
����������
�������

Citation: Rakhmania; Kamyab, H.;

Yuzir, M.A.; Abdullah, N.; Quan,

L.M.; Riyadi, F.A.; Marzouki, R.

Recent Applications of the

Electrocoagulation Process on

Agro-Based Industrial Wastewater:

A Review. Sustainability 2022, 14,

1985. https://doi.org/10.3390/

su14041985

Academic Editor: Agostina

Chiavola

Received: 1 November 2021

Accepted: 22 December 2021

Published: 10 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

Recent Applications of the Electrocoagulation Process on
Agro-Based Industrial Wastewater: A Review
Rakhmania 1,†, Hesam Kamyab 1,2,*,† , Muhammad Ali Yuzir 1, Norhayati Abdullah 1, Le Minh Quan 1 ,
Fatimah Azizah Riyadi 1 and Riadh Marzouki 3,4

1 Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of
Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
rakhmania99@gmail.com (R.); muhdaliyuzir@utm.my (M.A.Y.); norhayati@utm.my (N.A.);
quanmle1505@gmail.com (L.M.Q.); fatimahriyadi@gmail.com (F.A.R.)

2 Department of Electric Power Stations, Network and Supply Systems, South Ural State University
(National Research University), 454080 Chelyabinsk, Russia

3 Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
rmarzouki@kku.edu.sa

4 Chemistry Department, Faculty of Sciences of Sfax, University of Sfax, Sfax 3029, Tunisia
* Correspondence: hesam_kamyab@yahoo.com
† These authors contributed equally to this work.

Abstract: Agro-based final discharge is one of the major contributors to wastewater in the world. It
creates high demand for efficient treatment. The electrocoagulation process can be used for agro-
based wastewater treatment. The performance of the electrocoagulation process is based on several
parameters, including the electrode materials, electrolysis time, current density, and electrolyte
support. Agro-based industrial wastewater (AIW) treatment processes depend on the characteristics
of the wastewater. The removal of organic content from various sources of AIW can reach up to more
than 80%. Some studies show that the performance of the electrochemical process can be increased
using a combination with other methods. Those other methods include biological and physical
treatment. The results of previous research show that organic content and color can be degraded
completely. The relationship between the energy consumption and operating cost was analyzed in
order to show the efficiency of electrocoagulation treatment.

Keywords: wastewater treatment; color removal; oily wastewater; energy consumption

1. Introduction

Many industrial activities nowadays have become a major source of pollutants due to
their wastewater discharge [1,2]. One type of wastewater comes from the agro-industry [3].
Agro-based industrial wastewater (AIW) has a high number of organic compounds, in-
organic salts and reactive dye [4]. These pollutant compounds cause several problems
for the aquatic environment, such as eutrophication [5], pathogen contamination, oil and
grease pollutants, etc. [6]. Therefore, it is necessary to treat the wastewater final discharge
to reduce the toxicity for the environment [7,8].

There are several methods of treatment process according to the type and charac-
teristics of the AIW, such as conventional treatment using the physicochemical method,
and biological methods like microalgae treatment [9] for nitrogen [10] and phosphorus
removal [11]. The selection of the method depends on the regulation of permissible wastew-
ater released to the environment, the industrial stream capacity, the economical cost [12],
the impact on the environment, and the possibility of toxic by-product formation [13]. Ad-
vanced technologies such as membrane filtration, ultrafiltration and reverse osmosis have
also been used for AIW treatment [14]. The conventional treatment using physicochemical
methods for AIW treatment includes coagulation–flocculation, adsorption, precipitation,
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and flotation etc. They have several disadvantages, such as high chemical consumption [15],
high sludge production and energy costs [16].

The conventional biological method includes aerobic and anaerobic processes. They
possess a large number of microorganisms for the biodegradation of organic pollutants.
However, this method is laborious, produces biological sludge, has low biodegradability on
certain molecules (i.e., dyes), and is energy-intensive [17,18]. The sludge formation requires
further treatment, which consumes about 50% of the operational cost of the wastewater
treatment plant (WWTP) [19]. The sludge treatment including lime stabilization that
commonly uses calcium hydroxide [20]. It can reduce the portion of solid organic matter to
30%, and can reduce 99% of fecal coliforms [21]. Wet air oxidation (WAO) has been used
for sludge treatment [22]. It is suitable for the oily sludge type; it can remove 93.1% of the
oil from the sludge, and can reduce the volume of oily sludge to 85.4% [23]. The thermal
drying used for sludge treatment acquires 10–80% removal of alkylphenols, polycyclic
aromatic compounds and mercaptobenzothiazole [24]. The sludge is then disposed of using
several methods, such as composting, incineration, or open landfill, etc. [25]. The overall
biological cost analysis at WWTP resulted in 0.1345 €/m3 of treated wastewater [26].

An application of microalgae on AIW treatment is used currently as a developed alter-
native approach. The microalgae method could remove the organic compound according
to a previous study, but most of the performance achieves less than 50% removal [27,28].
A major challenge from the application of microalgae is the environmental stability of the
culture when used outdoors [29]. The microbial fuel cell (MFC) system can be used for AIW
treatment and the generation of bio-electricity at the same time [30]. In general, 1.06 kg of
COD contained in wastewater could be converted to 4.41 kWh bio-electricity power [31].
Other than bio-electricity, this system also produces biogas during the process. The biogas
usually contains H2S, which is toxic and requires additional cost for removal [32].

Advanced-technology treatment has been applied for some types of AIW [33]. This sys-
tem has been chosen due to its small space requirements and lack of chemicals required [34].
The main problem with membrane-related systems is fouling, which can reduce the mem-
brane’s efficiency performance [35]. In addition, this system also has disadvantages in
terms of its high energy requirements due to high operation and maintenance costs, limited
flow rates, the high expertise required for membrane selection, and not being suitable for
low solution concentrations [36].

The electrocoagulation process is gaining attention for wastewater treatment due to
its high efficiency to degrade pollutants, easy operation and maintenance, lack of chemical
required, and relatively low energy consumption. In addition, this process can degrade
organic pollutants completely into CO2 and water [37]. Electrocoagulation has been ap-
plied and investigated in different stages of AIW wastewater treatment, including the
pre-treatment, main treatment and polishing stages [13,38]. Studies conducted by some
researchers show the use of the electrocoagulation process to treat different types of wastew-
aters, such as dairy wastewater [39], sugar industry wastewater [40], paper mill wastew-
ater [31], and olive oil mill wastewater [41], etc. However, there is no report specifically
reviewing the recent application of electrocoagulation treatment for AIW. Thus, this paper
presents an exhaustive critical review of the recent application of the electrocoagulation pro-
cess for the last nine years. The fundamental theories on electrocoagulation are described.
The recent applications of the electrocoagulation process on various types of AIW are
discussed, as well as the combination of electrocoagulation with other methods. Moreover,
the relationship between specific energy consumption and the operating cost was analyzed.

2. Methods

This section analyzes all of the literature related to the AIW treatment by the electroco-
agulation process identified during the period 2013–2021.
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2.1. Data Source and Strategy

An exhaustive search of peer-reviewed literature was conducted in the Scopus database
to select the scientific articles related to the electrocoagulation process on AIW treatment.
The various types of AIW include olive oil mill wastewater, sugar industry wastewater,
pulp and paper mill wastewater, palm oil mill effluent, coffee industry wastewater, veg-
etable oil refinery wastewater and nut processing wastewater. Because there are redundant
papers for the electrocoagulation of AIW, the keywords are specified. The specified selected
keywords were electrocoagulation, olive oil mill, sugar industry, pulp and paper mill, palm
oil mill effluent, the coffee industry, vegetable oil and nuts. The keyword of wastewater
was excluded in order to reduce the probability of redundant papers.

The literature was limited to the publications of scientific articles written in English
from 2013 to May 2021, covering the period of the last nine years. The publication date,
names of the authors, title and abstract of each paper found were listed to be further revised
individually and manually. All of the publications with specified selected keywords were
included. Review papers, conference papers, letters to the editor, books and short surveys
were excluded.

2.2. Bibliometric Analysis

Figure 1 shows the annual distribution of a total of 71 publications that were found.
Even though there were a number of publications from 2015 until 2021 (May), the highest
number of publications in 2017 and 2019 indicate that the electrocoagulation process has
become of great attention for AIW treatment. According to the selected publications,
around 74% use a single treatment of electrocoagulation and 25% use electrocoagulation
combined with other methods. It was also found that two scientific articles reported on
biogas production from the electrocoagulation treatment of AIW.
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Most of the publications use real AIW for the treatment by the electrocoagulation
process, and only one scientific article reported on the electrocoagulation process using
simulated wastewater. As the recent application of electrocoagulation is still on the labora-
tory scale, it was noticeable that there was one scientific article reporting the application
of the electrocoagulation process at the pilot scale in 2019. This indicates an important
challenge for future research on the scaling-up of the electrocoagulation process at the
industrial level.

3. Fundamental
3.1. Coagulation Principal

Coagulation is a traditional physicochemical treatment using phase separation for the
pollutants of wastewaters before they are released to the environment [42]. The addition
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of inorganic or organic compounds to the coagulation process destabilizes the particles,
affecting the electrical double layer (EDL). The impact to the environment from the coag-
ulation process in the generation of sludge makes the concern more serious in terms of
management, treatment and operational cost [43]. The sludge also contains residual metal
ions from the coagulation process [44].

Chemicals known as coagulants lower the energy barrier between particles. As a
result of the weak bond, the particles can agglomerate more easily [45]. Aluminium and
iron metal salts are common coagulants used in wastewater treatment. Both metals can
produce multivalent ions such as Al3+, Fe2+, and Fe3+, as well as a variety of hydrolysis
products. Because it oxidizes to Fe (III) during the coagulation process to increase efficiency,
Fe (II) is a poor coagulant [46]. Simple aluminium, iron sulfates, and chlorides are the
most commonly used salts [47]. The non-hydrolyzed metal coagulants include Al2(SO4)3,
FeSO4, AlCl3 and FeCl3 [48]. Meanwhile, there is another metal coagulant that comes
with several advantages, which is named pre-hydrolyzed metal coagulant [49]. Examples
of pre-hydrolyzed metal coagulants are polyaluminum chloride and sulfates [50]. The
pre-hydrolyzed metal coagulants have advantages such as being more effective than non-
hydrolyzed metal coagulants and less sensitive to changes in pH and temperature [51].

3.2. Electrocoagulation

Electrocoagulation by using metal hydroxide has a high ability to adsorb pollu-
tants [52]. The electrode materials commonly use Al and Fe. When the electricity is
supplied into the electrode, the electrode will generate ions (Fe2+, Fe3+, and Al3+) and
produce the coagulant. The electrocoagulation reaction is usually followed by an electro-
flotation reaction [53]. The aluminium anode generates cationic forms such as Al3+ and
Al(OH)2+ in acidic conditions. However, in alkaline conditions, these species are trans-
formed into Al (OH)3, dimer compounds such as Al2(O)(OH)4 and Al2(OH)2

4+. They can
also can be transformed into a more complex compound [54].

Figure 2 shows the schematic diagram of electrocoagulation. Several reactions happen
during electrocoagulation for the production of hydroxides. For the electrode materials
using aluminium, the oxidation takes place at the anode, as follows:

Al→ Al3++3 e− (1)

Acid medium : 2 H2O→ 4 H++O2+4 e− (2)
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In addition, a secondary reaction possibly occurs during the oxidation process. The
formation of oxygen by the electrolysis of water is divided into two conditions: acidic and
basic media.

Basic medium : 4 OH− → O2+2 H2O + 4 e− (3)

Solution medium : Al3+(aq)+3 H2O→ Al(OH)3(s)+3 H+
(aq) (4)

Basic medium : 2 H2O + 2 e− → 2 OH−+H2 (5)

The reaction that happened in the cathode is a reduction in water based on different
conditions, as follows.

In Equation (1), the Al3+ produced on the electrode react to form several species,
including:

• monomeric species such as Al(OH)2+, Al(OH)2
+, Al2(OH)2

4+, and Al(OH)4
−;

• polymeric species such as Al6(OH)15
3+, Al7(OH)17

4+, Al8(OH)20
4+, Al13O4(OH)24

7+

and Al13(OH)34
5+;

• amorphous species with very low solubility, such as Al(OH)3 and Al2O3 [55].

The formation of amorphous Al(OH)3, also called sweep flocs, needs surface areas
which are useful for the adsorption of soluble pollutants and the trapping of the colloidal
compounds [56]. The polymerization of flocs is as follows:

The flocs can be easily removed from an aqueous medium using the sedimentation
method and H2 flotation. However, aluminium hydroxide usually acts as an adsorbent
or traps the pollutants. It would be a great composition for the removal of the organic
compound from the solution [57].

4. Factors Affecting Electrocoagulation

There are several factors that affect anodic oxidation performance in wastewater
treatment. There are electrode materials, electrode distance, electrode arrangements, pH,
current density, reaction time, conductivity and temperature.

4.1. Electrode Materials

Electrode materials are one of the important factors affecting the electrocoagulation
process performance [58]. Several types of anode materials have been used in the electro-
coagulation process, such as Fe, Graphite, Al, stainless steel, and steel wool, etc. [59–61].
One of the anode materials available in the electrochemical industry is a lead-based anode.
It is widely used due to its low cost in comparison to other materials. They are including
lead–calcium (0.7%)–tin, lead–strontium (0.05%)–tin (0.6%), and lead–antimony (6%) [62].
The lead-based anode has significant drawbacks, including high energy consumption and
low corrosion resistance [63]. Corrosion gives effects in terms of the electrode lifespan and
the production of a poor quality of electrochemical reaction [64].

Three-phase-3D electrode electrocoagulation can potentially be used for agro-based
industrial wastewater. The previous study reported the performance of chromium re-
moval from wastewater using 3D NiO/NF electrodes. This achieved the 99.5% removal of
chromium within 20 min at the applied potential of 0.97 V [65]. Another study reported on
ground wastewater treatment using 3D Al electrode resulted in 98.6% arsenic removal [66].

4.2. Electrode Distance

The distance between the anode and the cathode has a crucial role due to the elec-
trostatic field that forms in the gap [67]. The electrostatic field strength is substantial, as
it attracts the ions generated from the plates during the EC process [68]. The distance
between the electrodes varies from 1 cm to 11.5 cm. When the distance is too close, the
transfer of solids and fluids is hampered. The accumulation of solid particles and bubbles
between the anodes and cathodes results in increased electrical resistance. However, when
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the distance is longer, it increases the travel time of the ions, thus leading to a decrease in
the electrostatic attraction which subsequently reduces the formation of flocs [69].

nAl(OH)3 → Aln(OH)3n (6)

4.3. Electrolysis Time

Faraday’s law states that the amount of metal ions released from an anode is propor-
tional to the electrolysis time and current intensity. The equation is expressed as follows:

m =
i× t×M

n× F
(7)

where m is mass of metal dissolution (g), i is current density (A), t is the electrolysis
time, M is the molecular weight of the metal, n is the number of electrons involved in the
oxidation reaction, and F is Faraday’s constant (96,500 Cmol−1). When the electrolysis time
is increased, then the metal ions released are high. Therefore, the performance of organic
pollutant removal is also increased. However, at a certain point of electrolysis time, the
rate of removal is slowed down [70]. This is due to the occurrence of electrode passivation,
which occurs when the electrolysis process is operated for an extended period of time; it is
recognized as being detrimental to the electrochemical process performance. The electrode
material is also a factor in electrode passivation [71].

4.4. Current Density

One of the parameters is the current density, which is used in EC specifically for the
kinetics of reduction of COD and decolourization. Because of the high dissolution of the
electrodes, the electrolysis time decreases as the current density increases. This results in
the further destabilization of the pollutant particles. Furthermore, as the current density
increases, the rate of production of hydrogen bubbles increases, while their size decreases.
All of these effects are advantageous for efficient pollutant removal via flotation [72].

4.5. Electrolyte Support

The role of electrolyte support is to increase conductivity [73]. Therefore, the voltage
applied between the electrodes at a constant current density due to the decrease in the
resistance of the polluted water can be reduced [74]. Some of the electrolyte supports that
have been used for the electrochemical process include NaCl, Na2SO4, and NaCO3, etc.
Most of the studies use NaCl as the electrolyte support. This is because of the properties
of NaCl which produce chloride ions. The chloride ions can reduce the significantly
undesirable effects of other anions [75]. NaCl is also known as a contributor of strong
oxidizing agents and hence the increase of color removal [76]. In comparison to sulfate and
nitrate, chloride was the best supporting electrolyte for the electrochemical oxidation of
refractory organic pollutants [77].

5. Type of Agro-Based Wastewater
5.1. Olive Oil Mill Wastewater

In general, olive oil mill wastewater (OOMW) consists of 80–83% water, 15–18%
organic compounds, and 2% inorganic compounds [78]. OOMW has the characteristics of
being dark in color, having an acidic pH (~5), and having highly toxic components including
tannins, phenols and acid compounds making up about 37% of the total mass [79,80]. It
has been reported that more than thirty types of phenolic compounds have been identified.
Table 1 shows the characteristics of OOMW. The concentration ranges between 0.5 and
24 g/L. The COD content in OOMW is quite high, and can reach up to 175,000 mg/L. The
BOD content is 25,000 mg/L, while the total solid content is 99,000 mg/L [81].
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Table 1. Characteristics of olive oil mill wastewater [82,83].

Parameters Units OOMW

COD mg/L 175,000
BOD mg/L 25,000
pH - 4
Oil and Grease mg/L 13,000
NH3-N mg/L 37
TSS mg/L 99,000
PO4

3− mg/L 57.5
NO3

− mg/L 395

The electrocoagulation process can be used for OOMW because it decomposes the or-
ganic compound and is commonly used for OOMW treatment [84]. Electrocoagulation has
stability for colloids, suspension and emulsion, which is affected by electric charge. When
an electric charge is supplied into a suitable electrode, the compound will be neutralized
and the rest of it will aggregate together into a larger and separable compound [85].

A study showed that electrocoagulation can remove COD by up to 78% after 1 h of
electrolysis time using Fe as the electrode. The energy consumption reaches 55 kWh m−3.
However, using Al as the electrode, the removal of COD has a lower value than that using
Fe. The removal efficiency is only 55% for 1 h of electrolysis time. It also acquires higher
energy consumption until 62 kWh m−3 [86]. The reduction of the energy consumption using
Al as an electrode can be acheived by diluting the sample 10 times. The study reported
that the energy consumption was decreased to 1 kWh/L with 57% COD removal [87]. The
kinetic model of the electrocoagulation process using the one-factor method increases the
performance of COD removal to 99% with conditions of 60 min electrolysis time, with
the current density at 12.5 mA/cm2 and the addition of 400 mg/L NaCl [88]. The study
conducted by Benekos [89] compared the performance of electrocoagulation on a laboratory
scale and pilot scale. The results show on the laboratory scale that the COD and color
removal (50% and 100%, respectively) is higher than that at the laboratory scale (42.5% and
85.3%, respectively).

The electrocoagulation process on OOMW is useful as a pre-treatment for biofuel
production [85]. The methane production reaches 1902 kJ/LOOMW. The treatment of COD
removal also produces biogas, as reported by a previous study. The result shows that the
COD removal of OOMW using the electrocoagulation process produces biogas around
0.741 g/LCOD [90].

5.2. Sugar Industry Wastewater

The sugar industry categorized as one of the largest agro-based industries. It uses
about 1500–2000 dm3 water and produces about 1000 dm3 wastewater per ton of process-
ing [91]. The wastewater mainly results from the process of floor washing, condensation,
leakage, and spillage of solutions from the pipeline and valve [92]. The sugar wastewater
industries (SIWW) have a high concentration of organic materials due to the presence of
sugar and organic material in the cane or beet. SIWW contains organic compounds includ-
ing COD ranging between 2300 and 8000 mg/dm−3, BOD of about 1700–6600 mg/dm−3,
and TSS of about 5000 mg/dm−3 [93]. In addition, SIWW also possibly contains pesti-
cides, herbicides and pathogens from the contaminated material and processes which are
produced [91].

The electrocoagulation process becomes one of the choices to be considered for SIWW
treatment when the conventional method can not reduce the pollution [94]. The previous
study reported that COD removal on SIWW treatment can reach 86.36% for 8 h of elec-
trolysis time. The 12 V voltage is applied to the system without any pre-treatment. Using
iron as an electrode increases the COD removal of SIWW, which reaches up to 84% for 2 h
electrolysis time. The color reduction is about 86% with the current density of 178 A/m2.
The lowest energy consumption utilized is 16.75 kWh/L. However, the performance of
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COD removal decreases to 62%. This result does not suffice for the final discharge of
wastewater; therefore, further advanced methods could possibly be applied to bring the
wastewater to meet the final discharge [95].

Different cases happened with simulated sugar industrial effluent using the research
surface method to study the effects of various parameters using the research surface
method (RSM). The maximum COD removal of about 83.94% is obtained with the energy
consumption of 6.64 kWh kg−1. This system requires less energy. This study suggested that
electrocoagulation potentially can be applied for the treatment of real sugar effluent [96].

5.3. Pulp and Paper Mill Wastewater

The pulp and paper industry produces highly polluted wastewater [97]. It forms
black liquor as the main by-product, which contains about 50% lignin. The pulp and paper
industry discards lignin to make a good quality of paper [98]. The release of lignin comes
from the process of alkaline extraction at the bleaching stage. Lignin is a heterogeneous
three-dimensional polymer that consists of oxy phenylpropanoid components. The con-
tamination of phenolic compounds to the environment could damage the underground
water and receiving water bodies [43].

The electrocoagulation process is one of the great alternatives to treat pulp and paper
mill wastewater. Aluminium and iron are widely used as electrodes for the electrocoagula-
tion process. A study showed that iron has greater efficiency for BOD and COD removal
compared to aluminium. The performance of iron can reach up to the complete removal of
COD and 90% removal of BOD within a 60 min reaction [99]. Other concerns for pulp and
paper mill wastewater are lignin and phenol. By using iron as an electrode material, the
electrochemical process can degrade lignin and phenol by up to 90% [93].

5.4. Palm Oil Mill Effluent

Palm oil mill effluent (POME)’s typical liquid waste results from the extraction of
fresh fruit bunch (FFB) in the palm oil industry [100,101]. The characteristic of POME is a
thick brownish liquid color due to the decomposition of lignocellulosic materials [102,103].
Table 2 shows the characteristics of POME. POME has acidity ranging from pH 4.0 to
5.0, chemical oxygen demand, biological oxygen demand, and total suspended solids
ranging from 15,000 to 100,000 mg/L, 10,250 to 43,750 mg/L and 5000 to 54,000 mg/L,
respectively [104].

Some studies have found the performance of the electrochemical process for POME
treatment. Using Al as the electrode shows little removal of COD and BOD. The percentage
of COD and BOD removal is 30% and 38%, respectively [105]. However, the addition
of NaNO3 could improve the performance of the electrochemical process using Al. The
efficiency of COD removal increases by 64%. Using NaNO3 as the electrolyte support is
also beneficial for subsequent biological treatment [106].

Table 2. Characteristics of palm oil mill effluent [107–109].

Parameters Units POME

COD mg/L 75,000
BOD mg/L 18,200
pH - 4.6
Oil and Grease mg/L 2000
NH3-N mg/L 20
TSS mg/L 50,000
PO4

3− mg/L 15
NO3

− mg/L 500

Another method uses iron for the electrochemical process. The performance of iron is
quite great, with 89.2% removal of COD in 15 min of electrolysis time. For another good
value, using iron as an electrode could remove the color by up to 90.4% [110]. In addition,
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steel wool can be used as an electrode. It could remove COD by up to 74% and BOD by up
to 70% with the improvement of the electrode arrangement [111].

5.5. Coffee Industry Wastewater

Coffee is one of the world’s most well-known beverages, and it is the world’s second-
most-traded commodity after petroleum [112]. The wastewater produced from the coffee
processing industry ranges from 40 to 45 L for every kg of coffee [113]. The process requires
large amounts of water for every step; therefore, the wastewater produced is high [114].
Coffee fruits themselves are rich in caffeine, sugars, phenolic compounds, fatty acids, lignin,
cellulose, pectic substances and other macromolecules [115]. Those compounds are not
suitable to be released into the environment due to their toxicity [116].

Coffee processing wastewater (CPWW) is characteristically black in color. It is high
in persistent compounds known as melanoidins, which are toxic, recalcitrant and non-
biodegradable [117]. Releasing the untreated CPWW to the water body can promote
eutrophication, reduce Secchi depth and prevent sunlight penetration. The concentration of
oxygen in the water body will be depleted [118]. The electrocoagulation process can be used
for the decolorization of CPWW treatment [119]. The addition of electrolyte support such
as sodium chloride affects the removal efficiency due to the generation of active chlorine
during the electrolysis process interacting with substances such as melanoidins [120]. Other
than meloinidins, the mineralization of proteins and lipids are adsorbed on the surface of
the precipitated hydroxides [121].

Previous studies reported that the use of a combination of iron and stainless steel
as electrodes achieves 87% COD removal and 97.1% color removal [122]. When using
iron alone as an electrode material, it removes 97% of COD and 89% of color [123]. The
electrocoagulation process can also be used for caffeine recovery that reaches 96% recovery
performance [124]. However, there is still no report for polygalacturonase characterization
and production in the coffee industry using the electrocoagulation process.

5.6. Vegetable Oil Refinery Wastewater

Vegetable oil refinery wastewater (VORW) has a high amount of COD, phosphorus,
sulphate, oil and grease [125]. The sources of vegetable oil manufacture are soybeans,
groundnut, rapeseed, sunflower, safflower, cotton, sesame, coconut, mustard, rice bran,
watermelon, and neem, etc. [126]. Another characteristic of VORW is that it has a low ratio
of BOD/COD; therefore, it is not useful for the biodegradation method. Based on some
studies, electrochemical technology could overcome that limitation [127].

A previous study reported that using iron as the electrode could remove 93.3% of COD
after 60 min electrolysis time [128]. However, when aluminium is used as an electrode, the
COD removal increases up to 98.9%, with 100% color removal in 90 min [129]. Another
study using the Box-Behnken design for optimization attained 70.8% COD removal. Alu-
minium was used as an electrode, and the electrolysis time was 60 min [130]. On the other
hand, another study reported that using the Box-Behnken design for the optimization of
the electrocoagulation process of sunflower oil refinery could achieve 95% COD removal
with a shorter time (18 min) [131].

5.7. Nuts Processing Wastewater

The nut processing industry includes many various types, including pistachio, almond,
and cashew nut, etc. Pistachio is a kind of nut rich in organic nutrients. It contains 5.6%
water, 19.6% protein, 53.2% fat, 19% carbohydrate, and 2.6% ash [132]. The pistachio
industry produces approximately 1 Mm3 of wastewater and 50,000 tons of solid waste per
year. Pistachio processing wastewater (PPW) has high COD, phenolic compounds and
turbidity, which can cause harm to the aquatic ecosystem and terrestrial environment if no
treatment of the PPW is performed [133].

Several processes are required in the almond processing industry, including cracking
and blanching [134]. In the blanching step, the resulting product contains high levels of
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organic compounds, suspended solids, turbidity, COD and color [135]. The effect of the
blanching time on the moisture content is inversely proportional. This means that when the
blanching time is longer, it results in a decreased moisture content. Meanwhile, the effect
of the blanching time on the lipid content and color intensity is directly proportional. The
longer blanching time will increase the lipid content and color intensity [136]. A previous
study reported that the polyphenol content recovery in the almond industry using the
blanching process acquired 0.53 g gallic acid equivalents (GAE)/kg [137], while the use
of the microwave process recovered 0.42 g gallic acid equivalents (GAE)/kg [138]. Based
on these studies, the polyphenol content recovery is higher using the blanching process.
The use of blanching and microwave processes is recommended according to a previous
study. It was reported that by conducting the blanching and microwave simultaneously,
we can increase the polyphenol content recovery up to 11.9 g gallic acid equivalents
(GAE)/kg [139].

The kinetic study showed that the sonicated almond acquires higher total phenolic
compounds than non-sonicated almonds after 20 min extraction at room temperature
(25 ◦C) [140]. Table 3 shows the performance of the electrocoagulation process on different
types of nut processing wastewater. The electrocoagulation process has been shown to be a
suitable method for the reduction of pollutants from cashew nut processing wastewater, as
was reported in a previous work where COD reduced it by up to 80% [141]. According to a
previous study, even though the COD removal for PPW is categorized as low, the phenolic
compound removal shows greater efficiencies. In addition, using graphite as the electrode
material on PPW could achieve the complete removal of phenolic compounds and the
99.79% removal of COD [142].

Table 3. Performance of the electrochemical process on nut processing wastewater.

Type of Nuts Electrode Material Electrode Type COD removal Phenolic
removal References

Pistachio processing
industry wastewater Al Unipolar 60.1% 77.3% [143]

Pistachio processing
industry wastewater Graphite Unipolar 99.79% 100% [144]

Pistachio processing
industry wastewater Al Unipolar 57.4% - [134]

Pistachio processing
industry wastewater Al and stainless steel Unipolar 60% 95% [144]

Cashew nut processing
industry wastewater

Fe, BDD
(Boron Doped-Diamond)

and stainless steel
Multipolar 80% - [145]

6. Integration of Electrochemical Treatment with Other Methods

Electrochemical treatment can be integrated with other methods. The processes in-
cludes a combination of pre-treatment and main treatment. The purpose of this integration
is to mitigate the limitations of other treatments. It could be an integration of the elec-
trochemical method with physical, chemical, biological methods. The advantages of this
integration are the effective removal of organic and inorganic pollutants [146], low operat-
ing costs [142], the increase of the performance of the electrodes and the reduction of the
energy demand of the electrochemical method [147].

Table 4 shows the performance of the electrochemical method with other treatments.
In the case of coffee industry wastewater, the electrochemical method is integrated with the
coagulation method. The coagulation method was used as the pre-treatment. Several types
of coagulants were used in the study, including FeSO4, FeCl3, Al2(SO4)3, and AlCl3. Based
on those coagulation processes, AlCl3 shows the highest performance of TOC removal, at
up to 28%. The treatment was continued with the electrochemical process.
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A study on the treatment of pistachio processing wastewater showed improvement by
combining electrochemical treatment with fungal treatment. The use of Al as an electrode
showed the higher removal of COD and phenol compared to BDD, Fe and stainless steel.
After the treatment with the electrochemical process, the treatment with the fungus was
conducted. From the various types of fungal selection, Penicillium glabrum was chosen
because it has a high capability to remove COD and phenol. The two combinations of this
process could remove 90.1% of COD and 88.7% of phenol [148].

Table 4. Performance of the electrochemical process integrated with other methods on agro-based
wastewater treatment.

Type of Agro-Based
Wastewater Electrode Electrocoagulation with

Other Methods COD Removal Color
removal References

Wood-based
industry wastewater Al Adsorption and filtration 77% - [149]

Coffee wastewater Al Sequential batch reactor 84% 93% [150]

Coffee pulp
industry wastewater Al Anaerobic sequencing

batch reactor 96% - [151]

Olive oil mill effluents Fe Electro-oxidation and
electro-fenton 96% - [152]

Pulp and paper wastewater Fe UV-based sulfate radical 61% - [153]

Sugar industry wastewater Fe Thermal method 97.8% 99.7% [154]

Palm oil mill effluent Al and Fe H2O2 and coagulation 95.08% - [143]

Pulp and paper wastewater Fe
H2O2, Co3O4/UV/

peroxymonosulfate and
permanganate

95% 92% [155]

Pulp and paper wastewater Al Sonication 90% 100% [156]

Sugarcane industry
wastewater Al Coagulation method 98% 99.5% [157]

Olive oil mill effluents Al Coagulation 92% - [158]

Olive oil mill effluents Fe Photo-catalytic degradation 88% 100% [155]

Coffee industry wastewater Al Electro-oxidation 74% - [159]

Coffee industry wastewater Fe and stainless steel PAC 80% 92% [160]

Pistachio processing
wastewater Al and Fe Anaerobic digestion 43.7% - [161]

Sugar industry wastewater Fe Thermal 97.8% - [124]

Soybean oil wastewater Fe H2O2 94% - [162]

Palm oil mill effluent Fe Coagulation 68.84% - [163]

Olive oil mill wastewater Al Bio-augmentation 63.9 - [164]

Sugar industry wastewater Fe Chemical method 82% 84% [165]

Olive oil mill wastewater Al External loop airlift reactor 79.24% - [166]

Olive oil mill wastewater Al Catalytic ozonation and
bio-degradation 98.4% - [167]

Sugar industry wastewater Fe Sequential batch reactor 87% - [168]

Pistachio processing
industry wastewater

Fe, stainless steel,
Al and BDD Fungal treatment 90.1% - [169]

Palm oil mill effluent Al Adsorption method 44% 89% [170]

Olive oil mill wastewater Al Impregnation method 78% - [150]

Olive oil mill wastewater Al Peroxone process 79.8% - [171]

7. Energy Consumption and Cost

Energy consumption is one of the main factors for cost evaluation in electrochemical
treatment on a large scale. Less energy was consumed, thereby reducing the cost required
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for the treatment [172]. The amount of energy consumed per unit mass of organic material
removed is referred to as the specific energy consumption. It could be COD, ammoniacal
nitrogen, or dye, etc. [147]. Specific energy consumption can be evaluated as follows:

SEC =
U × I × t(

CODx − CODy
)
×V

(8)

where SEC is the specific energy consumption (kWh/kg of CODremoved), U is the applied
voltage, I is the current intensity, t is the retention time, CODx is the chemical oxygen
demand before treatment, CODy is the chemical oxygen demand after treatment, and V is
the volume of treated wastewater [173].

Some studies have shown that the energy consumption is based on the electrode and
operating parameters. Using Al electrodes on pulp and paper wastewater, the specific
energy consumption is 11.055 kWh/m3 and requires an operating cost of 1.56 USD/m3 [174].
A previous study on the electrochemical treatment of carwash wastewater reported that the
total operating costs under optimum conditions using aluminium and iron as the electrode
materials are US$ 0.3/m3 and US$ 0.6/m3, respectively. Their performance could achieve
88% COD removal and 90% oil and grease removal using iron, and 88% COD removal and
68% oil and grease removal using aluminium [175]. Using graphite as the electrode material
on textile wastewater treatment results in 85% color removal; the initial COD concentration
was 724.75 mg/L, and the operating costs reached US$ 338.42/kg [176]. The increment
happened for the specific energy consumption of pulp and paper mill wastewater treatment
when using the electrocoagulation process within the membrane reactor. Its specific energy
consumption is 67.5 kWh/m3, and it costs around 21.03 USD/m3 [177].

8. Conclusions

The treatment of agro-based industrial wastewater can be achieved using the electroco-
agulation process combined with other methods, such as physical, chemical and biological
methods. However, the application of the electrocoagulation process at the full scale still
faces several challenges, as follows:

i It requires the understanding of economic feasibility and the effective power con-
sumption method.

ii Different types of wastewaters require different types of electrode materials. They
should fulfil the criteria to enhance the performance of the treatment. Future studies
of the development of electrode materials and the design are required.

iii Ultra-stable electrolyte support may be required to achieve complete degradation and
prevent the formation of unwanted by-products.

The electrocoagulation process offers several advantages for the treatment of agro-
based industrial wastewater. A little study shows the specific component removal, such
as for oil and grease, phenolic compound, carboxylic acid, and palmitic acid, etc. In the
future, these studies need to be further conducted in order to give a better understanding
and broaden knowledge on the electrocoagulation process.
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