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ABSTRACT The development of an optimized deep learning intruder detectionmodel that could be executed
on IoT devices with limited hardware support has several advantages, such as the reduction of communication
energy, lowering latency, and protecting data privacy. Motivated by these benefits, this research aims to
design a lightweight autoencoder deep model that has a shallow architecture with a small number of input
features and a few hidden neurons. To achieve this objective, an efficient two-layer optimizer is used to
evolve a lightweight deep autoencoder model by performing simultaneous selection for the input features,
the training instances, and the number of hidden neurons. The optimized deep model is constructed guided
by both the accuracy of a K-nearest neighbor (KNN) classifier and the complexity of the autoencoder model.
To evaluate the performance of the proposed optimized model, it has been applied for the N-baiot intrusion
detection dataset. Reported results showed that the proposed model achieved anomaly detection accuracy
of 99% with a lightweight autoencoder model with on average input features around 30 and output hidden
neurons of 2 only. In addition, the proposed two-layers optimizer was able to outperform several optimizers
such as Arithmetic Optimization Algorithm (AOA), Particle SwarmOptimization (PSO), and Reinforcement
Learning-based Memetic Particle Swarm Optimization (RLMPSO).

INDEX TERMS Deep learning, autoencoder, IoT, anomaly detection.

I. INTRODUCTION
Recently, deep learning models showed great success for the
problem of anomaly detection in IoT environment. These
models include convolutional neural network (CNN) [1]–[5],
long short term memory (LSTM) [6]–[8], deep autoen-
coders [9]–[14], deep belief neural network [15], [16], and
a hybrid deep models [17]–[20].

CNN is a deep end-to-end model which is able to per-
form automatic feature extraction from raw input data. CNN
has been utilized by Kim et al. [1] for Denial-of-Service
attack detection in IoT networks. The basic idea of their
approach is that it converts the 1D traffic features to a 2D
image. Then, CNN operations are applied to encode the input
2D image, which is eventually fed to a binary classifier to
classify it as an attack or normal IoT traffic. Conducted
analysis of the proposed approach on CSE-CIC-IDS 2018
and KDD dataset showed that CNN is efficient in encoding
traffic features, and it achieved an accuracy of 82% in the
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F1-score measure. An eight-layer CNN architecture model
was given by Jung et al. [3] for IoT botnet detection in the
smart health network. In their research, they focused on the
pattern of power consumption to distinguish normal from
abnormal IoT traffic. In their study, they collected a dataset
for the consumed power of several IoT devices, including
camera, Router, and Voice assistance. The power was moni-
tored during idle time as well as during attack time. Exper-
imental analysis showed that CNN was able to recognize
malicious from normal patterns with an accuracy of 90%.
A multi-CNN scheme that combines several CNN models
for IoT industrial attack detection was given in [5]. Basi-
cally, they fused two CNN models and evaluated them using
the NSL-KDD dataset. The results indicated that the fused
scheme outperformed the single CNNmodel with a detection
performance of 87%. The problem of unsupervised anomaly
detection using CNNwas discussed byMunir et al. [2]. They
have developed a time series predictor that uses CNN to
predict the next step and pass it to another deep anomaly
detector to classify it as a normal or outlier pattern. The
proposed approach in [2] showed a competitive performance
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in several streaming data that were used for model evaluation.
A hierarchical of semi-supervised temporal convolutional
network (TCN)models were studied by Cheng et al. [4]. They
stack different TCN, and it was trained with a mix of labeled
data and unlabeled instances.

LSTM models were investigated by Shi et al. [6],
Xu et al. [7], and Li et al. [8]. In the work of Shi et al. [6],
they have studied the effectiveness of the standard LSTM
model for abnormal botnet traffic detection. Specifically,
they have encoded traffic packets as a time series sequence
which represents the behavior and characteristics of botnet
attacks. Conducted experiments on several botnet bench-
marks showed that LSTM outperformed RNN and other
related models. This is due to the advantage of LSTM in
handling the problem of vanishing gradients which occurs in
the training of long sequences [21]. In thework of Xu et al. [7]
an improved LSTM was introduced. The key point of their
scheme is that they incorporated a time factor and a smooth
activation function into LSTM to enhance its performance.
To assess the improved model in [7], extensive experiments
were conducted on a real dataset collected from IoT environ-
ment. Result indicated further accuracy improvements were
achieved by embedding previouslymentioned techniques (i.e.
time factor and smooth function).

Deep autoencoder models were studied by Shone et al. [9],
kim et al. [10], Gurina et al. [11], Telikani et al. [12],
Lopez-Martin et al. [13], and Meidan et al. [14]. In the work
of Shone et al. [9], they suggested a non-symmetric autoen-
coder model. The main concept was to evolve only the
encoding phase independently without the decoding phase.
Experimental analysis indicated that their model reported
further accuracy improvement up to 5% against the standard
autoencoder. Further work was given by kim et al. [10].
They have implemented a deep autoencoder model for outlier
detection. Specifically, their model was built using normal
IoT traffic, and then unseen traffic instances that lie outside
the trained patter will be classified as suspicious behavior.
The idea of flood attack detection using an autoencoder
model was explored by Gurina et al. [11]. The designed
model was used for the detection of different classes of flood
attacks such as SYN flood, TCP flood, UDP flood, ICMP
flood, and HTTP flood. Reported results in [11] indicated
the superiority of the implemented autoencoder model in
handling and classifying all mentioned flood attacks. A cost-
sensitive stacked autoencoder model that comprises several
hidden layers was discussed in [12]. The key point of their
scheme is to set different class costs in order to balanceminor-
ity/majority data. Additional study has employed a condi-
tional variational autoencoder deep model which was applied
for intruder detection in IoT network [13]. The key concept
of variational autoencoders is that it depends on probability
distributions to capture and encode traffic pattern.

Deep Belief Neural Network (DBNN) was applied in
the work of Manimurugan et al. [15] for intruder detection
in IoT-based smart medical environment. They have inves-
tigated several kinds of attacks such as Heartbleed, SQL

injection, Infiltration, etc. In [15], optimization algorithms
were employed to tune DBNN structure in terms of the
number of layers and the number of neurons in each layer.
Reported results indicate that DBNN achieved an F1-score
of more than 97% in all kinds of attacks. Further work was
introduced by Balakrishnan [16]. They applied DBNN for the
prevention of various IoT network attacks, including denial of
service, overflow, brute force, DNS query, cache poisoning,
malware infection, and others. The reported average F1-score
in [16] was 95.3%.

Hybrid deep learning models were studied by Hwang et al.
[17], Yin et al. [19], and Parra et al. [18]. Hwang proposed
a combination of CNN model with the deep autoencoder
model. The hybrid model in [17] was built from a normal
IoT traffic, and then DDoS pattern will be captured as an
outlier. Conducted experiments indicated the successfulness
of the implemented hybrid model with extremely low false-
positive. Similarly, CNN with a deep autoencoder model
has been employed in the work of Parra et al. [19] for
encoding time-series sequences. In their analysis, they used
Yahoo Webscope S5 time series dataset. Their hybrid model
achieved an accuracy of 99%. A distributed deep learning
model that combines CNN with LSTM was investigated by
Parra et al. [18]. In their approach, LSTM was working as a
backend detector on the cloud; however, CNN was deployed
on IoT edge to encode attack patterns. The integrated model
in [18] was evaluated using the N-baiot dataset, and it was
reported of 94% F-1 score measure. The integration of deep
learning with metaheuristics was studied in [20]. Basically,
the Whale optimizer was integrated with LSTM to perform
an automatic selection for the weights and biases. Their
approach was evaluated with various benchmark datasets,
including CIDDS-001, UNSWNB15, and KDD. Results
in [20] showed that an accuracy above 99% was achieved in
all conducted datasets. Further deep learning-based hierarchi-
cal and ensemble models were presented in [22] and [23],
respectively. A table that summarized all previously dis-
cussed deep learning models is given in Table 1.

Nevertheless, deep learning models are facing the chal-
lenge of IoT resource constraints such as power, memory,
and CPU support. To mitigate this challenge, optimization
algorithms are considered as one promising solution [20].
However, the integration of the deep autoencoder model
with optimization algorithms required a powerful optimizer
that can work with high dimensions optimization. To fill
this gap, this study adopts an efficient two-layers opti-
mizer. This optimizer has several advantages, such as (i) it
evolved with small population size, (ii) it has one dedicated
layer for fine-tuning and one layer of exploration task,
and (iii) it incorporated Q-learning to control the switch-
ing from exploration to exploitation. It should be noted
that the implemented two-layers optimizer was presented in
our previous research as a conference paper for the prob-
lem of large-scale optimization [24]. The main contribu-
tion of this work could be summarized in the following
points:
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TABLE 1. Summary of related studies.

8436 VOLUME 10, 2022



B. Lahasan, H. Samma: Optimized Deep Autoencoder Model for Internet of Things Intruder Detection

• It uses a lightweight, efficient optimizer that evolved
with a micro swarm (three particles only).

• It integrates the lightweight optimizer with a deep
autoencoder model to enhance the accuracy and reduce
the complexity (number of input features and number of
hidden neurons).

• It applies the proposed optimized model for handling the
problem of IoT anomaly detection, and it compares the
outcomes with reported results in the literature.

• It compares the performances of the employed opti-
mizer with other well-known and recent optimization
algorithms.

The remaining part of this paper is organized as follows.
The details of the proposed optimized model are explained in
Section II. A series of conducted experiments implemented to
evaluate the effectiveness of the proposed optimized model is
shown in Section III, followed by the conclusion and future
work presented in Section IV. Table 2 lists all abbreviations
used in this study.

TABLE 2. List of abbreviations.

FIGURE 1. Initialization of particles X1, X2, X3 in the search space.

FIGURE 2. The proposed optimization encoding scheme.

II. OPTIMIZED DEEP LEARNING AUTOENCODER
The main architecture of the proposed optimized model
is given in Fig. 3. As can be seen that it contains four
phases, namely, micro swarm initialization, transition using
Q-learning algorithm [25], operations execution, and fitness
evaluation. These phases are explained as follows.

A. MICRO SWARM INITIALIZATION
In this phase, the micro swarm population that consists of
three particles is initialized with a random vector X according
to the search space of the optimized problem. In addition,
a velocity variable V is used with X to control the amount
of jump in the search space, as shown in Fig. 1.

The length of the initialized vector X is equal to the length
of the encoded problem in this study. In particular, the vector
X is encoded with three parts which are IoT feature selection
F , training instances selection I , and the number of autoen-
coder hidden neuronsM as given in Fig. 2.

For IoT features selection, it has been encoded as a binary
optimization problem where each bin has a variable F that
could take a value of zero or one. As such, if the bin is
set to one, it means the corresponding filter is selected, and
it will be activated during the features extraction process.
Otherwise, it will be omitted. The second part of the scheme is
used to encode the training instances (malicious and normal).
Therefore, for each variable, I could take a discrete value
in the range of 1 to the number of instances. It is worth
mentioning that half of the variables are used for selecting
malicious IoT instances, and the rest are used for normal
IoT instances. The length instance selection part was set to
200 with 100 for malicious and 100 for normal. The last
part of the encoding scheme is used to encode the number
of hidden neurons in the autoencoder. It should be noted that
the variableM was configured to take a discrete value in the
range of 2 to 10. In this study, it is assumed that the optimal
embedding space is 2D, where it becomes easier to visualize
the data, and it makes the KNN classifier works effectively.

In this is studied, the N-baiot dataset [14] is employed,
which was captured by several IoT devices, namely Ther-
mostat, a Baby monitor, a Webcam, and Doorbells. These
devices were exposed to two different types of botnet attacks,

VOLUME 10, 2022 8437



B. Lahasan, H. Samma: Optimized Deep Autoencoder Model for Internet of Things Intruder Detection

FIGURE 3. The proposed optimized deep autoencoder model.

namely Gafgyt and Mirai as shown in Fig. 4. It should
be noted that a botnet attack is a denial-of-service attack
which is aiming to flood IoT networks by generating massive

traffic. The N-baiot dataset has five Mirai attacks which are
scanning for vulnerable devices, Acknowledgement (Ack)
packets flooding, Synchronize (Syn) packets flooding, User
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Datagram Protocol (UDP) packets flooding, and UDP flood-
ing with fewer options. In addition, Gafgyt attack has five
categories which are sending spam data, UDP flooding,
Transmission Control Protocol (TCP) packets flooding, and
sending spam data with specified Internet Protocol (IP)
address and port. The complete details are given in Tables 3
and 4. A total of 115 traffic statistics were computed in
N-baiot dataset. These features are related to different mea-
sures such as themean, standard deviation, etc. The computed
traffic statistics were captured from monitoring IoT traffic
over different windows, namely 100 ms, 500 ms, 1.5 sec,
10 sec, and 1 min. For each window, 23 feature has been
calculated from source IP, MAC address, channel. The full
details can be found in [14].

FIGURE 4. IoT attack set-up as given in N-baiot dataset [14].

B. TRANSITION USING Q-LEARNING
This layer is responsible for switching between the local
search and global search modes. As described in [24], in the
global search, the micro swarm particles are able to explore
the search space bymodifying thewhole search vector; mean-
while, in the local search mode, they are allowed to modify
part of the search vector (i.e., see Fig. 8). As such, there will
be switching between global search and local search, which
is performed under the control of the embedded Q-learning
algorithm [25]. As indicated in Fig. 5, the Q-learning is
modeled with two states, and a Q-table of size 2 x 2 is created
to keep track of each state by rewarding each well-performing
state and penalizing others (i.e., by giving a value of −1).
It is worth mentioning that each particle is associated with its
own Q-table, which enhances the diversity of the population
and enables each particle to evolve independently from the
swarm [24].

C. OPERATIONS EXECUTION
The implemented two-layers optimizer has three basic search
operations, which are exploration, exploitation, and jumping
search [24]. As mentioned earlier that the micro swarm has
only three particles, and each particle Xi is updated based on

FIGURE 5. State diagram transition of Q-learning.

the following equations.

X t+1i =X ti + Vi (1)

Vi=ω ∗ Vi+c1 ∗ r1(pBesti − Xi)+c2 ∗ r2(gBesti−Xi)

(2)

where X t+1i is the new location of currently executed particle
i, Vi is particle velocity and ω is the inertia value. Parameters
c1 and c2 are cognitive and social acceleration coefficients,
respectively. Variables r1 and r2 are random numbers in the
range (0,1). pBest1 is the local best position achieved by each
particle and gBesti is the global best position gained by the
micro swarm. When the particle is performing an exploration
search mode, it simply increases both ω (set to 0.9) and the
value of c1 (set to 2.5). At the same time, it should decrease
the value of c2 (set to 0.5), which makes it fly away from the
swam, as can be seen in Fig. 6. On the other hand, exploitation
search is done by flipping all these values i.e. ω is set to 0.3,
c1 set to 0.5, and c2 set to 2.5 as shown in Fig. 7.

The jumping operation basically adds a random value Xi
according to the range of the search problem, as explained
in [24]. The local search operations are identical to the global
search operations (i.e., exploration, exploitation, and jump-
ing), except they are applied to update part of the search
vector space, as indicated in Fig. 8.

D. FITNESS EVALUATION
The last step of the proposed optimized autoencoder model
is the fitness evaluation. Mainly it is used to assess the
quality of the given solution by each particle in the micro
swarm. Therefore, each particle will encode a different

FIGURE 6. Exploration search operation.
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FIGURE 7. Exploitation search operation.

FIGURE 8. Local search mode.

solution that contains three parts, namely the selected IoT fea-
tures, selected training instances, and the number of hidden
neurons. According to these settings, an autoencoder model
will be trained. The basic idea of autoencoder models is to
reduce the dimensionality of the data by encoding the input
features to a new compressed space named embedding space,
as shown in Fig. 9 [26]. As can be seen, the encoding stage
has input neurons that receive the input features andmap them
to an embedding space. The decoder stage is responsible for
recovering the data back from embedding space to feature
space. As such, the autoencoder will be built guided by a
loss function that represents the difference between input and
reconstructed data.

Tominimize the computational time of fitness function, the
number of training iterations of the autoencoder has been set
to 100 only. Once the autoencoder has been trained, its output
will be passed to a KNN classifier to classify the data and
compute the accuracy rate. Here K is set to be five neighbors,
as shown in Fig. 10.

To evaluate the fitness function for each particle in the
micro swarm (Xi), the following formula is used.

fitness = −1 ∗ (α ∗ A− β ∗ C) (3)

where A is the recognition accuracy of the KNN classifier
and C is the complexity of the autoencoder. Basically, C
represents the ratio of the selected features with respect to the
total number of features (i.e., 115 features in N-baiot dataset).
In addition, the complexity of autoencoder output neurons

FIGURE 9. The architecture of the autoencoder model.

is computed as the ratio of the number of selected output
neurons divided by 10. For illustration, the calculation of C
when the number of selected features is 30, and the number
of output neurons is set to 5, then C will be 0.7 ( 23/115 +
5/10). α and β parameters are used to control the weights and
importance of A against C . Here α was set to 0.9 and β to 0.1.

III. EXPERIMENTAL RESULTS
A. DATASET
In this study, N-baiot dataset [14] is employed for the eval-
uation of the proposed optimized model. The details of this
dataset are given in Table 3. N-baiot dataset has 115 features,
and all these features were considered in this study as in
previous works [32] and [14]. These features are computed
statically as the mean, the variance, the magnitude, etc.,
from monitoring IoT traffic over different windows, namely
100 ms, 500 ms, 1.5 sec, 10 sec, and 1 min. From each
window, a total of 23 statistical features were calculated as
described in Table 3.

FIGURE 10. KNN classifier operation.
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The dataset has been normalized where all features scaled
to be in the range [0,1] using the following formula.

Fo,j =
Fi,j −min(Fj)

max(Fj)−min(Fj)
(4)

where Fo,j is the output feature after normalization, Fi,j is
the input feature, min(Fi,j) is the minimum feature value, and
max(Fi,j) is the maximum feature value.

B. PERFORMANCE MEASURES
In this study, standard evaluation measures have been used
to assess the performance of the proposed optimized model.
Specifically, four different measures were implemented,
including the accuracy, precision, recall, and F1-score. Their
mathematical formula is defined as follows.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(5)

Precision =
TP

TP+ FP
(6)

recall =
TP

TP+ FN
(7)

F1− score = 2×
precision× recall
precision+ recall

(8)

where TP is the total number of IoT instances correctly clas-
sified as malicious, TN is the total number of IoT instances
correctly classified as normal traffic, FP is the total number
of IoT instances wrongly classified as malicious, but they
are normal traffic, and FN is the total number of instances
wrongly classified as normal, but they are malicious traffic.

TABLE 3. N-baiot dataset features description.

C. PERFORMANCE ANALYSIS
This section analyzes the performances of the proposed
model with a non-optimized autoencoder base model.
It should be noted that the non-optimized model was trained
with all input IoT features (115 feature), and the out-
put neurons here was set to 10 neurons. In addition, the
non-optimized model trained with the whole training set, i.e.,
70 % of the data. Each experiment has been repeated ten
times, and the mean value of all measures has been reported
in Table 5. In terms of complexity, it can be seen that the
optimized model uses only two hidden output neurons, and it
reduced the input features to less than 36 in all studied cases
(i.e., doorbell, Thermostat, baby monitor, security camera,

and webcam device). In terms of accuracy, specificity, sensi-
tivity, and F1-score, the outcomes confirmed the superiority
of the optimized model in achieving better performance. This
is due to the benefit of compact embedding space produced
by the optimized autoencoder. This space will help the KNN
classifier to work effectively due to lower dimensions.

D. AUTOENCODER EMBEDDED SPACE ANALYSIS
As a visual analysis for the outcomes of the optimized autoen-
coder in the embedding space. The testing data has been
visualized in the optimized 2D embedding space, as can
be seen in Fig. 11. As can be seen that the output of the
autoencoder produces almost separable data. This will help
the implemented KNN classifier correctly classify and sepa-
rate the malicious traffic from the normal traffic, as indicated
in Fig. 10.

E. SELECTED IoT FEATURES ANALYSIS
Further analysis has been conducted to demonstrate the
most selected IoT features by the implemented two-layers
optimizer over ten independent runs. Fig. 12 displayed IoT
features that have been chosen in all runs. As can be seen that
features are related to jitter traffic (features start with HH_jit)
have been set in all the runs. This implies that jitter is one of
themost valuable indicators used to distinguishmalicious IoT
traffic. More details about these features can be found in [14].

F. CONFUSION MATRIX ANALYSIS
The confusion matrix has been computed in this section to
measure the performance of the model in terms of true posi-
tive rate (TP), false positive rate (FP), true negative rate (TN),
and false-negative rate (FN). The outcome has been compared
with the non-optimized model as given in Fig 13 and Fig. 14.
As can be seen, the optimized model is able to eliminate
most of the false alarms with a moderate cost of missing the
malicious traffic (i.e., true negative rate). This is related to the
advantage of generalized and compact 2D embedding space
generated by the optimized autoencoder. On the other hand,
the non-optimized model uses ten dimensions embedding
space, as explained earlier.

G. COMPARE WITH OTHER OPTIMIZERS
This section investigates the outcomes of the proposed
model as compared with other related optimizers, including
PSO [27], RLMPSO [28], and AOA [29]. The settings of
these algorithms are given in Table 7. Each experiment has
been executed ten times, with 500 fitness evaluations given
for each optimizer. The mean value of accuracy, recall, preci-
sion, and F1-score are reported in Table 6. It is clearly shown
that the proposed two-layers optimizer is able to outperform
other optimizers in all computed measures. One possible rea-
son for the superiority of the two-layers optimizer is related
to the advantage of working with a micro swarm popula-
tion that required fewer fitness evaluations. More impor-
tantly, the implemented two-layers optimizer has the ability
to switch adaptively from exploration mode to exploitation
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TABLE 4. Details of N-baiot dataset [14].

TABLE 5. Comparison with non-optimized model.

at the beginning of the search process. However, PSO and
AOA are time-dependent algorithms, and they start with
exploration and move gradually to the exploitation mode.
RLMPSO algorithm works with small population size but it
requires a large number of fitness evaluations needed by the
incorporated local search optimizer, as explained in [24]. This
makes RLMSPO achieve the lowest results in all measures.

H. OPTIMIZERS FITNESS VALUE ANALYSIS
Fig. 15 illustrates a boxplot of the reported fitness value by
each optimizer. It presents the minimum, mean, and max-
imum values produced by each optimizer. It can be seen
that the two-layers optimizer is able to achieve the best fit-
ness value in all conducted experiments, including doorbells,
Thermostat, baby monitors, and a security camera webcam.
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FIGURE 11. 2D embedding space data distribution.
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FIGURE 12. Most selected IoT features.

FIGURE 13. Confusion matrix of optimized model.

In particular, the two-layer optimizer reports a much better
mean fitness value (around -0.85) with a compact boxplot.
This is due to the aforementioned advantages of the imple-
mented optimizer and also due to the dynamic transition
from exploration to exploitation guided by the Q-learning
algorithm.

I. STATISTICAL ANALYSIS
This section compares the outcomes of the optimized
autoencoder against the non-optimized statically. Specifi-
cally, the Wilcoxon rank-sum test [31] is used where the null

FIGURE 14. Confusion matrix of non-optimized model.

hypothesis H0 assumes that the outcomes of the compared
methods have the same distribution. However, the alternative
hypothesis H1 assumes the opposite. The p-value is set to
0.05, which means that the alternative hypothesis H1 would
be accepted when the p-value was less than 0.005 (95%
confidence level). The results of this test are given in Table 8.
It is clearly shown that the optimized model significantly
outperformed the non-optimized model in all measures with
a p-value less than 0.05. This is owing to the benefits of
the generated 2D embedding space, which helps the KNN
classifier to classify the data correctly.
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TABLE 6. Comparison with other optimizers.

Furthermore, the obtained fitness value by the proposed
two-layers optimizer has been compared statically with other
optimizers, which are RLMSPO, PSO, and AOA. The results
are shown in Table 9, and it is indicated that the p-value of
the Wilcoxon rank-sum test is less than 0.05 in all compared
optimizers. This implies that the two-layers optimizer signif-
icantly outperformed other optimizers in terms of reported
fitness value.

J. COMPUTATIONAL TIME ANALYSIS
In this section, the computational time of the proposed
autoencoder model has been computed and compared
with a non-optimized model. As explained earlier, the
non-optimizedmodel was trained with an input feature of 115
and the output neurons set to 10. The hardware and software
specifications are given in Table 12. The required time by

both optimized and non-optimized autoencoder is given in
Table 10. It is clearly shown that an optimized autoencoder
can reduce the computational time by 33% as compared
with the non-optimized model. Specifically, it needs only one
microsecond to recognize one IoT input instance; however,
the non-optimized model needs around 1.5 microseconds.
This confirms the benefits of the implemented two-layers
optimizer in reducing the complexity of the autoencoder
model. Additional computational time analysis has been con-
ducted by computing the required training time in each stage
presented in Figure 3. In particular, the time needed for
the initialization of the swarm, transition, search operations,
and fitness evaluation is computed and depicted in Table 11
as can be seen that most computational time is consumed
in the fitness evaluation step. This is due to the required
time to train and evaluate both the autoencoder model and
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TABLE 7. Algorithm’s parameter settings.

TABLE 8. Wilcoxon rank-sum of the optimized model against
non-optimized model (p < 0.05).

KNN classifier. Other steps need a negligible amount of time
as shown in Table 11.

K. COMPARE WITH THE LITERATURE
This section compares the outcomes of the proposed model
with other reported results in the literature that employed
N-baiot dataset. In particular, the F1-score achieved in work
given by Al Shorman et al. [32] is reported Table 13. The
presented results showed that the proposed optimized model
achieved a better F1-score in all case studies, i.e., doorbell,
Thermostat, baby monitor, security camera, and webcam.
One reason is due to the advantage of using an autoencoder
model to map the features to a compact and separable embed-
ding space. It is worth mentioning that in [32], they fed the
selected features by their optimizer directly to the one-class
SVM classifier. In this case, the once-class required a lot
of computation time to find the optimal decision boundary.
In contrast, this study utilizes both the ability of a two-layers
optimizer to reduce the input features and the benefits of the
autoencoder model to map the selected features to a lower-
dimensional embedding space (2D). This will result in speed-
ing up the recognition time of KNN as well as enhancing its
generalization due to the reduction in model complexity.

L. MODEL EVALUATION USING IoTID20 DATASET
To further validate the effectiveness of the proposed
approach, the IoTID20 [33] intruder detection dataset has
been used in this section. IoTID20 is a public dataset, and
it has 66 features. The data has been divided into 70% to

FIGURE 15. Reported fitness value by optimizers.

30% for training, testing respectively. The outcome of the
proposed approach is compared with other deep learning
models, namely 1D-CNN and LSTM. These models were
selected because they can work directly on 1D sequence
patterns (i.e., IoTID20 features).
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TABLE 9. Wilcoxon rank-sum of the proposed two-layers optimizer
against other optimizers (p < 0.05).

TABLE 10. Computational time analysis.

TABLE 11. Training time analysis.

TABLE 12. The details settings of the system.

TABLE 13. Compare with the work in [32].

The accuracy measure of the conducted analysis is shown
in Table 14, and it can be seen that all models almost report
the same results to some extent. Nevertheless, the proposed
approach has the advantage of working with small input

TABLE 14. Performance results o IoTID20 dataset.

features where the two-layers optimizer was able to reduce
the features up to 62%. This is resulted in a shallow, deep
model compared with 1D-CNN and LSTM.

IV. CONCLUSION, LIMITATION AND FUTURE DIRECTIONS
This work introduced a novel optimized deep learning-based
autoencoder model applied for the problem of anomaly detec-
tion in IoT networks. Basically, The optimized model was
constructed using an efficient two-layers optimizer that works
with a micro swarm population, i.e., three particles. Specifi-
cally, The two-layers optimizer performed simultaneous IoT
features selection, training instances selection, and autoen-
coder neurons selection. The formulated fitness function that
guided the two-layers optimizer was the accuracy of the KNN
classifier that takes the output of the autoencoder as well
as the complexity of the autoencoder model. The experi-
mental results on N-baiot dataset confirmed the superior-
ity of the proposed optimized model as compared with the
non-optimizedmodel.Moreover, the implemented two-layers
optimizer achieved the best results in terms of fitness value
as compared with other well-known optimizers, including
PSO, RLMPSO, and AOA. Statically, the non-parametric
Wilcoxon rank-sum statistical test confirms the significance
of the obtained results.

Nevertheless, the proposed model needs further improve-
ments to minimize the number of IoT input features. This
will further reduce the complexity of the autoencoder model
and make it able to work in a real-time IoT environment.
This could be done by the development of a heterogeneous
optimizer that works cooperatively as a single model. Further
ideas that could be investigated in the future are validating
the model using other benchmark datasets and extending the
model to work for multiclass attacks recognition. Another
future research avenue that could be investigated is the
application of the proposed optimizer for the fine-tuning of
explainable artificial intelligence presented in [38].
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