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ABSTRACT Every day, hundreds of thousands of new malware programs are developed and spread
worldwide in cyberspace. Most of these malware programs are malware variants such as polymorphic
and metamorphic malware, which are created from older versions of malware and able to change their
structures and function flows to circumvent security solutions. The accuracy of malware variant detection
is a crucial challenge. Many existing malware variant detections use static features extracted from the
physical structure of malware file, such as opcodes and function flows. Unfortunately, the static features
are subject to obfuscation and code shelling using simple obfuscation techniques. Although a malware
variant can change its structure and function flows, it is widely believed that the malware variant cannot
hide its malicious behavioral patterns during the runtime. Accordingly, dynamic, or behavioral analysis-
based features were suggested by many studies to detect malware variants accurately. However, most of
these studies are solely dependent on application-programmable interface calls (or API calls), which is not
enough to accurately distinguish between malware and benign due to API-based obfuscation techniques.
Therefore, a malware variant detection model that combines different behavioral activities can improve
detection accuracy while reducing the false-negative rate. To this end, this study proposed a Deep-Ensemble
andMultifacetedBehavioralMalwareVariant DetectionModel using Sequential Deep Learning and Extreme
Gradient Boosting Techniques. Different behavioral features were extracted from the dynamic analysis
environment. Then, a feature extraction algorithm that can automatically extract effective representative
patterns has been designed and developed to extract the hidden representative features of themalware variants
using a sequential deep learning model. These features have been fed into a developed extreme gradient
boosting-based classifier for decision making. Extensive experiments have been carried out to validate the
proposed scheme. The results were compared to the other related techniques in the field. The results show
that the proposed model is reliable, as it improves the detection rate while reducing the false-negative rate.

INDEX TERMS Malware detection, malware variants, multifaceted behavioral features, deep ensemble
learning, sequential deep learning.

I. INTRODUCTION
Malicious software or malware programs have been rapidly
growing in recent years. According to the AV-Test Insti-
tute, there are more than one billion malware worldwide,
and 560,000 malware are detected every day [1]. Most mal-
ware developers do not develop malware from scratch [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Claudio Zunino.

According to [3]–[5], 50% to 80% of the existing malicious
software are malware variants. The newly detected malware
variants in 2020 have been increased by 74% compared to
that identified in 2019. In their 2021 report, Webroot stated
that 94% of all malicious executables are polymorphic [6].
Polymorphic malware can frequently change its appearance
(e.g., every 20 seconds) in terms of code structure and logic
flow, creating massive malware variants [6], [7]. These vast
amounts of malware forced researchers to propose many

42762 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-7871-7069
https://orcid.org/0000-0002-1468-0655
https://orcid.org/0000-0002-1811-0609
https://orcid.org/0000-0002-1811-0609
https://orcid.org/0000-0002-5650-1838


A. A. Al-Hashmi et al.: Deep-Ensemble and Multifaceted Behavioral Malware Variant Detection Model

methods to detect and naturalize the malware payload before
compromising security.

Existing malware detection solutions can be categorized
into two groups namely static and dynamic analysis. It is
categorized based on the type of analysis and how their
features are extracted [8], [9]. In the static analysis, features
are extracted from malware executable files (e.g. .exe and
.dll in MS Windows), without the need to execute the mal-
ware samples. Examples of static features include strings,
imported libraries, and function calls, among many others.
Many solutions have been proposed to detect malware vari-
ants using static analysis [7], [10]–[15]. Static analysis has
been frequently reported for the detection of malware variants
[7], [10], [11], [14], [15]. However, static features can be
hampered by obfuscation techniques, such as polymorphic
and metamorphic malware, that hide the malicious payload
and make it indistinguishable [4], [16]. Some obfuscation
techniques can prevent feature extraction and hinder the
static analysis by dynamically loading the code during the
runtime [13]. Therefore, static features are ineffective for
malware variants that change their appearance frequently by
modifying or hiding their malicious structure, function flow,
or rewriting themselves from scratch.

In contrast, the dynamic analysis aims to extract the behav-
ioral features by monitoring the behavior of the executable
program during the runtime execution. Examples of behav-
ioral features include API and system calls, log and audit-
ing files, registry access, and network traffic. Because the
malware variant is generated from old malware, malware
variants usually have similar behavior to the original [2].
Therefore, behavioral analysis is key to accurately detecting
malware variants. However, most existing behavioral-based
malware detection solutions are based solely on API calls
[4], [9], [17]–[21]. Although API calls traces can represent
most of the malware variants, API calls alone are not enough
to accurately distinguish between malware and benign. This
is because most of the malware writers use the same APIs
functions that are used for developing benign software. Thus,
it becomes difficult to differentiate between malware and
benign, depending solely on API calls.

Moreover, manymalwarewriters deliberately inject unnec-
essary API calls to evade detection. In addition, not all mali-
cious or benign software uses API calls to function; many of
themwrite their codes without the use of the API. In this case,
the subject file may be represented by a sparse vector, and
thus, it is hard to distinguish the malicious behavior from the
legitimate one. We argue that the absence of API traces does
not mean that the subject file is benign. Accordingly, API call
sequences become ineffective for accurate representation and
detection.

Some solutions combined different types of features to
detect malicious patterns accurately [4], [5], [22], [23]. How-
ever, most of these solutions combine different types of static
features [4], [9] or combine static features with API call
sequences that are extracted from the dynamic analysis [4],
[22]. Although API-based features from the dynamic and

static analysis can achieve high detection performance, API
alone cannot reflect the malicious behavior of a malware
sample. Other dynamic behavior such as file auditing, reg-
istry access, and network behavior can further improve the
detection accuracywhile reducing the false-negative rate. The
hypothesis is that each type of behavioral characteristic can
tell a part of the maliciousness or goodness of the investi-
gated executable file. However, to the best of our knowl-
edge, no model was found that combines different dynamic
behavior to detect malware variants. Therefore, it is important
to incorporate different behavioral patterns into the malware
variant detection model to improve its performance. Design-
ing a model that combines different behavioral features is
challenging due to the overlapping nature of the patterns
that may work as noise during constructing the classifier.
Therefore, it is essential to effectively extract the represen-
tative features that distinguish between benign and malware
patterns.

To this end, this study proposed a Multifaceted
Deep Ensemble Behavioral-based Malware Variant Detec-
tion Scheme using sequential deep learning and the
eXtreme Gradient Boosting algorithm (MDEB-MVDS-
XGB). The proposed MDEB-MVDS-XGB combines
multiple behavioral-based features extracted from dynamic
analysis. Different behavioral features were extracted from
dynamic analysis, such as API calls, log and file auditing, reg-
istry access, and network traffic. The sequential deep learning
algorithm was designed and developed to extract the hidden
representative malware features automatically. The activation
values and weights of the last hidden layer of the trained deep
learning model were used to develop an ensemble classifier
using the eXtreme Gradient Boosting algorithm. Extensive
experiments were carried out to evaluate the proposed model.
The results show that the proposed MDEB-MVDS-XGB
model can detect unseen malware variants effectively. This
study made the following contributions.

1) A Multifaceted and Deep Ensemble Behavioral-based
Malware Variant Detection Scheme using sequential
deep learning and the eXtreme Gradient Boosting algo-
rithm (MDEB-MVDS-XGB) are designed and devel-
oped. Different behavioral features were extracted from
dynamic analysis. These features were combined and
used for the detection to overcome the malware variant
obfuscation techniques.

2) A features extraction algorithm based on a sequential
deep learning model is designed and developed for
automatic extraction of the hidden malware patterns
without human intervention. The weights and activa-
tion values of the neurons of the last hidden layer of the
trained deep learning model are extracted and used as a
new representative feature to train the ensemble model
based on the extreme gradient boosting algorithm.

3) The fail-safe security principle is preserved by increas-
ing the classification accuracy by minimizing the false-
negative rate. Different ensemble models with single
and multiple behavioral features were designed and
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developed to evaluate the proposed model. The pro-
posed model was validated and evaluated by conduct-
ing extensive experiments.

The rest of this study is organized as follows. The related
work is presented in Section 2. A detailed description of the
proposed model is explained in Section 3. Section 4 presents
the performance analysis, including the description of the
dataset, performance measures, and evaluation and validation
procedures. Section 5 presents the results and a discussion.
It also includes the limitations and future work of this study.
This study is concluded in Section 6.

II. RELATED WORK
Malware authors constantly innovate ways to create new
malware variants that circumvent security solutions while
security analysts and researchers try to improve the security
defenses and naturalize such threats. Many obfuscation tech-
niques have been reproduced to create new malware variants
that can evade detection. For example, polymorphic malware
can modify its appearance in terms of structure and functions
flow like the chameleon, which can change its color to dis-
guise itself and hide from predators [7]. Another example is
metamorphic malware which can rewrite itself from scratch
[10], [12], [24]. Such malware is usually created from pre-
vious malware but with new characteristics. There are many
solutions proposed to countermeasure malware variants [2],
[4], [5], [7], [16], [25], [26]. Most of these solutions are for
detection purposes.

Malware variant detection solutions can be grouped
according to the type of analysis into two types: static
and dynamic. In static analysis, representative features are
extracted from the portable executable file (the exe files
and dll files on MS Windows platforms) without execut-
ing these files. Static features are extracted from the file
that includes strings [13], operation codes (opcodes) [12],
dynamic link libraries, API calls [4], [14], [19]–[21], function
calls [26], and requested permeations and intended correla-
tions (in Android platforms) [27]. Meanwhile, in dynamic
analysis, representative features are extracted by monitor-
ing the behavior of malware during runtime in terms of its
interactions with the operating system [17]–[19], [22], [28],
[29], file systems, windows registry, and network traffic [15],
[30]. Different behavioral features can be extracted, such as
system calls, API call sequence, file-related behavior (access,
created, modified, or deleted), registry access (creating or
modification), and network traffic.

behavior Liu et al [31] proposed amalware detectionmodel
using an ensemble shared nearest neighbor (SNN) clustering
algorithm. Three types of features were extracted through
static analysis: opcode, control flow graph, and import func-
tions which were represented by a grayscale image, directed
graph, and term frequency, respectively. Features selection
using information gain of the sequence was applied to extract
500 features among all features extracted using 3-gram. Fea-
tures were combined, and different machine learning was
trained for the decision-making Fan et al [32] developed a

malware detection based on API call traces. Frequent sub-
graphs were used to represent the behavior of malware in the
same family. The main drawback of this approach is the static
features that are used to detect dynamic structure malware.
Mahawer and Nagaraju [24] proposed a model for detecting
metamorphic malware using a support vector machine with
a histogram kernel. Patanaik and Barbhuiya [20] proposed
a model using system calls to create a signature to detect
malicious obfuscated programs. However, relying solely on
interdependent system calls is ineffective to detect malware
variants because such features can be evaded easily using
simple obfuscation techniques such as API call reordering
and garbage API call insertion. Huang et al [27] extracted
representative features from a user interface that is associated
with the top-level API function to detect stealthy behavior.
For example, sending an email must be associated with a
user interface to allow the user to create the message and
send the button. However, the behavioral models designed
based on API correlation with the user interface have many
drawbacks. For example, in many automated services of
benign programs, an API function does not need to have a
corresponding user interface. Therefore, depending on static
analysis only makes the solution vulnerable to polymorphic
and metamorphic malware types.

Bai et al [26] developed a model that used a function call
graph (FCG) to represent the malware variant. The signa-
tures for the FCGs were created and stored in a database.
A portable file with a match FCG signature in the database
is recognized as malware. The final decision of whether a
file is malware or not is based on the graph isomorphism
algorithm [33]. The main disadvantage of the signature-based
approach is its ineffectiveness in detecting new malware
variants. Moreover, the graph isomorphism algorithm can
be circumvented by polymorphic malware. Xiao et al [11]
proposed a malware variant detection framework based on
binary features that were extracted from portable executable
file samples using the deep convolutional neural network.
The malware binary is represented as an entropy, graph,
and features were extracted using the convolutional neural
network (CNN). Then, a classifier using the support vector
machine (SVM) was trained for the final classification Cui,
Xue [16] visualized the opcodes extracted from portable
executable files by grayscale images and used CNN to train
a model that can detect malware variants. Wang, Gao [13]
proposedmalware variant detection based on the Ensemble of
String and Structural Static Features. Many types of features
were extracted, including string, permissions, hardware and
software requirements, intents, API calls, opcode, and the
function call graph. These features have been grouped into
two types string-based and structural-based features. These
features were separately used for training. Three machine
learning classifiers were used to train the proposed ensemble
model, SVM, k-nearest neighbor (KNN), and random for-
est (RF) algorithm. The result of each classifier is weighted
based on the features type. The main drawbacks of these
solutions are their dependence on static features, which is
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TABLE 1. Related work.

ineffective for detecting malware variants due to the simple
obfuscation techniques that malware authors can use to hide
malicious patterns in the binary code.

Darem et al. [25] present an adaptive mode for detecting
malware variants based on API calls sequences and incre-
mental deep learning. The API calls sequence were extracted
using n-gram and represented using term frequency-inverse
document frequency (TF-IDF). The main limitation of this
approach is the need for human intervention to label the
malware variant to update the model. Han, Xue [28] used API
call sequences that were extracted from static and dynamic
analysis to develop amalware detection framework. Dynamic
and static API call sequences are correlated to construct a
hybrid feature vector based on semantics mapping. A poten-
tial downside of this framework is that a malware author can
maintain a correlation between the static API and the dynamic
API by calling the injected static API during runtime. Thus,
the correlation is preserved while the malicious program is
executed.

Kang and Won [5] combined features extracted from static
and dynamic analysis to train an ensemble model for detect-
ing malware variants. Opcode-type features were extracted
using static analysis, while API calls-based features were
extracted using dynamic analysis. The opcode-based fea-
ture was represented as a grayscale image, while the API
calls are represented by their term frequency. Random for-
est, XGBoost, and different deep learning algorithms were
used for classification. XGBoost was reported as the best

classifier for the combined features. Sun et al [2] proposed
a malware variant detection model based on both static and
dynamic analysis structured features. The suspicious system
call set (SSS) and runtime behavior graph (RBG) were used
as behavioral features. The static behavior graph (SBG),
which is a subgraph of RBG was used to represent malware
static behavior while the system calls were used to repre-
sent its dynamic behavior. Although the model generates
the signature from malware runtime behavior, the model is
signature-based, where the runtime behavior signatures of
known attacks are stored for matching. A new malware vari-
ant is detected based on the similarity of its RBG and SSS
with the existing signature. Zhang et al [4] proposed a hybrid
malware variant detection system based on the combination
of statistically extracted features with dynamically extracted
features. More particularly, the operation code and API calls
were used to construct twomodels using CNN for the opcode-
based features and artificial neural network (ANN), the back-
propagation neural network (BPNN) for the API calls-based
features. The hidden features extracted from the hidden layer
of BPNNwere combined with the SoftMax features extracted
from the SoftMax layer of the CNN model to construct the
hybrid feature vector. Then, a SoftMax classifier, which uses
the cross-entropy loss, was used to train the malware variant
classifier. Although such model has improved the classifi-
cation accuracy to some extent, there is room for improve-
ment, especially if a single type of behavioral features was
used.
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FIGURE 1. Overview of the proposed MDEB-MVDS-SDLXGB model.

In summary, many solutions were proposed to detect mal-
ware variants. As shown in Table 1, these solutions were
grouped based on the type of analysis into static, dynamic,
or hybrid (static and dynamic). Static analysis was fre-
quently reported for malware variant detection. However,
static features can be hampered by obfuscation techniques
such as polymorphic and metamorphic malware [4], [16].
A polymorphicmalware changes its appearance frequently by
modifying its structure or flow, while metamorphic rewrites
itself from scratch, generating a new malware variant. Some
obfuscation techniques can prevent feature extraction and
hinder the static analysis by dynamically loading the code
during the run time [13]. API call sequences from both
dynamic and static analysis were commonly used to represent
the malware variants. However, depending on API calls is
ineffective for many reasons. First, malware authors usually
use the API calls that are used to develop benign software.
Thus, it becomes difficult to differentiate between malware
and benign depending solely on the API calls. Secondly, the
malware author injects unnecessary API calls to hide the
malicious patterns into different benign patterns to evade
the detection. Thirdly, not all malicious or benign software
use API calls to the function. In this case, the subject file
may be represented by a sparse vector, and thus, it is hard to
distinguish the malicious behavior from the legitimate one.

Many solutions have been suggested to combine different
types of features to represent the malware author. However,
most of these solutions combine different types of static
feature or API calls sequences extracted from dynamic anal-
ysis. Although API-based features from the dynamic and
static analysis can achieve high detection performance, other
dynamic behavior such as file auditing, register access, and
network behavior can further improve the detection accu-
racy while reducing the false-negative rate. Unfortunately,
combining different dynamic behavioral features to detect
malware variants was not considered. This study proposes
a Multifaceted Deep Ensemble Behavioral-based Malware
Variant Detection Scheme using sequential deep learning and
the eXtreme Gradient Boosting algorithm (MDEB-MVDS-
XGB). The MDEB-MVDS-SDLXGB combines multiple
behavioral-based features extracted from dynamic analysis.
A detailed explanation of the proposed model is provided in
the subsequent section.

III. THE PROPOSED MODEL
The proposed MDEB-MVDS-SDLXGB model consists of
six main components: raw behavioral data accusation, data
preprocessing, features extraction, features representation,
features selection, deep multifaceted hidden features extrac-
tion, and ensemble-based classification. Figure 1 shows an
overview of the proposed model. As can be seen in Figure 1,
four types of features were extracted namely the API-, File-,
Registry-, and Network-based features. After the prepro-
cessing, the extraction of features sequences using n-gram,
the representation using TF/IDF, and the important features
are selected, four types of hidden features are extracted
using sequential deep learning. Four sets of hidden fea-
tures were extracted denoted by f1, f2, f3, and f4 for API-,
File-, Registry-, and Network-based, respectively. The hid-
den features are merged and used to train a classifier for
decision-making using the XGBoost algorithm. The detailed
description of each component in Figure 1 is provided in the
following subsections.

A. BEHAVIORAL DATA EXTRACTION PHASE
In this step, different types of behavioral features are col-
lected about the subject executable file, such as network traf-
fic, file access (read, write, create, or delete), registry access,
and system call sequence (or API call traces). These features
are extracted during the runtime by submitting the subject
file to a dynamic analysis environment to extract behavioral
features automatically.When the subject file is executed (usu-
ally in an isolated environment such as Windows Sandbox)
different behavioral data can be captured.

B. DATA PREPROCESSING
Data preprocessing plays an essential role in machine
learning-based models, especially in malware detection,
where the malware can compromise the system in case of
misclassification. Data preprocessing helps to eliminate the
effect of unnecessary content that contributes to classification
to maximize accuracy. Most of the data collected in the
previous step are unstructured text data. It may be dumped
from different types of acquisition tools with different for-
mats and structures. Such data is usually contained redundant
and unnecessary features, has missing values, and contains
noise such as symbols, XML or HTML tags, punctuations,
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and stop words. Such unnecessary content or inconsistencies
should be removed because it can produce misleading results.
Therefore, in the preprocessing step, the data is cleaned by
removing unnecessary content to help the machine learning
algorithm find a correct and representative malware pattern
that is distinguishable from the benign pattern. After spe-
cial characters, stop words, punctuation, and unnecessary
symbols are removed, the data are converted into lowercase
characters for consistency.

C. FEATURES EXTRACTION
Feature extraction aims to create new informative features
sets in which the malware variant can be represented better
than using the original features. In this step, a technique
called n-gram is used to extract more features from each
sample by concatenating the subsequent words (also called
terms) in the group of n subsequent words that occurred in
the sample. In n-gram, each subsequent word starting from 1
to n is used as a unique feature. For example, in one-gram,
every single word is considered one feature, while in two-
gram, every two subsequent words are considered one feature.
N-gram has been commonly used in text data mining appli-
cations. N-gram is also used by many malware studies [8],
[10], [34] to extract features from API sequence, strings, and
file auditing. The higher is the n value, the more features
that can be extracted. However, too many features lead to
high dimensionality, noises, and overfitting problems. In this
study, the n is set to a range of one and two so every two
subsequent features are combined to represent and then added
to the extracted single features [25], [38], [39]. The reason
for selecting n-gram is that a single feature in malware is
not harmful compared to feature sequence which is more
representative [38]. The use of a short sequence consisting of
one or two features sequence is found to be better than using a
three-gram in terms of performance as reported in [25], [39].

D. FEATURES REPRESENTATION
In this step, each sample (malware or benign) is represented
by sets of unique terms (vocabulary). These unique terms
were used to create a corpus. Then, all unique words in
the corpus were used as feature vectors that will be used to
generate the representative feature of each sample. The aim
is to transform the text into numerical values so that machine
learning algorithms can deal with it. The Term Frequency-
Inverse Document Frequency (TF-IDF) is used to represent
each unique term in the sample features. Thus, for each
sample, every term is the feature vector is represented by its
TF/IDF equivalent value. The TF-IDF is calculated as in the
following formula.

tf (x) =
Number of times x occur in a sample

No. of terms in the sample
(1)

df (x) = Number of documents that has x (2)

xtf−idf = tf (x)× ln
(

N
df (x)+ 1

)
(3)

where x is the term, tf (x) is the term frequency, df (x) is
the document frequency where x has occurred, N denotes the
number of samples in the given dataset.

The TF-IDF can make general-purpose terms and specific
terms distinguishable. For example, API terms that are fre-
quently called by many samples are given scores lower than
API calls that are specific for a particular sample or class.
The general-purpose terms, which frequently occur in many
samples from different classes, do not add any information
about the target class. Therefore, the term is ranked when it
is frequently used by a class and not frequently used by the
other classes.

E. FEATURES SELECTION
One of the challenges of classifying malware is the high
dimensionality of the features extracted from the behavioral
data of the malware. The large number of features that can
be extracted by the n-gram technique can lead to either an
overfitting or an underfitting problem. Redundant features
are a common problem in API calls due to the use of the
same API functions for different functions in the program by
both benign and malware authors. In addition, the correlated
features make the gradient descent algorithm in machine
learning-based models oscillate and slow the convergence.
Moreover, the correlation between the features and the vari-
ance of the loss is high even with a small average value.
Thus, the learner is misled and converges in inaccurate coef-
ficients. Furthermore, some features are very specific to a
particular sample, and others are very general. Both types of
features make noises that affect the accuracy of the detection.
Therefore, feature selection is an important step in eliminat-
ing redundant features and improving detection performance.
The eXtreme Gradient Boosting Algorithm (XGBoost) was
utilized to select the important features in this study. XGBoost
can estimate the importance of the features during training
by measuring how each feature was useful in the construc-
tion of the boosted decision trees. The feature is ranked
based on the number of the split points that contribute to the
decision tree. This technique is called the Gini impurity or
Gini index. In the Gini index, a feature is more important
than the others if its GI f is lower than the other compared
features. Gini index GI f for a feature f can be calculated as
follows.

GI f = 1−
n∑
j=1

p2j (4)

pj(f≥t) =

∣∣F(j) : f ≥ t
∣∣

|F : f ≥ t|
(5)

where p denotes to the proportion of samples of each class in
a split at point t , n denotes the number of the classes in each
split, F denotes the set of all values in feature f that are in the
split f ≥ t , and F(j) denotes the set of all values belonging
to the class j that is in the split f ≥ t . For example, if we
have two classes and a feature f is split at point t , then the
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FIGURE 2. Shows multifaceted sequential deep learning hidden features.

feature importance (fi) is calculated as follows.

fi = 1−
2∑
j=1

(∣∣F(j)
∣∣

|F |

)2

(6)

F. DEEP MULTIFACETED HIDDEN FEATURES EXTRACTION
This phase aims to extract the hidden features representing the
subject concerning its different behavior in terms of network,
file access, API calls, and registry access.

These features are extracted from the last layer of the
trained deep neural sequential model. They are the activation
values of the last hidden layer with the weights of each
neuron of this layer in the deep learning model. In this phase,
four feature vectors are extracted, each representing different
malware behavior for each subject. These features are used to
learn hidden behavioral patterns. Figure 2 illustrates the mul-
tifaceted feature vector extracted from the hidden layer of the
trained sequential deep learning model. Two activities were
conducted to develop these multifaceted features vectors, one
for training and the other for online operation or testing. In the
training phase, the datasets containing features representing
each type of behavior have been split into two subsets, 60%
of the data is for the training, and the rest is for testing. In the
training phase, sequential deep learning (SDL) is constructed,
trained, and validated. The constructed sequential model con-
sists of five dense layers: one input layer consists of the
number of selected features, three hidden layers with size 64,
32, and 16 neurons in each hidden layer, respectively, and one
output layer consists of one neuron to evaluate the learning
performance. The activation function used in the input and

hidden layer is the ReLu function while the sigmoid function
is used in the output layer for decision making. To minimize
the error and update the weights, the Adam optimizer, which
is an extension of the stochastic gradient descent technique,
was employed. It’s a form of adaptive gradient that uses an
adaptive moment estimation technique to estimate a dynamic
learning rate. The model is trained, and then the activation
values of the last layer are extracted and used as input features
for the XGBoost classifier.

As can be seen in Figure 2, the important features that
were selected in the feature selection phase which is donated
by f1, f2, . . . fn where n is the number of selected features
from the four extracted features sets. The selected features
are used as input to four SDL classifiers and the outputs are
the hidden features S1, S2, . . . Sm where m is the number of
the neuorns in the last hidden layer of the SDLs classifiers.
Figure 3 represents the methodology of the constructed mul-
tifaceted sequential deep learning model.

Let F is the set of input features selected using the features
importance and f is an element in F , L is the set of all layers
in the deep learning model and l is an element in L, a(l)i is the
activation value of the node i in level l and w(l)

ij is the weight
of input node i for node j in level l and g is the activation
function. The activation score S(l)i of the last hidden layer of
the train and the deep sequential model can be calculated as
follows.

a(0)i = g

 n∑
j=1

w(1)
ij f

(0)
i + b

(0)

 (7)
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FIGURE 3. The methodology of the proposed MDEB-MVDS-SDLXGB model.

a(l)i = g

 k∑
j=1

w(l)
ij a

(l−1)
i + b(l−2)

 (8)

S(l)i = w(l)
ij

m∑
j=1

w(l−1)
ij a(l)i + b

(l−1) (9)

where m is the number of nodes in the last hidden layer, k is
the number of nodes in the hidden layer before the last, and
n is the number of input features. The function g() is the
activation function. In this study, the ReLU function was used
as the activation function of all nodes in the hidden layers.

G. ENSEMBLE BASED CLASSIFICATION
This phase aims to make the final decision about whether it is
malware or benign. In this phase, the feature vector obtained
from the previous phase is used as input features for the
Extreme Gradient Boosting algorithm for decision making.
The XGBoosting algorithm has been used to train a model
based on the scores made by the Multifaceted Sequential
Deep Learning model. The gradient boosting method used in
the XGBoost algorithm incrementally creates new decision
trees that consider the error made by the previous decision
trees. The gradient descent algorithm is used to reduce the
error when a new tree is added. XGBoost uses Taylor expan-
sion to calculate the cost function. The trees are gradually
built and added to the ensemble. A regularization term is used
to prevent the tree from being complex. Figure 3 shows the
structure of the proposed MDEB-MVDS-SDLXGB model.
The hidden features are extracted from the trained model and
used for classification in the online operation.

H. ONLINE OPERATION
The subject file is submitted to the sandbox environment for
dynamic analysis. The subject is executed, and its different
behavior in terms ofAPI calls, network traffic, file access, and
registry access is logged. The raw text data collected are pre-
processed using the aforementioned data preprocessing steps.
Then, more features are extracted using the n-gram technique.
Then using the trained TF-IDF vectorization method, the rep-
resentative numerical features are created. Using the trained
feature selection model, only important features are selected
and used as input to the sequential deep learning model.

The sequential deep learning model gives a score between
zero and one. For each subject, there are four scores to
represent its behavior in terms of API calls, network traffic,
file access, and registry access. Finally, these scores are used
as input features to the trained XGBoost model to decide
whether the subject file is malware or benign. Algorithm 1
and Figure 4 summarize the online operation of the proposed
MDEB-MVDS-XGB model.

IV. PERFORMANCE EVALUATION
This section describes the evaluation process of the proposed
model. It also describes the setup of the experimental envi-
ronment, the used dataset, and the performance measures.

A. EXPERIMENTAL SETUP
The four types mentioned above of behavioral features were
extracted during runtime from a dynamic analysis envi-
ronment. The dynamic malware analysis environment is
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FIGURE 4. The online operation of the proposed MDEB-MVDS-SDLXGB model.

constructed in an isolated virtual environment with a host
computer CPU Intel (R) Core i7 @ 3.20 GH, and the RAM
is 16.0 GB. Cuckoo sandbox tools were used with the virtual
box to build an isolated and controlled virtual environment
for malware investigation. The host operating system is Linux
Ubuntu 18.04 and Windows 7 as the guest operating system.
Windows 7was used as a victimmachine. Several researchers
commonly use sandboxes to extract behavioral features [8],
[34], [35].

The sandbox was set up following the instructions pre-
sented in [29]. The guest Windows 7 operating system was
installed in the virtual machine, and a configured and clean
slate screenshot was made. Many applications have been
installed, some dummy files and folders have been generated,
and an internet connection has been enabled to make the
guest operating system more realistic to the evasive malware
sample. The cuckoo agent on the guest operating system runs
the provided binary files and hooks their API calls, as well
as logs the network traffic, file access activity, and register
access behavior. The cuckoo agent on the virtual machine
collects these behavioral features of the submitted file and
sends them back to the host machine. The virtual machine is
then restarted with the initial clean slate restored, allowing the
new analysis to begin with a fresh copy of the guest operating
system. Finally, the API call sequences were extracted from
the cuckoo agent reports folder using Python programming
packages.

B. DATASET DESCRIPTION
The malware binary files used in this study were downloaded
from the public repository VX Heaven.1 Previous malware

1https://www.vxheaven.org

detection researchers have already used this dataset [4], [8],
[10], [21], [34], [36]. There are numerous distinct types of
malware families in the malware dataset, including trojans,
adware, backdoors, ransomware, viruses, and worms. The
Vxheaven collection yielded a total of 19076 malware sam-
ples, which were chosen at random. The benign or benign
binary files were obtained from a freshly installed Windows
operating system. A total of 3994 benign executable and
dynamic link libraries were collected. As a result, the dataset
utilized in this study has 23070 samples, with 19076 malware
samples and 3994 benign ones.

C. PERFORMANCE MEASURES
Multiclass performance metrics are commonly used for mea-
suring and evaluating the quality of malware detection [37].
The same metrics have also been used to validate the pro-
posed model in this study. These metrics include detection
accuracy, detection rate (or recall), false-positive rate, preci-
sion, and F-measure. However, these performance measures
are not enough for the evaluation because they do not con-
sider the fail-safe security principle. We argue that malware
detection should consider the false-negative rate more than
the false positive rate. A false-positive leads to more inves-
tigation and analysis (increase human intervention), while a
false-negative leads to compromise the security (the fail-safe
principle is violated).

This study investigated the models based on the above per-
formance measures, including the false-negative rate. Con-
sequently, five main performance evaluation metrics were
used to evaluate the effectiveness of the proposed model,
namely, detection accuracy (ACC), false-positive rate (FPR),
detection rate (or recall) (DR), and F measures (F1). The
detection accuracy (ACC) is the percentage of the benign
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Algorithm 1. The Proposed MDEB-MVDS-XGB Mode
Input: suspiciousfile, TFIDFTransformer , S the set of the trained deep
learning model, and CXGBoosting
Output: fileclass
Start

1: suspiciousfile
submit–––––−→ analysisenvirnoment

2: analysisenvirnoment
Send–––––−→ rawfeatures

3: rawfeatures
preprocessing

–––––––––––––––−→ ∀f s ∈ Fs : Fs = {fs1, fs2, fs3, fs4}

4: Fs
N−Gram(features extraction)
––––––––––––––––––––––––––−→ Fn : Fn = {fn1, fn2, fn3, fn4}

5: Calculate TF − IDFusing TFIDFTransformer

∀fi ∈ Fnusingx tf−idf = tf (x)× ln
(

N
df (x)+1

) append
––––−→ F

5: ∀fi ∈ Fn Calculate featureimportance fi = 1 −∑2
j=1

(
|F(j)|
|F |

)2 Store
−→ F

6: F = get_topn_features_score(F)
&: ∀ S j in S do
7: ∀ nueroninthe last layer l in S find the hidden features
8: Extract the activation value a(l)i

= g

(
k∑
j=1

w(l)
ij a

(l−1)
i + b(l−2)

)
9: Compute the hidden feature f ′(l)i

= w(l)
ij

m∑
j=1

w(l−1)
ij a(l)i + b

(l−1)
append
––––−→ F ′j

F ′j
append
––––−→ F ′

10: CXGBoosting(F ′)
classify
––––−→ fileclass

End

samples correctly classified to all the classified samples. The
detection rate (DR), also called recall, is the fraction of mal-
ware samples that are correctly classified. The false-positive
rate (FPR) is the percentage of the incorrectly classified
instances as malware samples. The false-negative rate (FNR)
is the percentage of the instances that are incorrectly clas-
sified as benign samples. F-measures (F1) is the harmonic
mean and calculated as in Equation (10), where the TP is
the number of malware samples that are correctly classified,
FP number of benign samples that are wrongly classified, and
FN number of malware samples that are wrongly classified.

F1 =
2× TP

2× TP+ FN + FP
(10)

D. PERFORMANCE EVALUATION
The MDEB-MVDS-SDLXGB model proposed in Figure 2
has been evaluated by comparing its performance with
the other five designed models as follows. MDEB-MVDS-
SDLXGB is compared with the Multifaceted and Deep
Ensemble Behavioral-Based Malware Variant Detection
Scheme using Sequential Deep Learning Technique with
Majority Voting Scheme (MDEB-MVDS-SDLMV). The
Majority Voting Scheme has replaced the XGBoosting tech-
nique of the proposed model MDEB-MVDS-SDLXGB in
the MDEB-MVDS-SDLMV. Meanwhile, in the Multifaceted
Behavioral-Based Malware Variant Detection Scheme using

Sequential Deep Learning (MB-MVDS-SDL), all the fea-
tures from different domains have been combined in one
feature vector (See Figure 5). The API calls features have
been combined with the features extracted from registry
access, file access, and network traffic. Then, sequential deep
learning with four layers was trained for the classification.
Like the MB-MVDS-SDL, the three other tested models
were designed, but each model was trained using one of
the following machine learning techniques, extreme gradient
boosting for the MB-MVDS-XGB model, SVM is used for
the MB-MVDS-SVM model, and random forest algorithm
was used for the MB-MVDS-RF model.

V. RESULTS ANALYSIS AND DISCUSSION
Figure 6(a) and Table 2 show a comparison between the
performance of the proposed MDEB-MVDS-SDLXGB with
the five designed models. As can be seen in Figure 6(a),
the proposed MDEB-MVDS-SDLXGB outperforms all the
other designed models. It achieved 99.23% accuracy, which
is better than the performance achieved by the other designed
models. For example, in terms of accuracy, MDEB-MVDS-
SDLXGB achieved 0.8%, 0.5%, 1.2%, and 1.6% better
than the other designed models MDEB-MVDS-SDLMV,
MB-MVDS-SDL, MB-MVDS-SVM, and MB-MVDS-RF,
respectively. Similarly, in terms of the recall, the proposed
model MDEB-MVDS-SDLXGB achieved the best true pos-
itive rate compared to the other tested model, while the
SVM-based model achieved the lowest true positive rate.
In terms of precision, the majority voting-based ensemble
MDEB-MVDS-SDLMV achieved the best precision, fol-
lowed by the proposed MDEB-MVDS-SDLXGB model.
Although the model with the majority voting scheme,
MDEB-MVDS-SDLMV, achieved the best precision among
all the tested models, such achievement is not praised in
security and malware detection, which violate the fail-safe
principle. When the precision is higher than the recall, that
is an indication of a higher false-negative rate, which means
increasing undetected malware, which makes the target vul-
nerable. Therefore, recall is more important than precision,
and thus the MDEB-MVDS-SDLXGB model wins in this
case. The results in terms of the F-measure confirm how
the MDEB-MVDS-SDLXGB model has the better trade-
off of precision and recall. It achieves 99.48% F-measure,
which is better than the other designed models MDEB-
MVDS-SDLMV, MB-MVDS-SDL, MB-MVDS-SVM, and
MB-MVDS-RF by 0.51%, 0.33%, 0.7%, 1.1%, and 2.9%,
respectively. Overall, the proposedMDEB-MVDS-SDLXGB
achieved the best performance, followed by the MB-MVDS-
SDL model. The MDEB-MVDS-SDLMV model has a
trade-off recall by precision; because of this, its over-
all performance is lower than MB-MVDS-SDL. Although
the combined features with the random forest-based model
MB-MVDS-RFworks well with the high definitional data, its
performance archives the worst performance among studies
models. There are two interpretations of this behavior. The
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FIGURE 5. Combined behavioral features vector.

FIGURE 6. Overall performance comparison between the proposed multifaceted deep ensemble behavioral-based malware variant detection scheme
using sequential deep learning technique with XGBoost (MDEB-MVDS-SDLXGB), and with the majority voting scheme (MDEB-MVDS-SDLMV), and
multifaceted behavioral-based malware variant detection scheme using sequential deep learning (MB-MVDS-SDL), using XGBoost (MB-MVDS-XGB),
using support vector machine (MB-MVDS-SVM), and using random forest (MB-MVDS-RF) in terms of (a) accuracy, recall, precision, and F-measure (b) FPR
and FNR.

TABLE 2. Performance comparison between the proposed model and
those evaluated by others.

first is the use of majority voting for decision-making, and
the second is the sparsity of the data.

Figure (6) and Table 3 present the performance in terms
of FPR and FNR. The lowest FPR has been achieved by

MDEB-MVDS-SDLMV, which achieved a 0.9% false-
positive rate, followed by the proposed MDEB-MVDS-
SDLXGB model, which archives a 1.56% false-positive
rate. The worst false positive rate has been achieved by
MB-MVDS-XGB where the features were combined and the
XGBoost algorithm was used for classification. Although
reducing the false positive rate is important, it is not critical
for malware detection like reducing the false-negative rate.
Reducing FNR is a critical security requirement in malware
detection because it may lead to successful attacks. As can be
seen in Figure 7 and Table 2, the proposed MB-MVDS-XGB
model archives the best reduction in terms of FNR followed
by the combined feature vector with the sequential deep learn-
ing MB-MVDS-SDL achieve a 0.67% false-negative rate.
However, the MB-MVDS-SDL model has a trade-off of the
FNR by the FPR, as can be observed in Figure 3.
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FIGURE 7. Performance measures using the sequential deep learning technique.

FIGURE 8. The performance measures using extreme gradient boosting algorithm.

Figures 7 (a) and (b) illustrate the performance of the
Sequential Deep Learning Classification for four study types
of behavioral features. Figure 7 (a) displays the accuracy,
recall, precision, and recall, while Figure 8 (b) displays the
FPR and FNR. As shown in Figure 7 (a), the API call
sequence can effectively represent most malware variance.
However, API call sequence-type features create relatively
high FPR. A combined features vector with sequential deep
learning performs better than a single type of behavioral
feature. The results in Figures 7 (a) and (b) show that each
type of behavior contributes to creating a more distinctive
malware variant. It shows how the false-negative rate has been
reduced using the combined behavioral vector compared to
the FNR of the individual behavioral vector.

Figures 8 (a) and (b) show the performance of the trained
models using the Extreme Gradient Boosting Algorithm.
Figure 8 (a) presents the results in terms of accuracy, recall,
precision, and recall, while Figure 8 (b) shows the FPR and
FNR results. As can be seen in Figure 8 (a), the model trained
using the combined features archives the best accuracy, detec-
tion rate (recall), F-Measure, among others, while the model
designed based on the API call sequence features archives the
best performance in terms of precision and FPR. However,
the API call sequence type features create a relatively high

TABLE 3. Results in terms of FPR and FNR.

false-negative rate FNR= 6.2%, which is the main drawback
of this model.

Figures 9 (a) and (b) illustrate the performance of the
trained models using the SVM technique. Figure 9 (a) shows
the performance in terms of accuracy, recall, precision, and
recall, while Figure 9 (b) shows the FPR and FNR results.
Similar to the XGBoost model in Figure 9, the model trained
using the combined features archives the best accuracy, detec-
tion rate (recall), F-Measure compared with the other studied
models. Meanwhile, the model designed based on the API
call sequence features archives the best performance in terms
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FIGURE 9. The performance measures using the support vector machine technique.

FIGURE 10. Performance measures using the random forest technique.

of precision and FPR.However, thismodel creates a relatively
high false-positive rate FPR = 3%, which is the main draw-
back of this model.

Figures 10 (a) and (b) show the performance of the trained
models using the Random Forest Algorithm. Figure 10 (a)
shows the performance in terms of accuracy, recall, preci-
sion, and recall, while Figure 10 (b) displays the FPR and
FNR results. It can be observed that the RF-based model
trained using the combined features archives the best perfor-
mance compared with the other studied models. However,
this model generates a high false-positive rate FPR = 2%
with FNR = 5.9%, which is the main problem of this
model.

From Figures 7, 8, 9, and 10, we can conclude that the
models designed using the combined features sets achieve
better accuracy than those were designed using individual
features. The better achievement is because the behavior of
malware variants can be better represented by considering
many types of behavior. When different behavioral features
are considered, the model can accurately distinguish between
malicious and non-malicious behavior. In most of the cases
studied, API-based features can well represent malware vari-
ants. However, high false alarms are observed when a single

type of behavioral feature is used. Combined features are
outstanding in terms of reducing the FNR and FPR while
achieving a high detection rate (recall). Moreover, a model
designed with sequential deep learning achieved the best
reduction of false-negative rates with high detection accuracy.
XGBoost algorithm achieved a low false-negative rate while
RF suffered from high FNR. Meanwhile, SVM achieves the
best trade-off between precision and recall; however, both
FPR and FNR are relatively higher than those of the proposed
MDEB-MVDS-SDLXGB model.

To have insights into how the proposed MDEB-MVDS-
SDLXGB performs with different malware categories,
Table 4 illustrates the detection accuracy for each malware
category in the dataset. As can be seen in Table 4, there are
nine malware categories in the testing dataset namely, Virus,
Worm, Backdoor, Trojan, Downloader, Bot, Dropper, Spy-
ware, Keylogger, and Generic. The majority of the malware
in the dataset are either Generic or Trojan. This malware are
belonging to different malware families. In most cases, the
proposed MDEB-MVDS-SDLXGB model archives higher
than 99.2%. However, deep investigation needs to be con-
ducted on balanced malware families. Such investigation has
been lifted for future study.
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TABLE 4. Detection accuracy based malware category.

TABLE 5. Performance in terms of detection evasive malware (%).

To evaluate the performance of the proposed MDEB-
MVDS-SDLXGB model in terms of detecting evasive mal-
ware behavior, to memic evasive behavior, evasive malware
samples are created by injecting APIs sequences related to
benign samples into the malware APIs sequence to repre-
sent the evasive behavior. Table 5 shows the performance of
detecting such evasive malware behavior. As can be noticed
in Table 5, the performance has been slightly degraded as
compared to the results on the original dataset before inject-
ing the evasive behavior (See Tables 2 and 3). However, the
performance of the proposed model is still higher than the
other tested and also with the related work as compared in
the subsequent section. The use of ensemble deep learning
classifiers with diverse features sets exposes such an evasive
technique.

VI. COMPARISON WITH THE RELATED WORK
The proposed model is compared with state-of-the-art related
solutions. Asmentioned earlier, most of the related work used
API call sequences to construct the malware detection model
[2], [4], [5], [25], [26], [31], [32]. Accordingly, the proposed
model in this study was compared with the models that uti-
lized the API calls features extracted from either dynamic or
static analysis. The comparison with the model in [25] was
made without providing the labels during the testing (assum-
ing no human intervention), which is the main limitation of
themodel in [25]. Asmentioned in Section 2 (the relatedwork
section), the models designed in [26], [31], [32] extracted the
API calls from the import address table (IAT) of the PE files
using static analysis. Meanwhile, the solutions in [2], [4], [5],
[25] used API sequences extracted from dynamic analysis.
Accordingly, two models were implemented for the com-
parisons, each consisting of two classifiers. The first model
utilizes the API Calls Sequences that were extracted from the
dynamic analysis, and the second model uses the IAT-based
API calls to construct the first classifier. The second classifier
is constructed using features extracted from the binary sets

TABLE 6. Performance comparison with related work.

TABLE 7. The improvement gained by the proposed model.

of the .text section of the PE samples. These features are
commonly used in the literature in congestion with API-
based features, as mentioned in [4], [5]. Both models were
trained using the XGBoots algorithm due to its effectiveness
for APIs classification compared to other machine learning
techniques (as discussed in the previous section, see Figure 6
and reported in [5]). Figure 11 and Table 5 present the detailed
performance comparison of the proposed model with the
corresponding state of the art in terms of accuracy, recall,
precision, F Score, and the false positive rate and false-
negative rate.

Table 6 lists the performance comparison between
the proposed model (MDEB-MVDS-SDLXGB) with three
related works in which API features are extracted using
dynamic analysis with adaptive deep learning classifier as in
Darem et al. [25], API Call Sequences extracted from
dynamic analysis as proposed in [5], and API Calls extracted
from static analysis namely from the Import Address-
able Table (IAT) as in [31]. As shown in Table 7, the
proposed MDEB-MVDS-SDLXGB model outperforms the
related work concerning all tested performance measures.
The improvement gained by the proposed model is listed in
Table 7.

As can be seen in Table 6 and 7, the overall performance in
terms of F-measure of the proposedmodel is 99.48%which is
1.26% higher than Darem et al. [25], 1.95% higher than API
Call Sequences extracted from dynamic analysis as proposed
by Kang et al. [5], and 3.21% higher than the performance
using the API Calls extracted from static analysis (IAT) as in
Liu et al. [31].
To sum up, the results of the proposed MDEB-MVDS-

SDLXGB model support the hypothesis of integrating dif-
ferent behavioral features to extract the hidden patterns that
can effectively discriminate between benign and malicious
programs. It is clear from the results of the deep learning-
based classifier with combined features MB-MVDS-SDLC
(see Tables 2 and 3) as compared to the performance
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FIGURE 11. The performance comparison with the related work.

of the single feature set used in MB-MVDS-SDL,
MB-MVDS-XGB, MB-MVDS-SVM, and MB-MVDS-RF
(see Figures 7,8,9, and 10). The correlation between fea-
tures was also considered. The ensemble-based learning con-
tributed to considering different sets of patterns that malware
can represent a wide range of behaviors, and this interprets
the effectiveness of the ensemble classifiers MDEB-MVDS-
SDLMV (see Table 2 and Figures 6 and 7) compared to the
nonensemble-basedmodelMB-MVDS-SDL (see Table 2 and
Figure 8).

Although the proposed model attends the highest accuracy
even with the tested evasive malware behavior as compared
by the related works, a deep analysis of obfuscated and
evasive malware behavior is needed. Because the main focus
of this paper is on variant malware detection, the in-depth
investigation of obfuscated and evasive malware behavior is
lifted for future work. However, as shown in Table 5, the
use of combined features with ensemble deep learning makes
it possible for detecting evasive behavior especially when
malware uses benign APIs sequence to evade the detection.

VII. CONCLUSION AND FUTURE WORK
This study proposes a multifaceted and Deep Ensemble
Behavioral-based Malware Variant Detection Scheme using
sequential deep learning and the Extreme Gradient Boost-
ing algorithm. The proposed model combines different sets
of behavioral features to detect the malware variants. The
hypothesis is that each type of behavioral feature can tell
a part of the maliciousness or goodness of the investigated
executable file. A deep multifaceted hidden features vector
is extracted automatically from the last hidden layer of a
trained deep sequential learning model. Four deep learning
models were constructed, each trained based on different
sets of behavioral features such as API calls sequence, file
access behavior, registry access, and network traffic. The
hidden representative features are extracted from the hidden
layer of each trained deep learning model and combined into
one feature vector. These features are used as input to the
XGBoost technique to train a set of ensemble classifiers.

Ensemble-based learning creates multiple different patterns
that represent different behavioral perspectives. An obfus-
cated malware variant can be detected and naturalized due
to its difficulty in hiding its malicious behavior. The results
show that the proposed model improves the detection accu-
racy while reducing the false-negative rate compared to the
related evaluated models.

One challenge that may face the proposed detection model
is evasive malware that does not show its malicious behavior
during the feature extraction phase. A stealthy malicious pro-
gram that behaves like a benign one can go undetected until
specific conditions have occurred. One can think of including
features from the static analysis to extract such statistical fea-
tures. However, static features are subject to obfuscation by
malware authors; thus, they can remain hidden. One should
consider continuous monitoring of behavioral activities as
a critical, challenging, and open research problem. Future
researchwill extract features from the runtime environment to
continuously monitor malware behavior and detect malicious
patterns.
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