22], [24], [25], 
[28], [33], [34], [45], [46]. In addition, the percentages of 
missingness greatly influenced the work in [26], [35].

The findings also indicated that synthetic datasets with 
missing rates less than 30% are the most frequently used 
missing rates for experimentation in studies (45.8%), while 
only 14.6% of the studies considered missing rates greater 
than 50%. However, the missing rates could be larger than 
50% in real-world problems. Therefore, this SLR suggests 
designing MVI methods that can deal with low and high miss
ingness problems, for example, missing rates of 10% - 90%. 
These findings also agree with other work [10] that impu
tation studies with more significant missing rates would be 
more practical.

F. THREATS TO VALIDITY
Four potential threats to validity should be considered to sup
port the findings of this SLR: construct, internal, external, and 
conclusion validity. To achieve maximum construct valid
ity, we conducted this literature review following Kitchen- 
ham’s guidelines [13] and performed analyses in response 
to research questions, quality assessment, and inclusion and 
exclusion criteria. However, the relevance of various terms 
associated with the missing could constrain our findings. 
We attempt to maximize internal validity by applying all 
missing terms associated with imputation techniques and 
datasets as described in TABLE 4 and TABLE 5. In this study, 
we emphasize MVI designs and methods of metaheuristic 
techniques exclusively, holding the other paradigms for future 
research. Additionally, we seek to maximize internal validity

by employing an exhaustive manual and automated search 
strategy to ensure the paper selection was unbiased. Fur
ther, external validity considers whether our findings can 
be generalized to other studies. Finally, data extraction was 
carried out to ensure the conclusion’s validity by adhering 
to the review protocols, including the research questions, 
quality assessment, inclusion criteria, search strategy, and 
study selection [15]. Other review protocols could increase 
or decrease research bias and lead to different findings.

V. CHALLENGES IN IMPLEMENTING MISSING VALUE 
IMPUTATION DESIGNS AND METHODS
There will be challenges with any new research method, 
especially in identifying the appropriate approaches for a 
wide range of research questions and experimental designs. 
Careful planning and consideration are required to reduce the 
impact of missing values and improve data quality. The fol
lowing section discusses some roadblocks to implementing 
the MVI and the tentative guidelines.

A. IMPUTATION PERFORMANCES AND COMPUTATIONAL 
COST
One of the significant MVI challenges is the expensive 
computational time, especially with large-scale and high
dimensional datasets. Data normalization, feature selection, 
or feature extraction can be employed to reduce the com
putational cost. For example, [48] demonstrated that feature 
selection significantly reduced the computational time of 
imputation while improving the imputation and classification 
accuracy.

B. UNPLANNED MISSING VALUE
Data with missing values were removed in [73]-[75]. The 
works in [3], [76], [77] also removed missing time-series data 
from experiments. However, it is important to note how the 
authors dealt with the records’ continuity because accurate 
forecasting relies on continuous time-series records. Further
more, Hussain et al. [78] reported that many missing data 
entries made it challenging to impute the electric power con
sumption data accurately. Only 60.11% of the total consumers 
with null entries lower than 200 were considered for MVI, 
whereas 39.89% of the customer records were removed from 
the experiment. However, removing missing values from 
observations results in a reduction in sample representative
ness. The effects of unintentional missing values can induce 
biases in parameter estimates and uncertainty, which can be 
mitigated by adopting an effective MVI procedure and design 
plan.

C. OPTIMAL MISSING VALUE IMPUTATION APPROACHES
The MVI has been applied in a diverse range of applica
tions, including traffic control and operation [36], insur
ance management [49], student information [16], biomedical 
informatics [20], [23], [31], [33], [46], byproduct gas flow 
data analysis [45], forest inventory [50], and hydrological 
modeling [19], [47], [59], [60]. This study also revealed
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FIGURE 9. A guide to addressing, managing, and reporting the missing value imputation studies.

no definitive answer on which method is the best to date 
for all the missingness. The adoption of MVI approaches 
depends on many factors: data characteristics, missingness 
mechanisms, the proportion of missing values, dependent and 
independent variables, dataset volume, computational time, 
and domain applications.

Consequently, the existing reports of MVI studies are of 
great worth assisting future researchers in developing an 
effective MVI strategy. However, 14.6% of the studies did not 
report missing rates, whereas 20.8% of the studies (10/48) did 
not clarify the missingness mechanism. This information is 
a valuable factor when planning for the experimental design 
of MVI. Therefore, an overview of the recommended guide
lines in addressing, managing, and reporting MVI studies is 
outlined in FIGURE 9.

The MVI strategic planning process begins with the collec
tion of incomplete datasets. It is crucial to identify the three 
main aspects of incomplete datasets: dataset characteristics, 
missing mechanisms, and missing rates. The next step is the 
selection of MVI approach. Having a clear justification of 
the chosen strategy, the potential impact of imputation, and 
computational cost are crucial to the success of MVI method. 
Without a clear direction, the MVI strategy may stall or even 
fail. Data normalization, feature selection, or feature extrac
tion method could be considered to improve the performance 
of the MVI approach.

Researchers can then use complete or incomplete training 
datasets to construct optimal imputer models. The incom
plete dataset can be a real missing or synthetic missing 
dataset. Training and testing dataset design, variables with 
missing data, missing rates, missing mechanism, and dataset 
characteristics should be thoroughly reported. Researchers 
should train the imputer models on one dataset and test them

on another dataset to verify the robustness of the proposed 
imputer models. A set of performance metrics is used to 
measure the effectiveness and efficiency of the MVI method. 
The commonly used metrics are RMSE, accuracy, R, MSE, 
and MAE. Statistical analysis such as Wilcoxon signed-rank 
test [21], [32], Wilcoxon rank-sum test [37], and Friedman 
test [21] can be performed to assess the significance of 
the proposed MVI approach. Finally, we suggest that the 
researchers report the three factors affecting MVI in detail 
(dataset characteristics, missing mechanisms, and missing 
rates), training and testing procedures, measurement metrics, 
and the findings of the studies.

Additionally, the reporting could couple with the discus
sion of the impact and challenges of the MVI, which will 
increase the overall confidence in the study. The planned 
MVI procedures and strategies can raise statistical power and 
model convergence compared to employing a complete case 
analysis [79]. Preparing for missing values before starting an 
experiment can also help avoid the problems of nonrandom 
missing data, leading to significant bias and invalid statis
tical inferences [2], [80]. Furthermore, researchers can use 
the planned MVI design in conjunction with missing data 
procedures to increase the quality and scope of the study and 
lower research costs. Researchers might minimize the study 
cost by strategically implementing an effective MVI design.

VI. CONCLUSION
In recent years, MVI for incomplete datasets has grown 
in popularity to improve data quality, statistical power and 
reduce bias in data science applications. In this study, 
we conducted a SLR to examine the existing metaheuristic 
techniques used for handling and optimizing missing value 
imputation over the last ten years. This SLR is also concerned
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with establishing guidelines for researchers in the domain to 
understand MVI technologies and designs better. This study 
concentrated on three major scientific databases: IEEExplore, 
ScienceDirect, and Scopus. The findings of this SLR revealed 
that the hybridizations of metaheuristics with clustering or 
neural networks are the most used MVI approaches. The 
review indicates that the hybrid metaheuristic is a promising 
field of study for solving various imputation problems. Addi
tionally, we discovered that the synthetic missing dataset is 
the most frequently used incomplete dataset for evaluation, 
and RMSE is the topmost used metric for evaluating the per
formance of the proposed MVI. The three aspects to consider 
when handling missing data are the dataset characteristics, 
missing mechanisms, and missing rates. This review also 
addresses MVI perspectives, challenges, and opportunities. 
An optimal imputer technique by domain-based approaches 
should be investigated further. However, designing a planned 
MVI design and method to expand the quality of study scope 
remains a significant challenge. Therefore, the literature pro
vides an overview of recommended guide for planning MVI 
designs and methods, which serve as a toolkit for developing 
an effective MVI strategy.

APPENDIX
Acronym Full form
AAELM Autoassociative extreme learning 

machine.
ABC Artificial bee colony.
ACO Ant colony optimization.
ARO Asexual reproduction optimization.
BAT Bat algorithm.
CS Cuckoo search.
DE Differential evolution.
DL Deep learning.
ECM Evolving clustering method.
ELM Extreme learning machine.
FA Firefly algorithm.
FCM Fuzzy C-means.
FDO Fitness dependent optimizer.
FOA Fruit fly optimization algorithm.
GA Genetic algorithm.
GFM Granular fuzzy models.
GMSA Gaussian mutation simulated annealing
GP Genetic programming.
GSA Gravitational search algorithm.
GSO Group search optimization.
IDW Inverse distance weight.
KNN K-nearest neighbor.
LAHCAWOA Late acceptance hill climbing 

algorithm+whale optimization 
algorithm.
Least squares support vector machine. 
Long short-term memory.
Mean absolute error.
Mean absolute percentage error. 
Missing at random.

MCAR Missing completely at random.
MICE Multivariate imputation by chained

equations.
MAIS Multi-layered artificial immune system.
MLP Multilayer perceptron.
MNAR Missing not at random.
MOGA-II Multi objective genetic algorithm-II. 
MOPSO Multi objective particle swarm

optimization.
MPSO Memetic particle swarm optimization.
MSE Mean square error.
MVI Missing value imputation.
NSGA-II Non-dominated sorting genetic

algorithm-II.
PSO Particle swarm optimization.
R Correlation coefficient.
RA Relative accuracy.
RF Random forest.
RMSE Root mean square error.
RQ Research question.
SA Simulated annealing.
SCA Sine cosine algorithm.
SC-FDO Sine cosine-fitness dependent optimizer.
SC-FITNET Sine cosine function fitting 

neural network.
SLR Systematic literature review.
SOM Self-organizing map.
SVR Support vector regression.
TR Tolerance rough set.
WKNN Weighted K-nearest neighbor.
WOA Whale optimization algorithm.
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