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Abstract: Rapid population growth, economic development, land-use modifications, and climate 
change are the major driving forces of growing hydrological disasters like floods and water stress. 
Reliable flood modelling is challenging due to the spatiotemporal changes in precipitation intensity, 
duration and frequency, heterogeneity in temperature rise and land-use changes. Reliable high- 
resolution precipitation data and distributed hydrological model can solve the problem. This study 
aims to develop a distributed hydrological model using Machine Learning (ML) algorithms to 
simulate streamflow extremes from satellite-based high-resolution climate data. Four widely used 
bias correction methods were compared to select the best method for downscaling coupled model 
intercomparison project (CMIP6) global climate model (GCMs) simulations. A novel ML-based 
distributed hydrological model was developed for modelling runoff from the corrected satellite 
rainfall data. Finally, the model was used to project future changes in runoff and streamflow extremes 
from the downscaled GCM projected climate. The Johor River Basin (JRB) in Malaysia was considered 
as the case study area. The distributed hydrological model developed using ML showed Nash- 
Sutcliffe efficiency (NSE) values of 0.96 and 0.78 and Root Mean Square Error (RMSE) of 4.01 and 
5.64 during calibration and validation. The simulated flow analysis using the model showed that 
the river discharge would increase in the near future (2020-2059) and the far future (2060-2099) for 
different Shared Socioeconomic Pathways (SSPs). The largest change in river discharge would be 
for SSP-585. The extreme rainfall indices, such as Total Rainfall above 95th Percentile (R95TOT), 
Total Rainfall above 99th Percentile (R99TOT), One day Max Rainfall (R x 1 day), Five-day Max 
Rainfall (R x 5 day), and Rainfall Intensity (RI), were projected to increase from 5% for SSP-119 to 
37% for SSP-585 in the future compared to the base period. The results showed that climate change 
and socio-economic development would cause an increase in the frequency of streamflow extremes, 
causing larger flood events.

Keywords: satellite rainfall; distributed hydrological model; flood forecast; machine learning; rain­
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1. Introduction

The hydrological system  involves a com plicated interaction betw een various com po­
nents [1]. The hum an interaction w ith some of these components has made it more intricate 
over tim e [2,3 ]. H ence, the hydrological system  is a dynam ically  com plex system  that 
rem ained difficult to understand and a challenge to m odel due to its com plexity  [4 ]. H y­
drological disasters like floods and w ater stress have becom e an every-year phenom enon 
in  m any other countries across the globe [5 ]. Floods in  a catchm ent are triggered w hen 
precipitation becom es m ore than the storage and drainage capacity of the catchm ent [6,7]. 
D ue to rapid population growth, econom ic developm ent, land-use m odifications, and cli­
mate change, m any catchm ents across the world have becom e highly prone to hydrological 
d isasters [8,9] . This is particularly true for M alaysia, w here land use and clim ate changes 
are often m entioned as the responsible factors for the increased frequency and severity of 
urban w ater scarcity and floods [10,11] . This has caused m ajor concern am ong scientists 
and policym akers in the context of global environm ental changes.

The increase in atmospheric greenhouse gases (GHG) caused a significant rise in global 
tem perature [12]. The changes in precipitation patterns, including intensity, duration, and 
frequency, have been  recorded w ith  the rise in tem perature over the last few  decades, re­
sulting in frequent hydrological extremes [13]. Water is the most im portant resource for the 
survival of living beings [14]. A lm ost 80% of the w orld 's population lives under different 
forms of w ater scarcity [15]. Increasing hydrological disasters m ay cause a quick depletion 
of the available w ater resources [16]. The water m anagem ent system needs to be advanced 
w ith  better m anagem ent policy  to attain sustainable developm ent and m anagem ent of 
water resources to adapt to climate change [17]. This needs reliable inform ation on climate 
change projections and im plications in catchm ent hydrological processes.

R ain fa ll-ru n off m odels sim ulate the relationships betw een rainfall and the runoff 
generated in a catchm ent [18]. Various m ethods and techniques have been  developed to 
sim plify this complex relationship, ranging from a simple m athem atical model to a complex 
"b lack  b o x " and physical m odels [19- 21]. A ccording to the m ethods used to develop 
the relationship betw een rainfall and runoff, the m odels are categorized as em pirical, 
conceptual, and physical [22]. They are also categorized as lum ped, sem i-distributed, and 
d istributed m odels based  on their ability to consider the spatial variability  of catchm ent 
properties. D evia et al. conducted a com parative study to com pare various ra in fa ll- 
runoff m odels [22]. The study revealed that the em pirical m odels require few er input 
data bu t are lim ited to a certain region or a boundary, w hereas the conceptual m odels are 
param etric. The param eters are catchm ent dependent, and thus, their derivations need 
large hydrological and m eteorological data [23]. The physical-based m odel establishes the 
rain fall-ru noff relationship based on the governing physical law s [24]. These m odels are 
m ost accurate but suffer from scale-related issues and require extensive data [22]. Therefore, 
they are considered the most com plex rainfall-runoff models. The uncertainties associated 
w ith extensive data and the param eters used to develop m odels are specific to the region, 
m aking these m odels m ore tim e-consum ing and site-specific [25].

In recent years, soft com puting or m achine learning (ML) m ethods, such as Artificial 
N eural N etw ork (AN N ), Support Vector R egression (SVR), and Fuzzy Logic and Genetic 
A lgorithm  (GA ), have been  em ployed to develop ra in fall-ru noff and other hydrological 
applications [26- 29]. H ow ever, these approaches cannot com pletely  m anage the dynam ­
ics of hydrological processes because of their inherent lim itations in the approaches [30]. 
Potential challenges also arise as these m ethods require long-term , continuous historical 
records of hydrological and other variables [31,32]. Furthermore, many of these approaches 
sim plify the m ulti-factors and often m ake the nonlinear system s linear, reducing the sim u­
lation accuracy [33,34]. The hybridization of M L and conventional physical or conceptual 
m odel can im prove the capability  to m odel com plex interactions. Such an approach also 
can replicate the functional relationship betw een input and output by enhancing the origi­
nal m ethodologies by  data processing, param eter estim ation, and routing using m achine 
learning algorithms [35]. The application of such com plex problem -solving m ethodologies
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in hydrology and water resources can help to provide a technique for reliable sim ulation of 
hydrological disasters, particularly  w ater scarcity and floods, due to the changes in  land 
use driven by physical and socio-econom ic factors and climate. Incorporating quantitative 
inform ation on com plex interactions of runoff w ith  land use and clim ate can enhance the 
m odel's accuracy in sim ulating hydrological disasters [36].

The projection of w ater-related hazards in a catchm ent is very  intricate due to the 
com plex relationship of clim ate and land use w ith various ecological and socio-econom ic 
factors, including population grow th, econom ic developm ent, u rbanization, and policy- 
related factors, like water m anagem ent strategies and legislation [37]. Therefore, reciprocat­
ing actual hydrological conditions using hydrological m odels is alw ays challenging [38]. 
A hydrological m odel requires a lot of observed data and optim izing different param e­
ters [39]. The data availability  or m ism atch of any data leads to errors in sim ulation [40]. 
Therefore, the m ajor challenge is finding the relationship am ong the w ater cycle com po­
nents that affect a system  in various dim ensions. Successful sim ulation of a hydrological 
cycle using  a dynam ic approach can address hydrological m odelling challenges. The 
solution to this problem  is extrem ely im portant for M alaysia, w here rapid population 
and econom ic grow th along w ith  clim ate and land-use changes have caused a significant 
change in  hydrological disasters. C onsequently, a m oderate dry spell often forces w ater 
rationing, and m oderate or extreme rainfall causes floods, especially in rapidly developing 
urban catchm ents of M alaysia [13].

The influence of land-use changes, w ater consum ption, tem perature rise and ground­
w ater level causes changes in the hydrology of an area [12,41]. D eficiencies are found 
in  studying the im pact of clim ate changes, w hich  are (i) the effect of changes due to a 
single com ponent, (ii) statistical analysis of tim e series rather than assessing  through a 
hydrological m odel, and (iii) not using the updated data for the study. There is a need 
to analyze the changes in hydrology w ith  the com bined effect of all such variables along 
w ith  the hypothetical clim ate scenarios based on long-term  clim ate observation of the 
specific region.

M odelling the dynam ics of different factors individually and jo in tly  can help under­
stand the com plex nonlinear interrelations and interactions am ong different elem ents in 
the com plex physical, environm ental, and behavioural system s [42]. The incorporation 
of quantitative inform ation on com plex interactions of various factors can enhance the 
prediction accuracy of the hydrological m odel to sim ulate hydrological disasters. It is 
expected that the application of com p lex problem -solving m ethodologies in hydrology 
and w ater resources w ill provide a reliable sim ulation of hydrological d isasters, particu­
larly w ater scarcity and floods, due to the changes in land use, clim ate and other physical 
and socio-econom ic aspects factors. Therefore, in this study, w e develop an entity-based, 
distributed hydrological m odel based on state-of-the-art m achine learning algorithm s to 
incorporate various com ponents o f the environm ent to analyze the effect of clim ate and 
land-use changes on the flood susceptibility  in the Johor R iver basin , M alaysia. Further­
m ore, this study includes the projection of rainfall and flood extrem es under various SSP 
scenarios of CM IP6 G CM  future projections.

2. Study Area and Data Description
2.1. Study Area

The study area opted in this research is Johor R iver Basin  (JRB). It is situated in the 
south-eastern part of the state of Johor. The total catchm ent area of JR B  is approxim ately 
1652 km2. JRB is situated in Peninsular M alaysia (Figure 1), also known as W est M alaysia. 
W est M alaysia covers 130,598 km 2 and lies betw een latitudes of 1 .20°-6 .40° N  and lon­
gitudes of 99 .35°-104 .20° E [43]. The JR B  has u ndulating land w ith  elevations ranging 
up to 366 m eters in height. The topography com prises forests and irregular m ountains 
sloping towards the South China Sea. The central and northern regions of JRB are covered 
w ith  sw am ps and natural forests; how ever, in  the southern region, rubber and oil palm  
plantations are the dom inant landuse. A pproxim ately  64%  of the JRB have a slope angle
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ranging from  0 to 50° [44]. The total length  of JRB is 122.7 km  w ith  m ajor tributaries of 
Penggeli River, Linggiu River, Sayong River, Jengeli River, and Belitong River [44].

100° E 101° E 102° E 103° E 104° E

100° E 101° E 102° E 103° E 104° E

Figure 1. Location of the study area.

M alaysia's clim ate is hum id and hot due to its proxim ity to the equator. The region's 
rainforest clim ate is heavily  influenced by  A sian -A u stralian  atm ospheric dynam ics and 
land-sea interaction, varying topography, and m onsoon wi nds [46 ] . The ave rage daily tem ­
perature ranges betw een 2e and 32 degrees Celsius, w ith art annual variation of 3 degrees 
Celeius. The annual average rainfall is approximately 2000-4000 mm, w ith 150 to 200 rainy 
days per year [47]. The regional precipitation d istribution pattern is determ ined by nhe 
com bined response of local topography and w ind flow direction.

Peninsular M alaysia experiences tw o seasons throughout the year: The Southw est 
M onsoon (SWM) from M ay to August and the N ortheast M onsoon (NEM) from November 
to February. D uring N EM , extrem e rainfall events are commonn bu t the w eather is dry 
during SW M . C oastal plaee s are affected by  ehe N EM , w hilst h igher altitude areas are 
lese affected by  the m onsoon. neninsular M alayaia has hum id w eather, w ith  the highert 
precipitation recorded during thn 'inter-m onsoon petiod .'

2.2. D ata D escription

River gauge data of JRB was collected from the Departm ent of D rrinage and Irrigation 
(DID ) M alaysia. D aily drscharge data of the m ain tributary w as used to calibrate and 
validate the m odel. The details of the river gauge are given in Table 1.

Table 1. Description of River Flow data.

Station ID Station Name River Basin Catchment Area (km2) Analysis Period

1737451 SG. JOHOR at RANTAU PANJANG Sg Johor 1130 2007-2017
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ERA-5-Land is a post-processed reanalysis of the European Com mission, the European 
Centre for M edium -Range W eather Forecasts (ECM W F). It has a higher resolution than the 
previous products, such as the ERA -interim  and ERA -5. This product provides com plete 
inform ation on  various clim ates and land variables over a longer period w ith  higher 
resolution. Physical laws govern the model output generated to produce a consistent set of 
data by  using observed data across the globe as an input. ERA-5 land contains the data of 
50  variables w hich helps to study the energy and w ater cycles w ith  a one-hour tem poral 
resolution spread globally  at a 9km  resolution spatial resolution [48] . ERA -5-Land data 
contains over 50 clim ate variables. D ow nscaling the CM IP6 GCM s, long term continuous 
higher-resolution data is required. Therefore rainfall and tem perature data of ERA-5-Land 
for the period 1981-2014 w ere used to downscale GCM s, w hereas soil moisture was used for 
the developm ent of the distributed hydrological model. All these data are freely available 
at https://cds.clim ate.copernicus.eu (accessed on 16 N ovem ber 2021).

The CM IP6 G CM s were em ployed in this study for the sim ulation of the future runoff 
in the basin. The new m ulti-m odel ensem ble of CM IP6 w as used in this study. The m odel 
ensem ble allows clim ate change evaluation and regional projections under various future 
socio-econom ic scenarios. The fourth  and fifth IPC C  reports of the Erath  System  m odel 
(ESM ) and A tm osphere-O cean G eneral C irculation M odels (A O G C M s) w ere coupled as 
an input for C M IP6, w hich  are know n as G eneral C irculation M odel (GCM ). The G CM s 
w ere selected by  Iqbal et al. [49] for (M ainland South East A sia) M SEA  u sing a robust 
selection m ethod that uses the categorical and spatial indices. They selected three G CM s 
for the region. These G C M s w ere dow nscaled in this study to use as an inp ut to the 
hydrological m odel to sim ulate future floods. Further details on the G CM s used can be 
found in the article [49].

Integrated M ulti-Satellite Retrievals for G lobal Precipitation M easurem ent (IM ERG ) 
perform ed better am ong five other satellite products for precipitation over Peninsular 
M alaysia. Iqbal et al. [50] bias corrected the IM ERG  data using rain gauge station data. 
They developed a tw o-step bias correction m ethod to improve the perform ance of IM ERG  
data up to 55%  in RM SE. The m ethod w as also found better than the conventional bias 
correction m ethod such as L inear scaling and quantile regression [50]. The details of the 
study and method can be found in Iqbal et al. [50]. This bias corrected IM ERG dataset was 
used in this study to develop the distributed hydrological m odel over Johor River Basin.

The details of various other datasets used in this m odelling are given in Table 2 .

Table 2. Details of various parameters used in this study.

Data Set Resolution Source

Land use MODTBGA (MODIS/Terra Thermal Bands 
Daily L2G-Lite Global 1km SIN Grid V006 1 km https://lpdaac.usgs.gov/ 

(accessed on 13 June 2021)

Rainfall
MOD16A2 (MODIS/Terra Net 
Evapotranspiration 8-Day L4 
Global 500 m SIN Grid V006)

500 m https://lpdaac.usgs.gov/ 
(accessed on 13 June 2021)

Land Surface Temperature
MOD11A1-MODIS/Terra Land Surface 

Temperature/Emissivity Daily L3 Global 
1km SIN Grid

1 km https://lpdaac.usgs.gov/ 
(accessed on 14 June 2021)

Elevation ALOS/PALSAR DEM 12.5 m 12.5 m https://asf.alaska.edu/ 
(accessed on 19 July 2021)

Soil Type SoilGrids250m version 2.0 250 m https://soilgrids.org/ 
(accessed on 22 July 2021)

3. M ethodology
3.1. Procedure

The m ethodology adopted in this study consists of the follow ing steps:

1. The catchm ent is divided into grids of 10 km each.

https://cds.climate.copernicus.eu
https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
https://asf.alaska.edu/
https://soilgrids.org/
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2. A ll the data sets are interpolated to 10 km to achieve a sim ilar resolution.
3. The distributed hydrological m odel is developed using bias Corrected IM ERG  data 

for the catchm ent.
4. The model is calibrated and validated with the observed river flow data (details given 

in Table 1).
5. The selected GCM s are downscaled to 10 km resolution for the basin.
6. The dow nscaled G CM s data is used in  the distributed m odel to sim ulate the future 

flow  condition under d ifferent SSP scenarios. The details of the m ethods used to 
com plete the analysis are given below.

3.2. K-N earest N eighbour

The K N N  is an efficient nonparam etric classification algorithm  that assigns data
to a class based  on its nearest neighbours [51]. In the particular classification problem ,

assum ing that T =  \ x n E R d \ indicates a training set com prises of N  sam ples w ithin
I J n=1

each M class in d-dim ension; the sam ple x n is assigned the class m ark " c n" , the distance
betw een the unknow n point x and x f N is estim ated using Euclidean distance m ethod as
show n in Equation (1).

d (x , xNN)  =  / (x -  x NN f  (x  -  x NN) (1)

Next, the class nam e of the query point x is estim ated based on the m ajority voting of 
its neighbours, as show n in Equation (2).

c =  argm axc E  ^  c =  cNN)  (2)
(xNN, cNN)E T

w here c is a class label and cNN is the class label of i-th nearest neighbour. S (c =  cNN) , an 
indicator function, can have a value of one of the class cNN of the neighbour xNN . This 
research used KN N  to interpolate different data sets to a specific grid.

3.3. D ownscaling o f  GCM s

GCM  sim ulations w ere downscaled to a finer spatial scale for their use by  end-users. 
This study used the M OS approach to downscaling the selected GCM s into fine resolution. 
In  M OS, the statistical calibration betw een sim ulated and observed predictors is usually 
done [52]. The advantage of using this method is that it im proves reliability w hile keeping 
the original accuracy. The M O S has been  found m ore advantageous in studies related to 
clim ate change [53] .

The bias correction using M O S can be expressed as in Equations (3) and (4).

1 N
Bias =  N  E  [F ( t ) -  O (t)] (3)

N t=1

w here F  = Forecast; O = O bservations and N  = days in training sam ple.

F' =  F (t)  -  B ias  (4)

w here F'= Corrected Value.

3.3.1. Gam m a Q uantile M apping

G am m a Q uantile m apping (G am m aQ M ) w as introduced by Piani et al. [54]. This
m ethod assum es that a gam m a distribution approxim ates the observed and sim ulated
intensity  distribution w ell. G am m aQ M  builds a m odel variable Pm using probability
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integral transform  to m ake the new  build  distribution equal to the distribution of the
observed variable Po. The m athem atical expression of this m ethod is given in Equation (5)

Po = F - 1 o(Fm(Pm)) (5)

w here Fm= C um ulative function of Pm; and F - 1o = inverse cum ulative function of P o.

e( - f ) x (k-1)

p d f  (X) =  T (k )S > (6)

w here in  Equation (6), k  signifies the form  param eter, x  denotes the N orm alized  daily
precipitation, w hile d denotes the scaling parameter.

Gam m aQ M  could not be applied if the k value is less than 1 or 0; therefore, the value 
is presumed greater than 1. GammaQM  deliberates mean and extreme values, making it an 
effective bias-correction m ethod [54- 56]. Gam m aQ M  is only valid for precipitation data.

3.3.2. Pow er Transform ation

Power Transformation (PowerTr) considers the bias in the m ean and the differences in 
the variance for the correction of data [57]. In power transform ation, a nonlinear correction 
in  the exponential form  such as a P b is used for the ad justm ent of variance. A ccording to 
this m ethod daily precipitation of P  w as transform ed into a corrected am ount of P *  using 
Equation (7).

P* =  a P b (7)

A  distribution-free approach can calculate the param eter, b. It is first identified by 
m atching the coefficient of variation  (CV) corrected daily G C M  precipitation (P b) w ith  
the C V  of observed daily  precipitation for each m onth of training. The value of b w as 
determ ined iteratively. D ata grouping w as done every five days to reduce sam pling 
variability  [58]. The value o f b w as used to calculate the transform ed precipitation by 
Equation (8):

P * =  P b (8)

A  param eter is subjected to the observed and the transform ed m ean values. It is a 
dependent param eter to the value of b  param eter and subsequently b  is a dependent to the
m agnitude of CV Both a and b are differed for every block-annual of 5 days.

3.3.3. Generalized Q uantile M apping

Generalized quantile m apping (GenQM ) is a kind of parametric quantile mapping. Its 
m ain differ is the im plem entation of gam m a distribution and generalized Pareto distribu­
tion (GPD). M athm atically, GenQ M  can be expressed as follows:

Po =  Fl- 1(F m (P m ))  (9)

The pdf is chnaged w ith the value of G PD  and gam m a distribution. The value of the 
GPD  is tailed the extrem e distribution [59], as expressed in Equation(10).

, 1  -  (1 +  i f  £ =  0 
P r(X  -  u <  x |X >  u) =  I  V / V  \ (10)

'  < 1 '  1 -  e x p ( -  V s) ,  i f  S =  0

Here, the u value is the 95th% threshold, a  =  a  +  £,(u -  ^), H is the scale parameter. £, 
is presented the shape parameter. In this equation, gamma distribution w as em ployed on a 
smaller threshold. In addition, the GPD w as em ployed on values larger than this threshold, 
as given in Equation (11):

y  f  Fobs,gamma(FCCLM,gamma) ,  if x <  95 thpercentile

1  Fob1s GPD(Fc c l m ,g p d ), if X >  95 thpercentile
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3.3.4. Linear Scaling

The L inear Scaling (LS) approach w as introduced by Lenderink et al. [60]. This bias 
correction m ethod utilizes the m onthly correction values "th e  difference m odeled and 
observed daily  d ataset". The m onthly scaling factor is then applied to uncorrected daily 
data. The daily precipitation P  w as corrected by  the follow ing Equations (12) and (13).

P* =  aP  (12)

W hile the tem perature, T, is corrected using the follow ing equation,

T* =  a T  (13)

w hereas a  is the m onthly scaling factor for precipitation is calculated by Equation (14),

a =  P  (14)
P s

Po is the observed m onthly m ean and Ps is the sim ulated m onthly mean.
For the bias correction of tem perature, the scaling factor is calculated by Equation (15).

a  =  To -  Ts (15)

To is the observed tem perature m ean w hereas, Ts is the m onthly mean sim ulated tem pera­
ture. The LS m ethod is sim ple and requires less inform ation, such as only m onthly data is 
required to calculate the scaling factor [61].

3.4. H ydrological M odel D evelopm ent

H ydrological interactions, such as transpiration, evaporation, stream flow, rainfall, 
groundwater flow, and infiltration constitute a hydrological system. The interaction among 
the hydrological system 's components is com plex and variable in space and tim e. However, 
four m ajor com ponents m ostly  govern the hydrological cycle: precipitation, infiltration, 
runoff, and evapotranspiration. Various m ethods are adopted to develop the relationships 
between these major hydrological components and understand the hydrology of any region. 
The major interacting com ponents of a hydrological cycle are shown in Figure 2 . The study 
is divided into several grid boxes to model the distributed nature of hydrological processes. 
The divisions of the study area into grid boxes are also show n in Figure 2 .

3.4.1. Concept of the Distributed M odel

A  m ultiple bu cket m odelling approach w as used in  this research to account for the 
spatial variability  of the land and clim ate variables in the catchm ent. The study area 
w as divided into grids of 10  km  each to calculate the cum ulative flow  in the catchm ent, 
considering the variability  of soil and clim ate inputs at a coarser scale. E ach  bucket 
w as subdivided based on the m ajor hydrological processes. The unsaturated region, 
evapotranspiration, and surface runoff sim ulate the flow  generation. The m odel w as 
developed for JR B  on a daily  tim e scale using the bias-corrected  satellite data. A  sim ple 
w ater balance equation w as used for each bucket, including rainfall, evaporation, and 
saturated excess flow. A  nonlinear storage discharge relationship w as established to 
generate surface runoff using near-real-tim e R S data for creating an early  flood hazard 
system  to m inim ize the flood causalities.
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The m ain w ater balance equation used to calculate the discharge from each bucket is 
given in Equation (16).

d- d l  =  m -  f ss( t ) - f se( t ) ~  et(t)  (16)

w here R (t)  is the am ount of rainfall at a certain tim estep t. qss(t)  and qse(t)  are the runoff 
at subsurface and a surface scale, w hereas et represents the evapotranspiration for tine; 
pertinent bucket.

3.4.2. Excess Saturation Runoff Rate

The overland flow sr saturated excess flow of a bucket w as calculsted by Equation (17), 
given the follow ing conditions w ere tulfilled.

h ^ ^ - V  i a v > v bfse =  0 i f V < V b (1 7)

where V is the volum e of soil w ater storage and Vb is the soil m oisture storage capacity. Vb 
depends on the average soil depth (L) and the average soil porosity ^ .



Sustainability 2022, 14, 6620 10 of 30

3.4.3. Subsurface Runoff

The subsurface runoff is the function of soil storage and catchm ent response time. The 
function to calculate the subsurface runoff depends on the values of soil w ater storage 
capacity and the soil w ater storage at the pertinent grid, as given in Equation (18) below.

V -  Vf
fss =  — T ^  i f V  >  V ffss =  0 i f V  <  Vf (18)

tc

w here V  represents the soil w ater storage and Vf is the threshold storage assum ed to be 
equal to Vf =  f cL, the product of soil field capacity and the average soil depth. D arcy's Law 
is used to calculate the catchm ent response tim e considering the hydraulic gradient equal 
to the hillslope of the ground calculated using the DEM. The equation for the calculation of 
catchm ent response tim e is given in Equation (19),

' L ^  (19)2 Ks tanp

w here L is the hillslope length, tan fi is the average ground surface slope, and Ks is the 
average saturated hydraulic conductivity.

3.4.4. Evapotranspiration

The evapotranspiration in the w ater balance m odel is calculated using an em pirical 
relationship that uses m inim um  param eters. The FAO B lan ey-C rid d le w as used in  this 
study to find the evapotranspiration using the precipitation and tem perature at a specific 
grid [62], using Equation (20) below.

eto(i) =  p (i) ( ° .46 Tmean(i) +  8 .13)  (20)

where, p (t) is the average precipitation and Tmean({) is the m ean tem perature of the grid (i).

3.4.5. Flow  Routing

This distributed hydrological m odel's flow routing relies on the "E ight Direction Pour 
point m odel". It calculates the direction of flow  of a single grid based on the difference in 
elevation  of the surrounding eight grids. Furtherm ore, the flow  direction of each cell is 
determ ined u sing the "D irection  of steepest d escen t" m ethod. The steps to calculate the 
flow routing are as follows:

1. The average elevation of each grid is calculated for all the cells.
2. The flow direction of each cell is calculated using the Eight Direction Pour point model.
3. The flow accum ulation in each cell is calculated using the bucket model developed in 

Section 3.3.1.
4. Flow  accum ulation is calculated by  adding the cum ulated flow  of the grids flow ing 

into the particular grid
5. The flow route is calculated by connecting the low water accum ulated cells w ith high 

w ater accum ulated cells.

A m achine learning m odel w as used to generate runoff from rainfall in each grid cell. 
R -packages "r.w atershed " tool and "rd w p lu s" w ere used to estim ate the routing of the 
generated runoff from the cell to the catchm ent outlet.

3.4.6. Projections of C lim ate Change Im pacts on H ydrological Extrem es

The fram ew ork to analyze the im pact o f clim ate changes on hydrological extrem es 
is show n in Figure 3 . The extrem es in  the flow  at R atu  Panjang station w ere sim ulated 
for h istorical and future scenarios. To sim ulate the flow  u sing the spatially distributed 
hydrological m odel developed in this study, the dow nscaled G C M s data w as used as an 
input. The m odel generated the flow  for h istorical and future scenarios for various SSPs.
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The output w as used to calculate various flow  quantiles, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
and 0.9. The changes in each quantile w ere calculated  by taking the difference betw een 
sim ulated future flow to the historical flow by each GCM.

Far Future (3060-:099)

Near Future (2020-2059)

Change In Far Future

Change In Near Future

/ >
Historical SSP119 SSP245 SSP370 SSP585

Downscaled GCM JT
Distributed Hydrological Model

Simulated Flow

Change in Quantiles

Change In Quantiles

Figure 3. Framework to analyze the impact of climate change on hydrological extremes.

The dow nscaled GCM s data w as used to analyze various rainfall extrem es, as given 
in Table 3 . These indices were calculated for historical and each SSP. The difference in these 
indices was calculated with the historical period as the reference. The details of each index 
are show n in Table 3.

Table 3. WMO hydrological extreme indices used in this study.

Indices Symbol Description Formula

Total rainfall above 
95th Percentile R95pTOT Annual total rainfall when 

rainfall > 95p R95 p =
w
E  RRWj where RRwj  > RRw n95

w =1

Total Rainfall above 
99th Percentile R99pTOT Annual total rainfall when 

rainfall > 99p R99 p =
W
E  RR*w j where RRw j > RRw n99

w =1

One day Max Rainfall R x 1 day Annual maximum 
1-day rainfall Rx1dayj  =  max(RR*j* )

Five-day Max Rainfall R x 5 day Annual maximum 
5-day rainfall Rx5dayj  =  max(R R * *)

Rainfall Intensity RI Average rainfall on the 
rainy days

RJ =  Ew=1 RR w j  RJ w ***

* Daily Rainfall amount on wet days (Rainfall > 0). ** Daily rainfall amount on the day, i, in period j. *** Number 
of wet days (Rainfall > 0).

4. A pplication Results
4.1. D ownscaling o f  GCM s
4.1.1. D ow nscaling of Precipitation

ERA -5-Land data was used as the reference data to dow nscale the precipitation and 
tem perature of EC -Earth , EC-Earth-V eg, and M RI-ESM 2. LS, G am m aQ M , PowerTr, and 
GenQM  were used to downscale the historical GCMs. Index of agreement (d), Normalized 
R oot M ean Square Error (N RM SE), Percentage Bias (Pbias), and Skill Score (SS) of the 
downscaled precipitation are shown in Figure 4 . The downscaled result of one out of three 
GCM S are shown below. The results of the remaining GCM s are provided as supplementary 
m aterial for further reference (Figures S1, S2, S5, S6, S9 and S10). The results show ed that 
LS perform s better than the other bias correction methods. Compared to the other methods, 
LS has im proved the d  values by  up to 20% for each GCM.
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C a lib e ra tion  V a lid a tion

Figure 4. The statistical performance of the downscaled and raw GCMs.

The error in dow nscaling w as com pared using NRM SE %. Plots betw een ERA-5 and 
G C M  w ith  different bias correction m ethods are show n in Figure 4 . The; results show  
that the N RM SE oC raw  G C M  ranges betw een 120 and 130%, w hereas the LS reduced ths 
N R M SE by 100-110% . G am m aQ M , PowerTr, and G enQ M  show ed poor perform ance in 
reducing the N RM SE.

The PBf A S in the bias-corrected  outputs is show n in Figure 4 . The restilts show ed 
that the raw  G C M  biases range from  - 4 0  to —S5%  compared! to ER A -5 data. The m ost 
suitable m odel w hich reductd  the bias very close to zero w as the LS and PowerTr. The SS
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of the raw and the bias-corrected GCM s were also compared to show the m odel's accuracy. 
The best SS w as found for the LS. The raw  G C M  of EC -Earth  show ed a m ean SS o f 0.42, 
w hereas it im proved to 0.63 using LS, 0.48 using Gam m aQ M  and 0.53 using PowerTr, and 
it reduced to 0.25 for GenQM , as show n in Figure 4 . Sim ilar im provem ents were observed 
for EC-Earth-Veg and M RI-ESM 2 using the LS method.

Taylor diagram  w as used to com pare the degree of correspondence betw een the 
bias-corrected  data, as show n in Figure 5 . The figure show s the bias-corrected  outputs 
for the EC -Earth  during calibration  and validation  periods. The results show ed that, 
in  term s of three statistical m atrices (Standard D eviation, C orrelation and RM SE), the 
LS m ethod perform ed better to reduce the bias in  both  the calibration and validation 
periods. The LS show ed a correlation coefficient h igher than 0.4 during calibration and 
validation, w hile all other m ethods show ed less than 0.4. The root-m ean-square error of 
LS corrected data w as less than the other m odels, w hile the standard deviation w as nearer 
to the observed one as it is radially nearer to the observation (hollow  circle on the x-axis). 
The Taylor diagram s of the rem aining G CM s are provided as supplem entary m aterials 
(Figures S3, S4, S7, S8, S11 and S12).

0 2 4 6 8  10 12 0 2 4 6 8

Standard deviation Standard deviation

•  GCM  •  LS  O GammaQM •  Pow erTr O GeneralQM

Figure 5. Taylor diagram shows bias correction methods' performance to correct EC-Earth during (a) 
c alibration; (lb) validation periodr.

4.1.2. D ow nscaling of M axim um  Temperature

The com parison of d in Figure 6  show ed that the Pow erTr dow nscaling m ethod 
im proved the d value from  0.48 to 0.56, a com parison  of N RM SE % values show ed that 
the G am m aQ M  and G enQ M  m ethods failed to dow nscale the G CM  because the N RM SE 
% values increased for these tw o m odels. H ow ever, LS and Pow erTr show ed a slight 
im provem ent in the N RM SE % by 5-10% .
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Figure 6. The statistical performance of the downscaled and raw GCMs for maximum temperature.

The output of the dow nscaling m odels is com pared in Figure 6 . The average per­
centage biases in  dow nscaled data com pared to the ERA -5 ranged from  0.1 to 0.4. The
results showed that the PowerTr m odel reduced the biases in the three GCM  by an average
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of 20 -30% . Sim ilar results w ere dem onstrated by  the LS m ethod, w hereas the G enQ M  
and G am m aQ M  show ed unsatisfactory perform ance in the bias correction. The SS of the 
m odels w as also com pared to the ERA -5 data, as show n in  Figure 6 . The SS of raw  GCM  
w as 0.995, w hich w as further im proved up to 0.999 by  the PowerTr m ethod in m ost cases. 
H ow ever, the SS w as reduced in  the case of G am m aQ M  and GenQ M . Therefore, in term s 
of im proving these indices, the PowerTr downscaling m ethod proved to be a better model 
than the others.

Figure 7 shows the Taylor diagram for EC-Earth GCM. The calibration and validation 
period results show ed that the best m odel to dow nscale the EC -Earth  is the Power'Tr 
as it reduced the RM SE and increased tine correlation. The results of EC-Earth-Veg and 
M RI-ESM 2 are given in appendices .

Standard deviation Standard deviation

•  G C M  •  L S  O G am m aQ M  •  P ow erT r O G eneralQ M

Figure 7. Taylor diagram shows bias correction methods' performance to correct EC-Earth during (a) 
calibration; (b) validation period.

4.1.3. D ow nscaling of M inim um  Temperature

The results for dow nscaling m inim um  tem perature are presented in  this section. 
Figure 8 shows the efficacy of the downscaling; m odels in terms of the d. The EC-Earth raw 
values show ed a d value of 0.5, w hereas the downscaling; m odels show ed im provem ent, 
specially PowerTr increased the d -values up to 0.57. Figure 8 show s the N RM SE % values 
of GCM  and other downscaled output cem pared to tire! ERA-5 historical data. "Thee NRMSE 
% values of the GCM  w ere observed betw een 0 and 50% for all the; three GCM s. However, 
the im provem ent in M RI-ESM 2 using PowerTr and LS w as up to 10% for N RM SE %.

The biases in  the dow nscaling  G CM s are com pared in Figure 8 . The average biases 
in  these m odels com pared do the ERA -5 w ere in the range! of - 0 .2  to 0.7%. "The results 
show ed that the eow erT r m odel reduced the biases in  the three G C M  ire an average of 
20 -30% . Sim ilar results w ere show n by the LS m ethod, w hereas The G am m aQ M  and 
G enQ M  show ed very  high errors in  the bias correction. The SS o f the m odels w ere a lto  
com pared to the ERA -5 dade. The SS of raw  G C M  w as 0.997, w hich w as im proved up to 
0.999 by  the Pow erTr m ethod in m ost cases. Hnweveri the SS w as noticed to decrease far 
Gam m aQ M  and GenQM .
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Figure 8. The statistical performance of the downscaled and raw GCMs for minimum temperature.
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Figure 9 show s the Taylor diagram  for EC -Earth m inim um  tem perature. The cali­
bration and validation period show  that th e b e st m odel to dow nscale the EC -Earth is the 
PowerTr as it has reduced the RM SE and increased the correlation.

0 1 2 3 4 5  0 2 4 6 8
Standard deviation Standard deviation

•  G C M  #  Scale O G am m aQ M  #  P ow erT r O G eneralQ M

Figure 9. Taylor diagram shows bias correction methods' performance to downscale EC-Earth 
minimum temperature during; (a) calibration; (b) validation periods.

4.2. Calibration and Validation o f  H ydrological M odel

The integrated hydrological m odel w as developed for each geid using the BIM ERG  
data. M odel calibration  and validation  w ere perform ed using river flow  data at Ratu 
Panjang from  2007 to 2017. Seven years' data starting from  2007 w as used for calibration, 
w hereas the rem aining four years nf river flow  data w ere used for validation. The m odel 
w as developed u a in f RF by  tu n in . the param etnrs u sing repeated cross-validatiun for 
random  sam pling. UOe 'repeatedcv' package in R w as used to split tire data inio ten parts. 
N ine parts were used to train and the reaming part for validation in each of the ten iterations 
used. The perform ance during each iteration w as m easured using evaluation m etrics. The 
average perform ance of ten folds w ith  ten repetitions w as calculated to sum m arize the 
perform ance. The calibration and validation  results are show n in  Figure 1 0 . The m odel 
show ed good perform ance for the validation period, giving the N SE, d, KGE, RM SE, and 
Pbias of 0.96,0.99), 0.92, 4.01, and - 0 .2 ,  respectively. The NSE velue of10.96 was m uch better 
than the reported N SE values for sim ilar other m odels, such as SWAT and HSPF, A PEX, 
and SAC-SM A [63]. Conventionally, the NSE value greater 1:han 0.65 is considered good for 
m odel evaluating criteria [64]. The m odel showed satisfactory values for the coefficient of 
determ ination (d) during calibration .0 .99) and validation  period (0.94). The results also 
show ed very less bias in calibration and validation periods. Pbias shnwed overustimation 
or underestim ation of the m easured flow. The acceptable range of Pbias cs less than 10%, 
w hereas in this case, the Pbias w as — 0.2°% for ca li°ra tion  and —f .20/o for the vahdation 
period. The RM SE values range from  4.01 to 5.64 for calibration and validation. The KGE 
values w ere also m the acceptable range of 0.92 fer c alibsation and 0 . 86 for validation.
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Figure 10. Observed and modelled river flow during calibration and validation period of 2007-2017.

The m odel w as evaluated using other statistical indices, such as M A R , d, m d, KGE, 
RMSE, and Pbias. The results of these statistical indices are given in Table 4 . The correlation 
term s, such as d, m d, and R2 w ere in the acceptable ranger, show ing a good perform ance 
in  sim ulating the runoff during the calibration and validation  period. The error term s 
fhow ed  very  negligible values, indicatfng the m odel 's good perform ance in  sim ulating 
ab served flow.

Table 4. PerSermances of1 the model during the calibration and validation periods.

MAE RMSE NRMSE°/t Pbias NSE d md R2 KGE

Caliberation 2.24 4.01 20.2 -0 .2 0.96 0.99 0.91 0.97 0.92

Validation 3.8 5.64 50.2 -0 .7 0.75 0.94 0.76 0.78 0.86

A  boxplot of sim ulated and observed flow  for all the m onths during the analysis 
period (2007-2017) w as plotted to analyze the seasonal stream flow  variations. Figure 11 
shows that the m odel sim ulates the seasonal variation well. The mean and quantile ranges 
of the mean m onthly rainfall of each month depicted a very good range of values. It can be 
observed in Figure 11 that the extrem e values of the stream flow during January, May, July, 
October, November, and Decem ber w ere also w ell sim ulated by the model. The simulated 
m ean values of each m onth w ere approxim ately  equal to the observed flow. The result 
indicates that the m odel can sim ulate the seasonal variation  and the seasonal extrem es. 
Therefore, it can be used for clim ate change im pact on river flow in the basin.
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Figure 11. Seasonal variations in mean monthly stream flow.

4.3. H ydrological Changes under Future Scenarios
4.3.1. Projected Rainfall Extrem es

This section evaluated five extrem e rainfall indices defined by  W M O  for four SSPs 
and three G CM s. The indices include R95pTO T, R99pTO T, Rx1day, Rx5day, and RI. The 
historical and future precipitation sim ulations of the most: suitable G CM s. (As discussed 
in  our previous paper [49], EC -Earth, EC-Earth-Veg, and M RI-ESM 2 w ere used to assess 
the changes in  precipitation extrem es. The sim ulated extrem es w ere analyzed for each 
G C M  individually  to cover the m axim um  uncertainty range in the near (2020-2059) and 
far (2060-2099) turure. The changes in these indices com pared to the historical period are 
Oisc ussed in the follow ing sec tions).

Total Rainfall above 95th Percentile (R95pTOT)

Figure 12a show s the changes in R 95TO T for different SSPs u sing three G C M s com ­
pared to the h istorical period. The results for EC -Earth  show ed the highest increase in 
R 95pTO T for SSP-119. The increase w ar 13 in the northern part o t JRB. For SSP-370, a 
m oderate increase over the whole basin ranging from 2 to 10 mm w as observed. However, 
SSP-585 projected a decrease in the northern part but an increase in total annual rainfall in 
the southern region up to 10 mm.
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Figure 12. Change in annual total rainfall above 95 percentile (a) in tine near future; (b) far future.

Tine EC-Earth-Veg G C M s show ed a slightly  less increase than the EC -Earth  for all 
the scenarios. U nder SSP-119, the R95pTO T value range from  5 m m  in the northeastern 
region of JRB to —2 mm  in the southern region. Similarly, SSP-245 showed a sm all change 
of 1-2  mm over the entire basin, whereas SSP-370 showed an increase of 5 mm in the south 
and a decrease of —6 m m  in the northern parts. For the fossil fuel developm ent scenarios 
(SSP-585), the R95pTOT showed an increase of 8 mm in the southern region and a decrease 
of — 9  m m  in the northern part.

M R I-ESM 2 show ed a m oderate increase in  the hear future for SSP-119, w hereas 
the percentage change in  the R95pTO T show ed a reduction for SSP-370 and SSP-585. 
The rainfall show ed an increase up to 5 -9  m m  in  the sustainability  scenario (SSP-119), 
whereas for the middle of the ro a5  scenar io, the increase in R95pTOT was minimal (2 mm). 
Furtherm ore, tine reduction of —2 to —13 m m  in the R95pTO T w as noticed during the 
regional rivalry (SSP-370) and fossfl fuel developm ent (SSP-585) scenarios.

The change in R95pTO T of the far future (2060-2099) com pared to the base period 
is show n in  Figure 12 1b. The m aps show  a gradual increase in  R 95pTO T from  5 m m  for 
SSP-119 to 21 mm for SSP-585 for EC-Earth GCM . EC-narth-Veg showed a sim ilar pattern 
of incr eas e in  R t5 p  TO  T  fo r SSP- 119 and SSP-585. A  denrease in  R9 5pTO T w as observed 
for SSP-199, w hereas ah increase by  5 and 21 m m  w as observed for SSP-245 and SSP-585, 
respectively. M RI-ESM 2 showed a reverse pattern for R95pTOT under SSP-119, w hereas a 
decrease in R 95pTO Tw as projected for SSP-585. SSP-370 showed no rhanges in R95pTOT 
in the far fut ure.

Total Rainfall above 99th Percentile (R99pTOT)

The percentage changes in  R99pTO T are show n in Figure 13a . For SSP-119, the EC - 
Earth showed an increase of 3 mm in the north and 1 mm in the southern part. EC-Earth-Veg 
showed a similar increase, whereas M RI-ESM 2 showed a higher increase up to 9 mm in the 
entire JRB for rainfall which exceeded the 99 percentiles of daily rain during the near future. 
For SSP-245, the EC-Earth showed an increase of 3 mm. Similarly, EC-Earth-Veg showed an 
increase of 3 -5  m m , w hereas the M RI-ESM 2 showed an increase of 5 -7  m m  in the basin.
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Figure 13. Change in annual total rainfall above 99 percentile (a) in the near future; (b) far future.

The EC-Earth and EC-Earth Veg showed a similar change for SSP-370 like the previous 
scenarios, but M RI-ESM 2 show ed a slight increase in  the R 99pTO T (up to 1 -2  m m ). EC - 
Earth  and EC-Earth-Veg show ed a positive change at the m ajority  of the grid points for 
SSP-585, whereas M RI-ESM 2 showed a slight decrease of -1 mm in m ost of the grids in JRB 
during; 2020-2059.

The c hanges in  R99p TO T for the far future period are show n in F igure 13b . Fo s SSP- 
119, the highest increare of 7 mm was observed for M RI-ESM 2, where as EC-Earth-Veg and 
EC-Earth showed an increase of 3 -5  mm. An average inctease of 4 -5  mm was observed for 
all the GCM s loir SSP-245 and SSP-375, extept M RI-ESM 2, w hich showed a negative change 
of —1 to —2 m m  at som e grid points. U nder fossil fuel developm ent scenarios (SSP-585), 
the EC -Earth  and EC-Earth-Veg show ed an increase in  R 99pTO T up to 5 m m , w hereas 
M R I-0SM 2 show ed a  decrea se by — 1 to —S mm.

Changes in O ne D ay M  ax Rainfall (R x  1 day)

Figure 14a shows the changes in m axim um  one-day rainfall for 2020-2059. All GCM s 
show ed an increase in  R  x  1 day at the m ajority  of the grids for all the scenaaios. For 
SSP-119, the least change of 1 -4  m m  w as observed for EC-Earth-Veg, w hereas EC -Earth  
showed an increase of up to 10 m m  and M RI-ESM 2 by 19 m m  in the near future.

Figure 14. Change in one-day max rainfall (a) in the near future; (b) far future.
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All GCM s projected a lower increase for SSP-245 than SSP-119. The m aximum change 
of 10 m m  follow ed by an average increase of 4 - 7  m m  and 1 -4  m m  w as observed for 
M RI-ESM 2, EC-Earth, and EC-Earth-Veg, respectively. For SSP-370, the R x  1 day showed 
an increase by  4 - 7  m m  for EC -Earth , w hereas a slight decrease in  the northern part by  
—2 m m  for EC-Earth-Veg and an overall increase of 7 -10  m m  for M RI-ESM 2. For SSP-585, 
the Rx1day show ed an increase of 4 - 7  m m  for EC-Earth. EC-Earth-Veg show ed a slight 
decrease in the northern region, w hereas an increase of 4 -7  m m  in the southern part. M RI- 
ESM2 showed a slight decrease at the m ajority of the grid points w ith a value ranging from 
—2 to —5 mm.

The changes in  the far future are show n in  Figure 14b . For SSP-119, a decrease in 
Rx1day w as observed for EC-Earth and EC-Earth-Veg by -3 to -9 mm. M RI-ESM 2 showed 
an increase in  the northern region up to 15 m m  and an increase of 9 m m  in  the southern 
part. The change in Rx1day was in the range of 9 to 21 mm for EC-Earth and EC-Earth-Veg, 
w hereas M R I-ESM 2 show ed an increase of 3  to 9 m m  for SSP-245. SSP-370 show ed a 
further increase of Rx1day, EC -Earth (15-21m m ), EC-Earth-Veg (15 -27  m m ), and M RI- 
ESM 2 (15-21 m m ). R x1day w as projected to increase by  34 to 40 m m  for the fossil fuel 
developm ent scenario. EC-Earth-Veg show ed a sim ilar increase of 21 -3 4  m m , w hereas 
M RI-ESM 2 decreased to —3 m m  in the entire basin.

C hanges in 5-D ay M ax Rainfall (R x  5 day)

Figure 15a show s the changes in  R  x  5 day for 2020-2059. EC -Earth  show ed the 
greatest changes of up to 44 m m  for all SSPs, w hereas EC-Earth-Veg show ed a reduction. 
For SSP-119, the change ranges from  12 to 25 m m  for EC-Earth, — 7 to  6 m m  for EC-Earth- 
Veg, and 0 to 6  m m  for M RI-ESM 2.

Figure 15. Change in five-day max rainfall (a) in tine near future; (lb) far future.

EC -Earth show ad a —5 to 12 m m  change at different grids for SSP-245. EC -Earth  
show ed a decrease by  0 to —7 m m. M RI-ESM 2 also show ed a decrease like EC-Earth-Veg. 
For SSP-370, the southern region show ed an increase of up to 44 m m  for EC -Earth  GCM , 
w hereas M RI-ESM 2 and EC-Earth-Veg show ed an increaoe of 2 to 12 m m . M RI-ESM 2 
show ed an increase up to 385 m m  in  the southern part of JRB for SSP-585. In contrast, 
EC-Earth-Veg showed a slight increaoe in the R x  5 day- in the southern part and a decrease 
up to —3 mm in the northern region. All grids under EC-Earth showed an increase -n the R 
x  5 day index ranging from  12-25 m m  in the near future.

The changes in  R x  5 day for the Sar future are show n in Figure 15b . The plot show s 
an overall increase of up to a m axim um  of 10 m m  under SSP-119 for all GCM s. There 
w as a further increase for EC-Earth up to 19 m m , w hereas a decrease up to -19 m m  in the 
northern region for EC-Earth-Veg and M RI-ESM 2 for SSP-r45. An overall increase in the R
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x 5 day. w as observed for SSP-370. M RI-ESM 2 show ed the; m axim um  increase of 39 m m , 
follow ed by EC -Earth  (30 m m ) and EC-Earth-Veg (19 m m ). For SSP-585, EC -Earth  R  x 5 
day show ed an increase of 40 m m  in  the southern region and 10-19  m m  in  the northern 
region of JRn. EC-narth-Veg showed a slight decrease in the R  x  5 day in the n or them  part 
in tde range of —9 to —19 m m . H owever, po sitive changes up to 10 m m  w ere ob served in 
the southern grids. M RI-ESM 2 show ed the highest increase of 48 m m  in the JRB.

C hanges in Rainfall Intensity (RI)

The changes in RI under various clim ate change scenarios for the near and far future 
are sliown in Figure 16a, respectively. The Figure l (Sa shows the decrease in RI for SSP-119. 
EC-Earth projected a dacrease by —.  to — 3 m m , EC-Earth-Veg showed c  sm all increase of 
up to 1 m m , and M RI-ESM 2 showed an increase of 6 to 8 mm. The- RI for °SP-245 showed 
no major variations for GCMs. It showed an increase for SSP-370 in the range of 3 -8  mm  for 
EC-Edrth, 3 -10  m m  for EC-Earth-Veg and 6 -8  m m  for M RI-ESM 2. The highest increasc in 
rainfall intensity was for SSP-S85. It was projected to increasa up to 6 -10  m m  for EC-Easth, 
3 -10  m m  for EC-Earth-Veg, and 8 -10  m m  for M RI-ESM 2 over m ost parts of JRB.

Figure 16. Change in rainfall intensity (a) in the near future; (b) far future.

Change i n RI foe the; far future is show n in Figure 16b . The results show  a decrease in 
RI for CSP-119 for all GCM s. Howevee, the RI showed an increase all over fRB for SSP-370 
and 585.

4.3.2. Changes in River Flow

T he distributed hydrological m odel developed using R F  w as used to sim ulate the 
historical and future river flows using the downscaled data of CMIP6 GCMs. The historical 
and future precipitation and tem perature data of the m ost suitable G C M s (As discussed 
in  our previous paper [49 ], EC -Earth, EC-Earth-Veg, and M RI-ESM 2 w ere used as input 
for the m odel. The sim ulated flow  for these projected data sets w as analyzed for each 
G CM  individually  to cover the m axim um  uncertainty range in  the near (2020-2059) and 
far (2060-2099) future. A com parison of quantiles for various SSPs for EC-Earth is shown 
in  Figure 17. C hanges for low  quantile flow  w ere observed to decrease in the near future. 
The m axim um  reduction (—14%) w as for SSP-245, w hereas a —8% reduction w as for 
0.1 quantiles com pared to the historical flow  period. For m id and higher quantiles, the 
change in river flow  w as projected to increase up to 28% . The projected highest increase
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w as in the near future period for the SSP-375. However, the higher quantiles, such as 0.90, 
the m inim um  change w ere recorded for SSP-275 for the near future.

Figure 17. Changes in simulated flow for GCM EC-Earth.

The changes in quantiles for EC-Earth show that the river flow reduces in all scenarios 
for lower quantiles, w hile the m axim um  increase of 32% w as observed for higher quartiles 
for SSP-585, followed by 220% for SSP-119.

The model sim ulation using; EC-Earth-Veg showed a reduction in river flow for1 lower 
quantiles in the near future, as shown in Figure 17. However, an increase in river flow was 
noted for higher quantiles, indicating an increase in extrem e flow s in iuture periods. The 
m axim um  change of 25°% w as observed in h igher stream flow  quantiles in  the near future 
for SSP-245, whereas the; lowest changes in the higher extremes were for- SSP-585. In the far 
future period, a similar flow pattern Vor ltw er quantiles and an increase in himher quantiles 
w ere recorded w ith a  m axim um  increase of 32°% for SSP-119 and 27°% for SSP-245.
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Figure 17 shows the changes in river flow for M RI-ESM 2. The figure shows the greatest 
change in the higher quantiles for SSP-119 (80%) and the lowest change in low er quantiles 
(<0.3) for SSP-585. The percentage reduction for SSP-585 w as —23%  in the near future. 
The far future show ed an increase in river flow  extrem es, w hereas low er flow s show ed a 
reduction. The m axim um  change of 68% w as observed for SSP-119 for higher quantiles in 
the far future. The low est reduction in the flow w as —24% for SSP-585 in the near future.

5. D iscussion
5.1. Reliability o f  the N ew ly D eveloped M odel

Estim ating river flow  is an intricate process, especially  in  data scares catchm ents. A 
huge set of data w ith a long tem poral resolution is required for param eter estim ation and 
optim ization. The recent use of M L in hydrological m odelling is gaining m ore attention 
in the scientific community. Integrated hydrological m odel developm ent w ith the help of 
M L proved to be efficient as com pared to the conventional m odelling m ethods. However, 
there remains a gap for im provem ent by optimizing its internal parameters. Therefore, this 
study developed a distributed hydrological model using RF for param eter estim ation. The 
calibration and validation results are provided in Section 4.2. The statistical indices used to 
show the efficiency of the model output shows the m odel's good capability to sim ulate the 
river flow in JRB. The m odel show ed good perform ance for the calibration period, giving 
the N SE, d, KGE, RM SE, and Pbias of 0.96,0.99,0.92 4.01, and —0.2, respectively. The NSE 
value of 0.96 is m uch better than the reported N SE  values for the calibration period for 
sim ilar other m odels, such as SWAT and HSPF, APEX and SAC-SM A [63]. Conventionally, 
the N SE value greater than 0.65 is considered good for m odel evaluating criteria [64]. 
The m odel show ed satisfactory values for d during the calibration  (0.99) and validation 
period (0.94). The sim ulation of the model train with m achine learning algorithm s showed 
very  less bias in calibration and validation  periods. Pbias revealed the overestim ation or 
underestim ation of the simulated flow compared to the measured flow. From the literature, 
the acceptable range of Pbias for m odel sim ulation is less than 10%, w hereas in this case, 
the Pbias is —0.2%  for calibration and —7.2%  for the validation  period. The error term s 
such as RMSE values range from 4.01 to 5.64 for calibration and validation. The KGE values 
are also in the acceptable range of 0.92 for calibration and 0.86 for validation. Tan et al. [45] 
validated the re-know n SWAT m odel in JRB. The statistical results of the SWAT m odel for 
calibration and validation are NSE 0.66 and 0.62, respectively, whereas the model developed 
in this study show ed NSE values of 0.96-0.75. The m odel calibration and validation result 
show s that this m odel can be used to sim ulate river flows in JR B for other datasets.

5.2. Changes in Precipitation Flood Frequency under Future Scenario

Variation in intensity and frequency of various climate and weather extremes has been 
found in  the literature. The clim ate extrem es are m ostly  found increasing in  m any parts 
of the w orld  [65,66]. O ver M SEA , substantial changes in  daily rainfall intensity  and the 
num ber of heavy rainfall days (R20 m m ) have been observed for various future scenarios 
of C IM P6 [67]. Therefore, in  this study, C M IP6 m odel outputs of three selected m odels 
w ere used for the historic forcing and future scenarios, such as SSP-119, SSP-245, SSP-370 
and SSP-585, to study the changes in precipitation extrem es in JRB. These data of CIM P6 
GCM s w ere also used in the hydrological model to determine the change in flow extremes 
in JRB under various SSP scenarios. The results are shown in Section 4.3.2. Under different 
SSP scenarios, the flow  at R atu  Panjang station w as observed to be increasing for higher 
quantiles. How ever, the changes in low er quantiles com pared to the historical flow  w ere 
decreasing. Similarly, the precipitation extrem es such as five-day m ax rainfall and rainfall 
intensity  w ere observed to be increasing in  the latter part of the century. The changes in 
these rainfall extrem es and the substantial increase in som e other extrem es such as R  x  1 
day, R95pTOT, and R99pTOT justify the increasing river flow for higher quantiles than the 
historical flow at the river station.
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Sim ilar changes in clim ate extrem es have also been  reported by K harin  et al. [68]. 
They used the transient non-stationary G EV to study the global scale frequency change in 
clim ate extremes and risk ratio. The risk ratio determ ined in the study showed an increase 
from 0.65 to 1.22, w hile the global temperature increased from the preindustrial level under 
scenarios of CMIP5. Our study also strengthens the hypothesis that “The contrast in relative 
frequency changes between more extreme and weaker events is projected to become larger as climate 
warms". Li et al. [69] analyzed 20 GCM  from CM IP6 to study the change in temperature and 
precipitation extrem es over the globe. The study found that m ost of the m odel increases 
the intensity and frequency of precipitation extrem es, especially over tropical regions. The 
m axim um  one- and five-day rainfall events R x 1 day and R x  5 day increased up to 7.2% 
com pared to the historical extrem es. In the m ajority region of the w orld, the tem perature 
and precipitation extrem es w ere follow ing the “intense gets intenser" tendency. However, 
com parable results of flow quantiles w ere observed in our study. The lower flow quantiles 
were found to decrease in m ost scenarios, whereas the higher quantiles were increasing for 
all m odels and scenarios. Therefore, it can be remarked that, in JRB, the precipitation and 
river flow extrem es at Ratu Panjang gauge station w ill be increasing in the future.

5.3. Significance o f  the Study

H ydrological disasters like floods and w ater stress have becom e a com m on phe­
nom enon in m any countries globally. Consequently, a m oderate dry spell often forces 
w ater rationing and m oderate or extrem e rainfall causing floods, especially  in  rapidly 
developing urban catchm ents [70] . The changing pattern of hydrological disasters due to 
environmental changes is a major concern for scientists and policymakers all over the globe. 
N um erous hydrological m odels have been  developed to estim ate runoff from  rainfall to 
predict hydrological disasters [19] . Distributed hydrological m odels have been found to be 
m ost reliable for runoff prediction. However, they need extensive data and param eters in 
space and tim e for reliable runoff estim ation. The outputs of such m odels are also prone 
to uncertainties due to the sim ple approxim ation of m any hydrological processes. This 
study attem pt to introduce a m achine learning algorithm  to im prove the perform ance of 
the distributed hydrological m odel. The results show ed that the hybridization of M L and 
conventional physical or conceptual m odel im proved the capability  to m odel com plex 
interactions and runoff prediction. The m odel can provide a m ore accurate estim ation of 
stream flow  extrem es. Therefore, the m odel can be used for reliable sim ulation of hydro­
logical d isasters, particularly  w ater scarcity and floods, due to the changes in land use 
driven by  physical and socio-econom ic factors and clim ate. This is particularly im portant 
for developing countries w here rapid landuse changes have significantly affected local 
hydrology. This study also show ed the suitability  of the m odel in reliable projections of 
hydrological changes due to climate change. Therefore, the m odel's output can be used for 
clim ate change adaptation and m itigation planning.

6. Conclusions

The distributed hydrological m odel for JRB w as developed by using M L algorithm s. 
R F  w as used to estim ate the param eters to calculate the sim ulated flow s. The m odel w as 
developed using the bias-corrected IM ERG  data w ith an approxim ate resolution of 10 km. 
The soil properties and the topographical characteristics w ere included in calculating the 
model output. The m odel showed a varying flow sim ulation at Ratu Panjang compared to 
the observed flow. The efficiency of the model w as assessed by calculating statistical indices. 
These indices values, such as RMSE, NSE, and R2, proved that the distributed hydrological 
m odel can sim ulate the flow  of any catchm ent. The calibration and validation results 
and the processing tim e prove that the M L-based m odels are good in  flood sim ulation in 
any catchm ent w ith  insufficient historical data. The m odel developed in  this study can 
efficiently  sim ulate the hydrological behaviour like the physical m odels, and also it can 
be applied to generate the long-term  sim ulation. The m odel provided a near real-tim e
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flood sim ulation u sing the bias-corrected  IM ERG  data and used it to indicate the flood 
susceptibly of any region.

The study found that the river flow  under the change clim ate scenarios increases 
w ith the higher carbon concentration pathw ays. The results also revealed that the rainfall 
extrem es are also getting w orse in intensity  and frequency. The reduction of flow  up 
to — 14%  at low er quantiles and an  increase of 28%  at m id and higher quantiles w ere 
recorded in this analysis. Similarly, the sustainability pathw ay (SSP1) show ed a reduction 
in projected river flow extrem es, w hereas the m iddle of the road (SSP2) show ed a balance 
increase in  the higher flow  quantiles. C ontrary to these, the regional rivalry  (SSP3) and 
fossil fuel developm ent (SSP5) show ed a higher increase in  stream flow  extrem es by  up 
to 68%  at the end of the century. The fram ew ork developed in this study can sim ulate 
the historical and future surface runoff very  effectively w ith  very  few  param eters. The 
m odel's efficacy is im proved due to the use of RF in param eters estim ation and GCM  data, 
enabling it to sim ulate the effect of climate change on the river discharge in the region. The 
sim ulation takes less tim e, show ing that the m odel can also be considered for N RT flood 
sim ulation in any region.
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