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ABSTRACT Support vector machine (SVM) algorithms are prevalent in classifying electroencephalo-

gram (EEG) signals for the detection of mental stress at various levels. This study aimed to reduce the

subjective bias in form of human stress reactivity, by employing clustering methods to pre-label stress levels

according to the inherent homogeneity and, perform SVM to classify the stress level. Brainwave signals at

the prefrontal cortex (Fp1 and Fp2) from 50 participants were captured related to the stress induced by the

virtual reality (VR) horror video and intelligence quotient (IQ) test. The power spectral density (PSD) values

of Theta, Alpha, and Beta frequency bands were extracted, and Wilcoxon signed-rank test were reported to

show a significant difference in the absolute power between resting baseline and post-stimuli. The extracted

features were further clustered into three groups of stress level. The labelled data based on k-means clustering

method were fed into SVM to classify the stress levels. The performance of SVM classifier was validated by

10-fold cross validation method and the result affirmed the highest performance of 98% accuracy by using

only the feature of Beta-band absolute power at right (Fp2) prefrontal region on account of the significant

changes of Beta activity during pre- and post-stimuli. In essence, stress pattern has been found in the brain

activity of Beta frequency band within right prefrontal cortex which has been shown to be significantly more

active under stimuli. The hybrid approach of classification using k-means clustering and SVM has been

proven to be an effective method in lieu of pre-labelling the stress level to reduce individual differences in

stress response, and in turn to improve the reliability and detection rate of mental stress.

INDEX TERMS Beta, electroencephalography (EEG), k-means clustering, power spectral density (PSD),

stress, support vector machine (SVM).

I. INTRODUCTION

Various psychological tests have been devised in research

and clinical practice for the purpose to obtain statistically

useful information and measure stress levels such as Stress

Response Inventory [1], Holmes-Rahe Stress Inventory [2],

Hamilton Rating Scale for Depression [3] and Perceived

Stress Scale [4]. The assessments involve self-report or

clinician-rated by using subjective perceptions and estima-

tions to extract specific information on cognitive, emotional,

or behavioral stress responses. However, these methods

are subjective and not sensitive enough to capture subtle

patterns of mental state. Subjective self-reported stress has

The associate editor coordinating the review of this manuscript and

approving it for publication was Ludovico Minati .

been reported to be insufficiently reflected by respective

physiological parameters of the stress measurement [5], [6].

As compared to self-assessment questionnaires, physiolog-

ical variables such as cortisol level [7], skin conductivity [8],

heart rate [9], blood pressure [10] and electroencephalo-

gram (EEG) signal [11]–[14] served as an additional

objective and straightforward ways to measure stress. The

high temporal resolution of electroencephalography (EEG)

constitutes a possibly practicable and feasible neuroimaging

technique. The combination of EEG experimental designs

and signal analysis methods allowed researchers to study

the complex brain structure and analyse different kinds of

human brain states [15] in various research contexts. EEG

information are useful in medical diagnosis and design

treatment modality or neurotherapy. EEG is often used
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to investigate patients with neurological disorders such

as epilepsy [16] and dementia [17] and other on-going

researches about patients’ cognitive states and symptoms

classification.

Basically, EEG signals are measured in amplitude with

microvolts µV) of electrical energy and its bandwidth

typically measured in hertz (Hz) refers to the attainable

frequency range. Frequency is the number of complete cycles

of repetitive waves in one second. The changes in specific

rhythms oscillating at different frequencies over time can be

illustrated by adopting data processing and signal analysis

techniques to obtain quantitative measurements [18]. Based

on the study from Teplan [19], the brainwave observed in

EEG signals is classified into four basic frequency bands

namely Delta (0.5 – 4 Hz), Theta (4 – 8 Hz), Alpha (8 – 13

Hz) and Beta (13 – 30 Hz).

Each of the frequency band represents a state of the person.

Delta brainwaves tend to be the highest in amplitude and the

slowest waves. The waves occur during deep sleep. Theta

is an unconscious state and occurs whenever a person is

in drowsiness. Meanwhile, Alpha demonstrates a state of

relaxation without any focus or concern. Following this, Beta

waves are observed during the state of normal consciousness

and active concentration. Subsequently, a frequency band

higher than Beta is namedGamma (> 30Hz) indicates certain

brain diseases [20].

In the work of stress recognition based on EEG signal,

stress was reported to be associated with a change in

frontal asymmetry [21]. The direction of the asymmetry

with either higher or lower right relative to left frontal brain

activity was depended on individual’s underlying factors

such as personality, emotion and motivation [22]–[24]. Alpha

asymmetry index was used in [25] to measure the stress levels

between left and right hemispheres based on prefrontal area

of the brain. The right-hemisphere dominance was revealed

in the subjects withmoderate and high level of stress. Another

study showed the Beta-band activity was increased at the

right frontal region after stress inducement [26]. A correlation

analysis was conducted, and the results validated that

the energy spectral density (ESD) value of Alpha right

and Beta right had significant correlation with high stress

which supported stress was associated with right brain

hemisphere [27].

Alpha and Beta have been highlighted to be an important

stress indicator. TheAlpha powerwas decreased on prefrontal

cortex under the stress condition [28], [29].When the subjects

exposed to stressor, the Alpha power was lower than the

resting state which concluded a negative correlation between

the Alpha power of individual’s relaxation and the stress

level [30]. In contrast, stress pattern was demonstrated by

high levels of relative Beta power at anterior temporal side

of human brain [31]. Work by another research team [32]

had also observed that the ESD of Alpha decreased and

ESD of Beta increased when the subjects exposed to the

external stressor. EEG stress analysis showed an increase

in Beta power and decrease in Alpha power [33], [34] on

the regions of prefrontal cortex [35]. This lobe is correlated

with stress since human and animal experiments indicate that

exposure to stress induces effects on the processing of the

prefrontal cortex and this is known as a stress-susceptible

brain area [36].

Generally, Alpha and Beta frequency bands are broadly

studied rhythm of the human brain responding to stress.

Another essential point in another study, the power spectral

density (PSD) value of Theta was found positively and

significantly associated with stress condition [37]. The mean

value of EEG was reported tends to increase from resting

condition to stressful condition, especially the increase of

Theta power in the frontal regions and Beta power in

the occipital regions being statistically significant [38].

An increase of Theta was observed at frontal midline region

during the stress condition compared to the pre-stimulus

baseline and poses potential marker for intact prefrontal

cortex function [39].

Even though there are several EEG related studies have

been done to classify stress into different levels, yet the

EEG features were classified according to the pre-marked

stress levels, that is, the difficulties of stressors and/or self-

perceived questionnaire. Al-Shargie et al. [40] utilizedmental

arithmetic task with three levels of difficulty to induce

variations in the brain cortical activities and collected by EEG

signals. The stress features induced by the three levels of

difficulty were labelled accordingly. By comparing the three

levels of stress elicited by mental arithmetic tasks, the study

showed that the Alpha power has greatly decreased from

the first level to the second level of stress. But the power

increased again from the second level to the third level. This

result has also been verified that cortical activation failed

at task level-three. The questionnaire survey on task load

showed that with the increase of task difficulty, especially in

the third level, the engagement of participants decreased sig-

nificantly [28]. On the other hand, Arsalan et al. [41] arranged

the participants to prepare and present on an unknown topic

and classified the perceived stress into three different levels

using the score obtained from perceived stress scale (PSS)

questionnaire.

Likewise, Nagar and Sethia [42] used the stress scores

calculated from the PSS questionnaire to specify three target

stress levels. In fact, veridical stress state is potentially

inaccurate and limited by the factors like unwilling to

appear fragile and also lacking conscious perception [43].

Consequently, the result based on the self-reported stress

labelling and the labelling using the levels of task dif-

ficulty might be less convincing due to incapable of

dealing with the difference between subjects. Inter-subject

variability is apparent and indisputable because of the

time-variant and subject-specific brain processes rely on

the experimental setting, psychological and neurophysio-

logical factors. In accordance with that, clustering method

has been suggested to have effective quantification of

subjects who share similar and identical EEG signal

characteristics [44].
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Clustering method was introduced in a study to cluster

the inherent homogeneity of all subjects’ stress response

into subgroups through trained and tested various physio-

logical features such as EEG, electrocardiography (ECG),

electromyography (EMG), galvanic skin response (GSR) and

saturation of peripheraloxygen (SpO2). The study found

that a small number of clusters showed a good balance

between within-cluster homogeneity and between-cluster

heterogeneity [45]. To the best of our knowledge, cluster

related method and results solely based on the EEG signals

and stress remain limited in the literature [46], [47]. The EEG

data in these studies were processed using discrete wavelet

transformation (DWT) and k-means clustering, followed by

calculating stress indices value of cognitive data and physical

data for clustering and establishing low and high stress level.

The present study has utilized EEG signal processing

technique with clustering method to develop a three-level

stress classification model. Stress response was triggered

through stimuli in laboratory settings and the features were

extracted for investigation to determine the significant and

related stress features. Subsequently, clustering was applied

in order to overcome the inter-subject differences to divide

and assign the features into three groups of stress levels.

Inter-subject variability is apparent and indisputable because

of the time-variant and subject-specific brain processes rely

on the experimental setting, psychological and neurophysio-

logical factors. In accordance with that, clustering has been

suggested to have effective quantification of subjects who

share similar and identical EEG signal characteristics [48].

The clustered data with known class labels were then split

into training and testing sets to build a classification model

using machine learning algorithm. These approaches have

been designed and intended to create an EEG based three-

level stress classification.

II. MATERIALS AND METHODS

In the systematic framework for EEG-based stress level

classification, it consists of five major phases, starting

from the data collection, data processing, data clustering,

model development and ending with model evaluation and

validation. The process flow of the research design is first

presented in Figure 1 to provide a clear picture of the

approaches employed by this study.

A. DATA COLLECTION

A total of 50 undergraduates and postgraduates were

recruited into the experiment. The group was comprised of

32 males and 18 females with aged ranging from 19 to

38 years old. All EEG recordings were acquired by using

5 electrodes (Ag/AgCl material) with conductive gel were

used to attach on the surface of forehead and connect with

biosignal acquisition software (g.MOBIlab+) to transmit

EEG signals to PC via Bluetooth. The measurement locations

of the five electrodes were fixed at the points chosen based on

the international standard 10-20 electrode placement system.

Fp1, Fp2 and Fpz (ground) were denoted at prefrontal cortex

FIGURE 1. Flowchart of the research design.

of brain region (forehead area). Fp1 was used for the left

side of the forehead and Fp2 for the right side of the

forehead, connected to Channel 1 and Channel 2 respectively.

Meanwhile, both A1 and A2 were attached to the earlobes

for reference points. The impedance of EEG electrodes was

measured below 5 k� where the EEG signals were sampled

at sampling rate of 256 Hz and stored for offline analysis. The

duration for whole experiment procedure was approximately

1 hour.

The first session was the EEG recording on eyes-closed

at resting state condition for 3 minutes as the baseline

measurement. This resting baseline session was to determine

the difference in EEG changes between relax and the

subsequent EEG recording of stressful conditions. Next,

the participants had to wear the VR device to experience the

360-degree horror video for 3 minutes 30 seconds during the

second session of experiment. The EEG signals recording

for another 3 minutes at eyes-closed resting condition was

performed immediately after the VR video session ended as

post-VR video. The EEG power changes in between pre-

VR video (eyes-closed resting baseline condition) and post-

VR video was evaluated. Followed by the 20 minutes of

IQ test where the participants were only given 20 minutes

to complete the IQ test by answering the 40 questions

of increasing difficulty on the website. The EEG signals

recording for another 3 minutes at eyes-closed resting

condition was performed after the IQ test session ended as

post-IQ test. The EEG power changes in between pre-IQ test

(eyes-closed resting baseline condition) and post-IQ test was

evaluated.
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FIGURE 2. Band-pass filtering set from 0.5 to 30 Hz.

B. DATA PROCESSING

The recorded EEG signals were transferred to the computer

using Simulink models integrated with MATLAB. The raw

EEG signals were stored as Matlab formatted data and

followed by imported the EEG signals into the Brainstorm

software, an application built in Matlab to process the data.

1 minute was selected from the 3 minutes EEG signal

as sample and notch filter was applied to remove 50 Hz

noise from power line prior to performing band-pass filter.

Figure 2 depicts the EEG signals after the band-pass filter

was applied to separate the whole frequency range of interest

into four sub-bands namely Delta (0.5 – 4 Hz), Theta (4 –

8 Hz), Alpha (8 – 13 Hz) and Beta (13 – 30 Hz).

Since human stress features can be captured by both time

and frequency domain, transformation and decomposition

methods that provide both time and frequency information

have been widely considered specifically Wavelet transform.

Several EEG studies have combined the statistical parameters

from the time domain and wavelet-based features from the

time-frequency domain to classify stress. High accuracy with

result above 80% was reported [40] but there was model

yielded an overall accuracy less than that [14]. A study [49]

summarized that each feature extraction method has specific

advantages and disadvantages depends on the signal wanted

to be analysed, and thus the optimum method might be

different for every application. In this study, the characteristic

of signal in frequency domain is crucial in order to give

better understanding on the effect of stimulus on brain signal.

Frequency transform is required to describe the changes of

spectral components information over stimulus instead of

continuous prolonged EEG detection.

Fourier transform is a mathematical relationship and

mapping formula between a signal in the time domain

and its spectrum in the frequency domain. Discrete Fourier

Transform (DFT), as the name suggests, it is the discrete

version of the Fourier transform with reversible mapping

operation for time series to calculate the spectrum of a finite-

duration signal. The algorithm transforms a signal from time

domain to the frequency domain components which assists

signal analysis such as power spectrum analysis. Fast Fourier

transform (FFT) is an implementation of the DFT where the

algorithm efficiently reduces the computation time [50].

With the periodogram calculated using the FFT algo-

rithm, power spectral density (PSD) can be determined.

The periodogram, however, suffers from large variance

and low statistical precision. Welch presented an updated

periodogram averaging approach that provides the effect of

reducing the PSD variance [51]. The fundamental principle

of the procedures includes the division of the time series

data into segments, calculation of the modified periodograms

and averaging of the modified periodograms [52]. In this

study, the algorithm was used to yield PSD values for Delta,

Theta, Alpha and Beta frequency bands. Time sequence

of each frequency band was divided into 50% overlapping

segments and the data within each segment were windowed.

Fourier transform of each windowed segment was computed

to get each periodogram. The PSD for each range of

the frequency band was finally obtained by averaging the

periodograms. The PSD according to Welch is demonstrated

by the following equations [52]:

Pi (f ) =
1

LU

∣

∣

∣

∣

∣

L−1
∑

n=0

xi (n)w (n) e−j2π fn

∣

∣

∣

∣

∣

2

(1.1)

Let xi (n) be the sequence, xi (n) = x (n+ (i− 1)D), n =

0, 1, 2, . . . ,L − 1, i = 1, 2, 3, . . . ,M . (i− 1)D is the

starting point for the i th sequence of input signal vector. The

value of these segments D units apart in this study is D =

L/2, i.e., the data segments contain 50% overlap between

successive segments. The length of each segment is L and

M denotes the number of overlapped segments. Pi (f ) is the

modified periodogram of the data due to the sequence of

xi (n) are weighted by a nonrectangular windoww(n).U is the

normalization factor for the power in the window function,

the periodogram of each windowed segment is computed by

using the following formula,

U =
1

L

L−1
∑

n=0

|w(n)|2 (1.2)

U denotes the mean power of the window w(n) and so, LU

denotes the energy of the window function w(n) with length

L. Based on the modified periodogram of each segment, the

Welch’s spectral estimate or PSD of each frequency band can

be estimated by averaging M modified periodogram, which

represented as below,

PWelch (f ) =
1

M

M
∑

i=1

Pi(f ) (1.3)

There were total 8 PSD values were extracted from the four

frequency bands for channel Fp1 and Fp2 per participant and

per EEG recording session. Features in the four frequency

bands are particularly important to characterize different

brain states. Delta-band activity is prominent in early

developmental stages and mostly observed during sleep, thus

it was excluded for further analysis. The parameters further

derived from the PSD values were themean absolute power of

Theta, Alpha andBeta, which can be calculated as the average

of all the PSD values within its frequency range across all the

subjects. The recorded EEG signals of 50 subjects at resting
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baseline, post-VR and post-IQ were averaged and evaluated

respectively.

EEG absolute power obtained from the Welch’s FFT

was tested for normality using SPSS the statistical software

and the statistical findings were confirmed as non-normally

distributed data, and thus non-parametric analysis method

was used for further analysis [53]. Wilcoxon signed-rank test

was conducted to compare two related conditions specifically

EEG power changes between pre- and post-VR and pre- and

post-IQ. Z-score was calculated to describe the deviation

from the mean in units of standard deviation. The equation

is shown below, where Z is the z-score, X is the value of the

element,µ is themean of the population, and σ is the standard

deviation.

Z = (X − µ)/σ (2)

In this study, p-value which is found in the region of

two-tails was served as a scalar for the purpose of feature

selection. The differences in EEG responses of pre- and post-

stimuli were considered statistically significant if p-value

was less than 0.05. Electrode channels for which the null

hypothesis was rejected (p< 0.05)were kept. The statistically

significant difference implied the two groups were derived

from different stress level.

C. DATA CLUSTERING

The selected statistically significant features were imported

into Weka, a machine learning software to apply k-means

clustering algorithm. K-means is used as the clustering

process to group various objects based on their attributes

in k number of groups. In order to cluster a given dataset,

firstly specify k, which is the number of clusters to be

generated. K points are chosen randomly from existing

data as cluster centres and each instance is calculated and

assigned to its closest cluster centre using Euclidean distance

metric. Each instance is grouped among clusters based on

minimumEuclidean distances. Next, the centroid or the mean

for each cluster is calculated and used as a new cluster

centre. Following by the reassignment of all instances to the

closet cluster centre. The process iterates till the algorithm

converges or the cluster centres do not alter anymore. The

objective function is described as follow [54]:

J =
∑k

j=1

∑x

i=1

∥

∥

∥
X
(j)
i − Cj

∥

∥

∥

2
(3)

The algorithm aims at minimizing J function which is known

as squared error function. K-means applies an iterative

refinement method to produce its final clustering based on the

dataset and the number of clusters defined by the user which

is represented as variable k . The

∥

∥

∥
X
(j)
i − Cj

∥

∥

∥

2
is a chosen

distance measure or so-called Euclidean distance between

X
(j)
i and the cluster centre Cj. This is an indicator of the

distance of the n data points from their respective cluster

centres. In this study, the number of clusters was selected

as 3 which were the low, moderate and high level of stress.

Each cluster was associated with a centroid and every feature

point was allocated to the nearest centroid.

D. MODEL DEVELOPMENT

Subsequently, the clustering models were then fed into

Support Vector Machine (SVM) algorithm to classify the

stress level. The fundamental concept of SVM classifier lies

in the formation of an optimum hyperplane that can recognize

and separate the two different classes based on the implemen-

tation of features extracted. Firstly, a key parameter in SVM

is to choose the type of kernel function to use. The choice

of kernel function defines the feature space and mapping

characteristic which are critical to non-linear classification

and regression in SVM. For instance, the implementation

of SVM with radial basis functions (RBF) and polynomial

kernels served as part of the optimization process due to

its ability to automatically determine the number of centres,

their positions, and weights. Several studies reported the

performance of the SVM with polynomial kernel function

achieved the best classification accuracy and was better

than the average performance of the SVM with RBF kernel

function [55]–[57]. In this study, Polynomial kernel was

chosen, and its equation is shown below [58]:

K
(

xi, xj
)

= (γ xTi xj + r)
d
, γ > 0 (4)

The parameters within the kernel function must be tuned

and optimized in order to produce the best result of

performance. Here, d parameter in the above (4) represents

the degree of polynomial kernel controls the flexibility of

the classifier. d = 1 is the lowest degree will correspond

or retrograde linear kernel, which is not an ideal selection

for non-linear feature. d = 2 yields enough of the flexible

decision boundary to differentiate between the two classes

with hyperplane [59]. Polynomial kernel with d = 3 was

reported to have the lowest classification error [56] and

improved performance [60]() yet with no doubt relatively

longer computation time for finding the optimal values of the

parameters in the kernel function.

E. MODEL EVALUATION AND VALIDATION

A specific optimization procedure was used by using the

concept of cross validation, the appropriate values for the

parameters were calculated during model training. 10-fold

cross validation method was selected to tune and find the best

parameters for the polynomial kernel to generate a model and

to better evaluate the performance of a model. The dataset is

first divided into 10 distinct subsets. Sequentially one subset

is tested using the classifier trained on the remaining (10 –

1) subsets. The process iterates until each subset is given a

chance to be the test set once. The full behaviour of the cross-

validation result or the performance of a classification model

was evaluated by exploiting the confusion matrix. Confusion

matrix a N-by-N dimensional matrix, where N is the number

of target classes.

A confusion matrix contains and reports information about

the counts of true positives (TP), false positives (FP), true
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negatives (TN) and false negatives (FN) [61]. TP and TN

both indicate true and correct predictions. TP means the

predicted positive class matches the actual positive class,

whereas TN refers to the predicted negative class matches the

actual negative class. FP and FN mean the predicted class is

falsely predicted. In details, FP also known as the type 1 error

means the actual class was negative, but the model predicted

a positive class. Meanwhile in contrast, FN the type 2 error

refers to the actual class was positive, but the model predicted

a negative class. With the application of these calculated TP,

TN, FP and FN, a wealth of related performance metrics

and classification statistics can be extracted for each class

separately, namely accuracy, TP rate (TPR), FP rate (FPR),

precision or positive predictive value (PPV), F-measure,

Matthews correlation coefficient (MCC), receiver operating

characteristics (ROC) and precision-recall curve (PRC) [61].

Accuracy represents the overall percentage of correctly

classified instances compared with the total number of

instances. TPR also known as recall or sensitivity is

the proportion of the positive instances that are correctly

classified out of the total number of actual positive instances

in a dataset. FPR is the ratio between negative instanceswhich

wrongly categorized as positive and the total number of actual

negative instances. Precision measures the performance

of positive predictions which is the fraction of instances

classified as positive that are truly positive. F-measure

represents a combined performance of both precision and

recall, namely their harmonic mean. MCC is a balanced

measure of correlation and dependence between the actuals

and predictions. In addition, ROC is a graphical approach

that plots a pair of statistics which are TPR and FPR for

analyzing the performance of a classifier. Whereas, PRC is a

graph plotting the relationship between precision and recall,

with recall on the x-axis and precision on the y-axis.

III. RESULT AND DISCUSSION

A. STATISTICAL ANALYSIS RESULT

The involvement of the prefrontal region in between pre- and

post-stimulus was observed through the changes in absolute

power of Fp1 and Fp2. Fp1 and Fp2 were statistically

analysed accordingly to sort out the relevant features and

choose the optimal subset of features from the feature sets

which may provide maximum classification accuracy. The

PSD features particularly absolute power were compared

between the pre- and post-stimuli conditions by means of the

nonparametric Wilcoxon signed-rank test. Feature selection

was based on the significant results produced by Wilcoxon

signed-rank test. Features for which were significant at p

< 0.05 were selected. The Wilcoxon signed-rank test was

employed as a filter approach by ranking and assessing the

z-values and p-values of features extracted from VR horror

video and IQ test. The overall statistical analysis is shown in

Table 1.

Table 1 shows the mean values of the EEG abso-

lute power changes of two channels for all participants

TABLE 1. Statistical Analysis of Left and Right Prefrontal EEG Theta, Alpha
and Beta Power (Z and P Value of Wilcoxon Signed-Rank Test Comparing
the Absolute Power between Pre- the Resting Baseline and Post-Stimuli).

TABLE 2. Centroid Value of Theta (Fp1) Absolute Power for Resting
Baseline, Post-VR and Post-IQ.

for post-stimuli. The difference of Fp1 and Fp2 at Theta,

Alpha and Beta power in pre- and post-stimuli recording

stage was compared with the final Wilcoxon analysis. From

the overall statistical analysis on all the EEG electrodes

summarized in the table, the measured p-values of Fp1

and Fp2 were significant for Theta frequency band at post-

IQ. While for the Beta frequency band, the p-value of

Fp2 was significant at both post-stimuli. The overall result

demonstrated that Theta and Beta power responded more

significantly to stress than the Alpha power. Specifically, the

electrodes from the right prefrontal region, Fp2 in Theta and

Beta powers were highly sensitive to stress as reported by

their p-values.

B. K-MEANS CLUSTERING

The significant features extracted from the above step were

imported into k-means clustering method to divide the

subjects into different categories. In this study, the number of

clusters was selected as 3 which were the low, moderate and

high level of stress. The cluster was associated with a centroid

and every feature point was allocated to the nearest centroid.

Tables below indicate the clustering assignment for the

selected features. Table 2 displays the clustering assignment

of absolute power of Theta band (Fp1) where the 11 subjects,

27 subjects and 12 subjects were clustered into the low stress,

moderate stress and high stress respectively. Table 3 indicates

the 34 subjects, 12 subjects and 5 subjects were clustered into

the low, moderate and high stress respectively using Theta-

band absolute power (Fp2). Based on the Beta absolute power

(Fp2) in Table 4, there were as much as 17 subjects had low

stress, 25 subjects were moderately stressed, and 8 subjects

were highly stressed.

Following by the feature combination of Theta-band

absolute power (Fp1 and Fp2). Table 5 shows the result of this

feature set where the 27 subjects, 15 subjects and 8 subjects
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TABLE 3. Centroid Value of Theta (Fp2) Absolute Power for Resting
Baseline, Post-VR and Post-IQ.

TABLE 4. Centroid Value of Beta (Fp2) Absolute Power for Resting
Baseline, Post-VR and Post-IQ.

TABLE 5. Centroid Value of Theta (Fp1 and Fp2) Absolute Power for
Resting Baseline, Post-VR and Post-IQ.

TABLE 6. Centroid Value of Theta (Fp1) and Beta (Fp2) Absolute Power
for Resting Baseline, Post-VR and Post-IQ.

TABLE 7. Centroid Value of Theta (Fp2) and Beta (Fp2) Absolute Power
for Resting Baseline, Post-VR and Post-IQ.

were clustered into the low stress, moderate stress and high

stress respectively. Table 6 shows the 14 subjects, 25 subjects

and 11 subjects were clustered into the low, moderate and

high stress respectively using Theta (Fp1) and Beta absolute

power (Fp2). Table 7 shows the clustering assignment of

absolute power of Theta band (Fp2) and Beta band (Fp2)

where the 15 subjects, 23 subjects and 12 subjects were

TABLE 8. Centroid Value of Theta (Fp1 and Fp2) and Beta (Fp2) Absolute
Power for Resting Baseline, Post-VR and Post-IQ.

TABLE 9. Classification Accuracy for Each Feature Combination.

clustered into the low stress, moderate stress and high stress

respectively.

Last but not least, Table 8 shows the combination of all the

features mentioned above which were Fp1 and Fp2 of Theta-

band absolute power and Fp2 of Beta-band absolute power.

17 subjects had low stress, 24 subjects had moderate stress

and 9 subjects were highly stressed.

C. SVM CLASSIFICATION

This section discusses the SVM classifier with polynomial

kernel function (degree = 3) and the 10-tests accuracies.

In Table 9, the results of the classification accuracy in the

detection of stress level from different feature sets are shown

below.

According to the table, the feature of Beta-band absolute

power (Fp2) alone has achieved the best accuracy of 98%

which has made up the best classification model. Second,

the feature sets with absolute power of Theta band (Fp2) and

Beta band (Fp2) have achieved the high accuracy of 94%.

However, the feature of Theta absolute power (Fp1) alone has

produced the lowest accuracy at 66%.

There is no available benchmarking literature on the hybrid

unsupervised and supervised approach to classify the EEG

signals into three levels of stress. Therefore, the classification

accuracy of three-level stress classification obtain from this

research are compare with previous similar research as a

benchmarking [11], [40]–[42]. This research compared a

result between previous studies on SVM and current research

by implementing the combination of k-means clustering and

SVM in order to find the best accuracy for three-class stress

classification as an evaluation factor.

Al-Shargie et al. [40] employed WT and SVM with Error-

Correcting Output Code (ECOC) to build a classification

model based on Alpha PSD which had achieved 94.79%
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TABLE 10. Confusion Matrix of SVM for Three-Level Stress Classification
based on Absolute Power of Beta Band (Fp2).

for the average classification performance at three levels of

stress. Arsalan et al. [41] exploited Welch’s FFT to extract

various features including PSD and classify the features

from Theta frequency band into two-level and three-level

of stress using SVM, NB and MLP classifier. They found

that the highest accuracy was 92.85% when MLP was used

to classify two-level stress, and 64.28% of accuracy was

produced when performing three-level stress classification.

Whereas SVM classifier achieved 46.42% for the three levels

of stress classification.

Jun and Smitha [11] applied FFT to obtain PSD specif-

ically the ratio of the relative difference of Beta power

and Alpha power as feature and fed into SVM classifier

with 4-fold cross validation to achieve 75% of classification

accuracy at three-level stress. Nagar and Sethia [42] extracted

PSD ratios of four frequency bands, namely Delta, Theta,

Alpha and Beta in their study and classify stress levels into

two and three classes using SVM and KNN with 10-fold

cross validation. The accuracy of KNN’s three-level stress

classification was 74.43%, yet SVM was not used for three-

level stress classification in that study due to low accuracy

of two-class using SVM which was 52.3%. In a nutshell,

the performance of this proposed system is improved from

existing approaches, by providing an accuracy of 98% using

Beta power from right prefrontal cortex.

D. 10-FOLD CROSS VALIDATION

Confusion matrix summarizes the prediction results and the

performance of three-level stress SVM classification using

absolute power of Beta band (Fp2). As shown in the Table 10,

17 actual instances from low stress class were correctly

classified as low level of stress condition. This corresponded

to 34% of all the 50 instances and the percentage of correct

classification of the particular class was 100%. As for the

moderate level of stress, 25 instances which took up to

50% were correctly classified and the percentage of correct

classification of the particular class was also 100%. Out of

8 highly stressed predictions, 7 instances which corresponded

to 14% were correctly classified and only the 2% which was

1 actual instance from high stress class was misclassified as

moderate stress. Based on the confusion matrix, the overall

result of the three-level stress classification yielded 98% of

correct predictions and 2% of misclassifications.

Table 11 reports the summary of SVM model output

evaluated by the 10-fold cross-validation. All the basic

evaluation measures of classification were derived from the

confusion matrix. TPR or equivalently the recall, reported

the rate of true positives which were the instances correctly

TABLE 11. Accuracy Details of SVM for Three-Level Stress Classification
based on Absolute Power of Beta Band (Fp2).

classified as a given class. The highest value can be found

at low and moderate stress classes followed by high stress

class. Furthermore, FPR reported the rate of false positives

which were the instances falsely classified as a given class.

The value in the class of moderate stress represented the

misclassified instances from the high stress class. The

instance which should be correctly classified as high stress

was incorrectly classified into moderate stress as false

positive. The value 0 in low and high stress classes indicated

no instances from other class were predicted in their class.

Apart from that, FPR affected the precision of each class

in a sense. The value 1 in high stress class indicated high

precision because its positive instances were truly positive

and no negative instances from other classes were found.

However, the precision of low stress and moderate stress

classes were lower due to other negative instances found in

their classes. Next, a combined measure for precision and

recall was calculated as F-score which aimed to captures

both properties and balance both the concerns of precision

and recall. Similar to precision and recall, a poor F-measure

score is 0 and a perfect F-measure score is 1. A perfect F-

measure score was found in the low stress class with its

perfect precision and recall score.

Moreover, the MCC described the correlation and statisti-

cal rate between the actuals and predictions. High score is

produced if the prediction obtained good results in all the

cells of the confusion matrix which are TP, FP, TN and FP.

The result determines the quality of this multiclass classifier

prediction in a confusion matrix context. A coefficient of

1 in the class of low stress represented a perfect prediction

and followed by moderate and high stress class. For the

ROC area, obviously, the most perfect area was found with

low stress class as its FPR at value 0 and TPR at value

1 and consequently its ROC area at value 1. Concisely,

these three classes with higher TPR and lower FPR have

predicted the positive instances almost perfectly indicating

better classification performance. The PRC area indicating

the closer to value 1 as the higher of precision and recall. The

class of low stress has produced the highest PRC area value

which outperformed the other classes. Overall, these three

classes with lower false positive and negative rates implying

more instances were labelled correctly by the SVM classifier.

IV. CONCLUSION

The stress response and elucidation on the participants were

assessed by measuring the Theta, Alpha and Beta absolute
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power. Theta and Beta absolute power showed significant

increase in both stress conditions. Wilcoxon signed-rank

test reported the p-value to discover the significant features.

In details, the Theta at Fp1 (p < 0.001) and Fp2 (p <

0.015) electrodes manifested significant difference at post-

IQ while Beta at Fp2 electrode highlighted significant

difference at post-VR (p < 0.024) and post-IQ (p < 0.011).

The abovementioned significant features were proceeded

with k-means clustering to group the inherent homogeneity

of participants’ stress response. Surprisingly, SVM with

polynomial kernel managed to classify the data into the

corresponding stress levels which were the low, moderate

and high level of stress state by using only the feature of

Beta absolute power (Fp2) and produced the highest accuracy

at 98% compared to other feature sets. Its performance

was assessed in terms of TP rate, FP rate, precision,

recall, F-measure, MCC, ROC and PRC area. The entire

experimental results revealed that classification using hybrid

approach the k-means clustering and SVM reduced individual

difference in stress response caused by the multivariate

relationship between stress and human physiology and

eventually confirmed the incorporated clustering method can

improve the mental stress detection. The accuracy of three-

level stress classification in this study has been improved

as compared to methods without clustering [11], [40]–[42].

Though the high scores look promising, the findings need to

be verified in future studies. The statistical analysis also needs

to be confirmed for multiple comparisons in future work.

It is a good start for deep exploration in usingminimal EEG

channels for the development of real-time stress classification

since Fp2 electrode the right prefrontal region was confirmed

to be highly sensitive to stress. Besides, the comparison of

self-reporting stress label and cluster-based stress label can be

done in future since the cluster analysis in this study has been

aimed at removing bias of subjective labelling. Based on the

current study, there is limitation of using k-means clustering

prior to SVMclassification. Since k-means algorithm is about

finding mean of clusters, the algorithm and its centroids can

be dragged and influenced by outliers and noisy data. Hence,

consider adding outlier detection to clustering algorithm and

process to identify and remove outliers [62]. Apart from

that, it is recommended that future studies explore clustering

algorithm with outlier detection method on larger datasets to

increase the quality and adaptability of outlier detection for

more comprehensive and higher reliability result. A larger

sample size allows more robust segregation of different stress

levels and examine the difference in gender correlate to

stress levels. Besides that, supposedly different groups of

individuals should be included and tested such as young and

elderly in order to achieve a better understanding and model

stress in real life.
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