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ABSTRACT 

Vortex-Induced Vibration (VIV) is often regarded as the most complex fluid-

structure interaction problem that is yet to be fully understood. This research 

investigated the impact of mass ratio on the mechanism of VIV of closely spaced 

cylinders. The mass ratio is a vital parameter which affects the VIV of a circular 

cylinder. There are few studies that discussed mass ratio effect on VIV of single 

cylinder and no significant research has been conducted to study the effect of mass 

ratio on VIV of closely spaced cylinders. In the study, numerical simulations were 

carried out to understand the nature of VIV of two cylinders with equal-diameter for 

different mass ratios in tandem configuration. VIV characteristics of two mass ratios 

were compared. Cylinder with mass ratio 2 represents lighter cylinder whereas mass 

ratio 8 represents a heavier cylinder. Only the upper or super upper response branch 

normally found between reduced velocities 5 to 8 was studied. The cylinders were 

exposed to uniform flows in subcritical flow regime and shear stress transport 

detached eddy turbulence model was employed for simulating the turbulent flow 

around these cylinders. The center to center spacing between cylinders was four 

times of cylinder diameter. A series of tests were conducted to validate the present 

numerical study. Vital VIV parameters with detailed discussions of flow patterns to 

scrutinize the influence of upstream cylinder's mass ratio on the VIV of the rear 

cylinder at resonance zone were presented. It was found that oscillation frequency of 

the upstream cylinder plays a significant role in the nature of VIV of downstream 

cylinder. For a relatively heavier upstream cylinder, VIV amplitude of downstream 

cylinder escalates at the lower limit of resonance zone. Noticeable VIV increment of 

rear cylinder can be found when natural frequency of the upstream cylinder is at least 

14% lower than that of the downstream cylinder. The study of the mass ratio effect 

on VIV of closely spaced cylinders is significant in terms of designing aquatic clean 

energy converter widely known as VIVACE converter and assessing the collision 

risk and fatigue of cylindrical-shaped risers located close to each other.  
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ABSTRAK 

Vortex-Induced Vibration (VIV) sering dianggap sebagai masalah interaksi 

struktur cecair yang paling kompleks yang masih belum dapat difahami sepenuhnya. 

Kajian ini mengkaji tentang kesan nisbah jisim kepada mekanisme VIV yang 

bertindak kepada silinder rapat. Nisbah jisim merupakan parameter penting yang 

memberi kesan kepada VIV silinder bulat. Terdapat beberapa kajian yang 

membincangkan kesan nisbah jisim pada VIV silinder tunggal dan tidak ada kajian 

penting telah dijalankan untuk mengkaji kesan nisbah jisim pada VIV silinder bulat. 

Dalam kajian itu, simulasi berangka telah dijalankan untuk memahami sifat VIV 

daripada dua silinder dengan sama-diameter dengan nisbah jisim yang berbeza dalam 

susunan seiring. Ciri-ciri VIV daripada dua nisbah jisim telah dibandingkan. Silinder 

dengan nisbah jisim 2 mewakili silinder yang lebih ringan manakala nisbah jisim 8 

mewakili silinder yang lebih berat. Hanya upper atau super upper response branch 

yang biasanya ditemui antara pengurangan   halaju 5-8 adalah dikaji. Silinder yang 

bertindak dengan aliran seragam dalam regim aliran subgenting dan model gelora 

shear stress transport detached eddy telah digunakan untuk simulasi aliran bergelora 

sekitar silinder ini. Jarak antara pusat dua silinder   adalah empat kali daripada 

diameter silinder. Satu siri ujian telah dijalankan untuk mengesahkan kajian berangka 

ini. Parameter penting dalam penyelidikan VIV telah dibentangkan dan perbincangan 

terperinci dari segi corak aliran untuk meneliti  pengaruh nisbah jisim silinder di hulu 

ke atas VIV silinder di hilir pada zon resonans. Penyelidikan ini mendapati bahawa 

kekerapan ayunan untuk silinder hulu memainkan peranan penting dalam kegiatan-

VIV pada silinder hiliran. Bagi silinder hulu yang lebih berat, amplitud VIV silinder 

di hilir bertambah pada had bawah zon resonans. Untuk kenaikan VIV yang ketara di 

silinder belakang, frekuensi semulajadi silinder hulu adalah sekurang-kurangnya 

14% lebih rendah daripada silinder di hilir. Kajian mengenai kesan nisbah jisim pada 

VIV silinder rapat adalah penting dari segi mereka bentuk akuatik bersih penukar 

tenaga yang dikenali sebagai VIVACE dan penilai risiko pelanggaran dan lesu 

penaik berbentuk silinder yang terletak berhampiran antara satu sama lain. 
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CHAPTER 1 

INTRODCTION 

1.1 Background 

Vortex-Induced Vibration widely known as VIV is a complicated 

hydrodynamic phenomenon. VIV is often regarded as the most complex fluid-

structure interaction problem that happens when fluid flows over a certain structure. 

During the interaction of flow and the structure, at the boundary layer region due to 

viscous drag, energy dissipates and the flow lacks adequate kinetic energy. The lack 

of energy causes flow separation at boundary layer and vortices are formed at the 

wake region of the body as shown in figure.1.1. These vortices disperse periodically 

 

Figure 1.1: Vortex induced vibration of cylinder (Blevins,1990) 
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from each side of the body and produce the time dependent non-uniform pressures 

that are distributed around the object. 

 Lift forces that is dependent on time, are originated around the body by these 

non-uniform pressures. As a result, the structure oscillates in both inline and cross 

flow direction depending upon the degree of freedom. Vortices shed are unsteady 

flow by nature that depends on the mass and profile of the body, it also relies on the 

velocity of the free stream flow.  Accurate calculation of the separation point is the 

key, surface roughness and Reynolds number play a significant role in terms of 

governing the nature of separation. When the shedding frequency is close to the 

natural frequency of the object, higher VIV amplitudes can be found. These higher 

VIV amplitudes can occur for a range of reduced velocities which is defined as lock-

in zone. Vikestad (1998) showed this synchronization mainly occurs due to the 

variation of hydrodynamic mass. Vortex-induced vibration can be defined as hydro- 

elastic phenomenon if cylinders are subjected to water flows, where non-dimensional 

parameter mass ratio normally remains between 1 to 10. Mass ratio is nothing but the 

ratio between oscillating structure’s mass and mass fluid that is displaced by the 

structure.    

 Most of the research works about VIV of a circular cylinder or other blunt 

objects discuss cases where the body was only freed to oscillate in cross flow 

direction. In other words, single degree of freedom cases dominate VIV related 

research works. However, there are very few recent researches that studied two 

degree of freedom cases and it was found that the nature of VIV for two degree of 

freedom cases where cylinder was designed to vibrate both cross flow and stream 

wise direction can be significantly different. Though there are numbers of research 

papers about VIV simulation of a circular cylinder, most of them were related to 2D 

flow and lower Reynolds number, numerical simulation of vortex induced vibration 

at high Reynolds number can be very challenging. Suitable mesh, appropriate 

turbulence model, strong computational resources are tricky issues to be dealt with 

before considering 3D simulation.    
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The study of vortex dynamics and characteristics of fluid flow around a 

circular cylinder is important to understand the nature of flow around relatively large 

and complex structures. A circular cylinder is considered one of the fundamental 

shapes of structures that are used in many engineering designs and often a group of 

circular cylinders are used for designing complex structures. When two bodies are 

placed near to each other, thought-provoking fluid phenomena can be observed, so 

the VIV study of cylinders near to each other became an interesting and important 

subject of basic research in fluid mechanics. Vortex induced vibration can be 

observed in many engineering objects , such as offshore structures, production risers, 

bridges, aircraft control surfaces, thermo wells, engines, heat exchangers etc. The 

goal of this research work is to examine the nature of VIV of a pair of circular 

cylinders positioned in tandem; we specially focused on the effect of upstream 

(front) cylinder's mass ratio on the behavior of VIV of downstream (rear) cylinder.   

1.2 Problem statement 

There are comparatively very little available experimental or numerical 

research works that study VIV of a pair of cylinders. The initial hypothesis about 

VIV of closely spaced cylinders may be behind this lack of references for an 

oscillating pair of cylinders. Initially, it was assumed that when two closely spaced 

cylinder’s experience VIV, the VIV of each cylinder resembles that of isolated 

cylinder. However, recent researches indicate that assumption was far from the 

reality. Recent literature also discussed the role of mass ratio on single cylinder’s 

VIV and its significance, but the influence of mass ratio on the VIV of cylinders 

positioned near to each other has not been studied to the best of our knowledge.  The 

study of cylinders in tandem arrangement is also important for designing VIVACE 

device. So far, no conclusive studies were done to study mass ratio effect for 

VIVACE device. 
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1.3 Objectives of the study 

The goal of this research work is to examine the nature of VIV of a pair of 

circular cylinders positioned in tandem and develop new knowledge in terms of 

finding factors that govern rear cylinder’s VIV. So, this research work has following 

objectives: 

 To assess the mass ratio effect on the VIV of a circular cylinder 

at high Reynolds number.   

 To determine the mass ratio effect on the VIV of two cylinders 

in the tandem arrangement. 

  To identify the fluid dynamic effects of upstream cylinder’s 

mass ratio on downstream cylinder in details by analyzing 

flow patterns. 

 

1.4 Scope of the study 

This research work contains subjects related to hydrodynamic nature of 

Vortex-induced vibration (VIV) of single cylinder and cylinders positioned near to 

each other.  Procedures / guidelines / formulas to analyze VIV of single cylinder are 

established through literature study.  The vortex induced vibration of closely spaced 

cylinders in tandem configuration was studied based on that analysis. Intensive 

numerical simulations were conducted for this study. Numerical simulations were 

validated by comparing obtained results with available experimental results. The 

influence of the mass ratio of the upstream cylinder over rear (downstream) cylinder's 

VIV was studied in details for 4D spacing. Only upper or super upper response branch 

(resonance zone) which is generally found between reduced velocity 5 to reduced 

velocity 7 was studied for all cases. 
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1.5 Significance of the study 

As mentioned earlier, VIV is one of the most complicated fluid-structure 

interaction problems. There are many parameters that affect the nature of VIV of 

circular cylinders; mass ratio is one of those factors. Hydrodynamic engineers faced 

enormous challenge while designing riser systems that are used for extracting oil and 

gas from sea bed due to its destructive nature in terms of causing severe fatigue 

damage within small period of time. Vortex Induced Vibration can also be used to 

generate clean energy. Aquatic Clean Energy Converter or better known as VIVACE 

uses VIV to generate clean renewable energy from ocean currents (Soo, 2013). In 

most cases numbers of closely spaced circular cylinders are used to design VIVACE. 

Therefore, determination of mass ratio effect on vortex dynamics of closely spaced 

circular cylinders is important especially for designing riser system and VIVACE 

device.  

1.6 Organization of the thesis 

This thesis is divided into eight chapters. The current chapter gives the 

outline of the thesis. The objectives along with the scope of the research work are 

presented in chapter one.  Significances of this study are also mentioned in this 

current part of the thesis. 

Chapter two reports a thorough review of the already conducted research 

works that are related to the present study. For more vibrant presentation, the 

literature review was divided into several groups’ i.e. basic definition of VIV, VIV 

mechanism of single and pair of cylinders, Usage of CFD to study VIV, the effect of 

mass ratio and motivation of the study. 

In chapter three research methodologies have been described.  Experimental 

and numerical research methods are presented. The experimental methodology 
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describes the facilities, test set-up of experiment and procedure of test. It also 

describes the mathematical model used for   numerical simulation. 

Chapter four presents the validation of numerical simulation by comparing 

experimental results that are obtained through towing tank tests conducted by the 

author and from other researcher’s work. 

Chapter five explains the mass ratio effects on single cylinder for both 1DOF 

and 2DOF systems. 

  Natures of vortex induced vibration of cylinders in the tandem arrangement 

for different mass ratio are described in chapter six.  Here both cylinders are allowed 

to vibrate for both 1DOF and 2DOF systems for different mass ratios. Both cylinders 

have same mass ratio. 

In chapter seven, the vortex induced vibration of cylinders in tandem 

arrangement with varying mass ratio. Here both cylinders are allowed to vibrate for 

both 1DOF and 2DOF systems. Upstream cylinders mass ratio have been altered but 

downstream cylinders mass ratio remain same. This chapter basically describes the 

most important contribution of this research.  

Finally, Chapter eight presents the major conclusions obtained from this 

research work. In addition, recommendations for future studies have been presented.
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