Universiti Teknologi Malaysia Institutional Repository

Feature extraction of white blood cells using CMYK-moment localization and deep learning in acute myeloid leukemia blood smear microscopic images

M. Elhassan, Tusneem Ahmed and Mohd. Rahim, Mohd. Shafry and Tan, Tian Swee and Mohd. Hashim, Siti Zaiton and Mahmoud Aljurf, Mahmoud Aljurf (2022) Feature extraction of white blood cells using CMYK-moment localization and deep learning in acute myeloid leukemia blood smear microscopic images. IEEE Access, 10 (NA). pp. 16577-16591. ISSN 2169-3536

[img] PDF
2MB

Official URL: http://dx.doi.org/10.1109/ACCESS.2022.3149637

Abstract

Artificial intelligence has revolutionized medical diagnosis, particularly for cancers. Acute myeloid leukemia (AML) diagnosis is a tedious protocol that is prone to human and machine errors. In several instances, it is difficult to make an accurate final decision even after careful examination by an experienced pathologist. However, computer-Aided diagnosis (CAD) can help reduce the errors and time associated with AML diagnosis. White Blood Cells (WBC) detection is a critical step in AML diagnosis, and deep learning is considered a state-of-The-Art approach for WBC detection. However, the accuracy of WBC detection is strongly associated with the quality of the extracted features used in training the pixel-wise classification models. CAD depends on studying the different patterns of changes associated with WBC counts and features. In this study, a new hybrid feature extraction method was developed using image processing and deep learning methods. The proposed method consists of two steps: 1) a region of interest (ROI) is extracted using the CMYK-moment localization method and 2) deep learning-based features are extracted using a CNN-based feature fusion method. Several classification algorithms are used to evaluate the significance of the extracted features. The proposed feature extraction method was evaluated using an external dataset and benchmarked against other feature extraction methods. The proposed method achieved excellent performance, generalization, and stability using all the classifiers, with overall classification accuracies of 97.57% and 96.41% using the primary and secondary datasets, respectively. This method has opened a new alternative to improve the detection of WBCs, which could lead to a better diagnosis of AML.

Item Type:Article
Uncontrolled Keywords:Acute myeloid leukemia (AML), CNN, deep learning, feature fusion, ROI, white blood cell (WBC) feature extraction
Subjects:Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions:Computing
ID Code:104360
Deposited By: Widya Wahid
Deposited On:04 Feb 2024 09:34
Last Modified:04 Feb 2024 09:34

Repository Staff Only: item control page