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ABSTRACT Renewable energy is becomingmore popular due to environmental concerns about the previous
energy source. Accurate solar photovoltaic (PV) systemmodel parameters substantially impact the efficiency
of solar energy conversion to electricity. In this matter, swarm and evolutionary optimization algorithms have
been widely utilized in dealing with practical problems due to their more straightforward concepts, efficacy,
flexibility, and easy-to-implement procedural frameworks. However, the nonlinearity and complexity of the
PV parameter identification caused swarm and evolutionary optimizers to exhibit Immaturity in the obtained
solutions. In this study, an effective metaheuristic algorithm based on tunicate swarm optimization (TSA)
is proposed for parameter identification of PV models. The proposed improved algorithm (ITSA) has two
main phases at each iteration: searching all around the search space based on a randomly selected tunicate
and improving the search using the position of the best tunicate. This modification improves the algorithm’s
exploration ability while also preventing premature convergence. The suggested algorithm’s performance is
confirmed using ten mathematical test functions and the outcomes are compared with TSA as well as some
effective optimization algorithms. The proposed ITSA optimally identifies various parameters in the PV
model, such as single diode (SDM), double diode (DDM), and PV modules. Based on the comprehensive
comparisons, results indicate that the improved ITSA algorithm has higher convergence accuracy and better
stability than the original TSA and other studied algorithms.

INDEX TERMS Tunicate swarm optimization, photovoltaic model, solar energy, parameter identification.

I. INTRODUCTION
Considering some critical challenges, such as but not limited
to environmental pollution, energy crisis, fuel exhaustion,
climate change, wewill understand the significance of renew-
able energy sources in which they play an essential role in our
daily life. As a clean and attainable renewable energy source,
PV is categorized among the most potential cell-based energy
source. One of the major causes of these catastrophes is envi-
ronmental degradation caused by the burning of fossil fuels.
Furthermore, fossil fuel reserves are finite and unrecoverable.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

Given the drawbacks of fossil fuels, discovering renewable
energy sources is a pressing human concern.

Due to its lack of noise, low pollution, and widespread
distribution, solar energy appears to be the most promising
renewable energy source [1]. Severe environmental degra-
dation, such as deforestation and air pollution [2], as well
as rapid depletion of nonrenewable resources such as tra-
ditional fossil fuels [3], is jeopardizing the world’s long-
term development [4]. A long-term energy revolution and
transformation are now required to deal with a wide range
of environmental problems before they turn into more serious
crises [5].Meanwhile, to satisfy the rising energy demand [6],
the research and use of renewable energy technologies [7],
such as solar [8] and wind [9], is critical. Solar energy is
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one of the most promising and efficient alternatives [10],
and it has already found widespread use due to its ease of
installation and lack of emissions. Solar energy, for example,
is a common and important choice in hybrid energy systems
to improve power supply reliability and efficiency [11], and it
has been successfully integrated with hydrogen [12], battery
storage [13], diesel technologies [14], and other technologies.

Due to the exponential development of energy consump-
tion, renewable energy sources (RESs) are critical for global
energy systems. Solar power is a key renewable energy source
for electrical energy generation. Furthermore, because of
their benefits over conventional fossil fuels, RESs have grown
popular for electrical power generation [15]. When compared
to fossil fuels, the cost of RES for energy is zero, and the
cost of maintenance is quite cheap. Furthermore, unlike fossil
fuels, the accompanying CO2 emissions are zero. Studies
have concentrated on increasing new methods to transform
solar energy into electrical energy as a result of these factors.
Solar photovoltaic (PV) cells serve as a conversion medium
for solar energy to electrical energy. Because such systems
demand more initial capital, defined studies are required
to create a PV system for best utilization. To analyze and
regulate a PV module, accurate PV system modelling is
required [16]. The precise calculation of PV module parame-
ters is a milestone in PV system exact modelling. Depend-
ing on the level of accuracy required, a solar PV module
can be represented by one, two, or more diodes. The PV
cell model is represented by electrical circuits with lumped
parameter series resistance (Rs) and shunt resistance (Rsh)
values [17], [18]. The three major models for modeling solar
PV cells are the single-diode model (SDM), double-diode
model (DDM), and three-diode model (PVM). Because of its
suitable level of precision in terms of current–voltage (I–V)
characteristics, the SDM is widely used. The SDM andDDM,
respectively, have five and seven unknown parameters. The
DDM, in comparison to the SDM, canmore accurately denote
a PV cell. The PVM model is unpopular because it contains
nine unknown factors, and its design complexity grows as
one additional diode is added to improve the model’s accu-
racy [19]. The PV cells have nonlinear I-V curves, and the
modelling equations are transcendental equations. Analytical
approaches, numerical methods, and evolutionary algorithms
are three types of methods for resolving nonlinear equations
that have been documented in the literature [20]. Analytical
methods can swiftly solve linear equations, but they may fail
to solve nonlinear equations with multiple unknowns because
complex problems demand more acceptable assumptions.
When there are several unknowns, analytical procedures pro-
duce erroneous results. To discover the unknown parameters
in analytical approaches, it is necessary to manipulate model
equations mathematically. [21].

For solving nonlinear equations, numerical methods need
the manufacturer’s datasheet values along with some assump-
tions. Nonlinear equations are solved by utilizing iterative
strategies in these methods. The most difficult aspect of such
methods is estimating the beginning value, which has an

impact on the solution’s convergence rate. To solve nonlin-
ear equations, the Gauss–Seidel (GS) and Newton–Raphson
(NR) methods are commonly utilized [22], [23]. The NR
method’s convergence rate is quadratic in nature, and it
has the highest convergence rate with the fewest iterations.
Numerical methods are, in general, local search methodolo-
gies. Several strategies for extracting parameters of lumped
electrical circuit models of PV cells based on data sheet infor-
mation or observed I-V data are widely accessible. Analytical
procedures, also known as direct techniques, are methods for
estimating parameters based on the direct solution of empir-
ical relationships between distinct factors. Some methods
employ the Lambert-W function to estimate parameters [24].
Analytical approaches, in general, compute PV cell model
parameters in a single iteration. These methods are aimed
at constructing empirical relationships between various PV
cell characteristics and solving those using Voc, Isc, and
MPP values at Standard Test Conditions (STC). Because of
the non-linear character of equations, various assumptions
must be made in order to solve them using algebraic proce-
dures [25]. As a result, analytical approaches can be applied
with minimal computing and financial constraints, but with
lower precision [26]. In fact, the accuracy of analytical tech-
niques is heavily reliant on the accuracy of data sheet infor-
mation. Reduced form based analytical approaches have been
proposed to address the drawbacks of traditional analytical
techniques. These methods are intended to limit the number
of equations that need to be solved, and therefore the search
space, in order to increase convergence and accuracy. These
strategies are well-suited for SDM, but their applicability
for DDM has yet to be determined. Numerical approaches,
on the other hand, use an iterative or repeating procedure to
estimate PV cell parameters. Empirical relational equations
between parameters are established at significant locations
on the I-V curve, such as axes intercepting points and MPP,
in the same way as analytical approaches are. The influ-
ence of T and G on the Iph, Ish, Rs, Rsh, and n is ana-
lyzed to produce these empirical equations [27]. Numerical
approaches such as the Newton-Raphson method, Gaussian
iteration method, and non-linear least square method were
used to solve these equations. As a result, the accuracy of
parameter estimates using numerical approaches is deter-
mined by the fitting algorithm used, the objective function
provided by the user, and the initial guess [27], [28]. Despite
the fact that numerical approaches can yield PV cell param-
eters with more accuracy than analytical methods, there are
some inherent limitations. First, numerical approaches’ con-
vergence is highly dependent on the initial solution guess.
Second, using gradient operations complicates the solution
process, and the singularity condition may arise during this
approach.

Recently, meta-heuristic optimization methods have been
widely used to estimate the parameters of PV cells in order to
overcome the limitations of numerical methodologies. These
algorithms are developed based on the evolutionary concept,
biological behavior, and physical phenomena [29]–[33].
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Improved convergence, immunity from initial guess, lack
of singularity condition, and examination of all I-V data
points rather than crucial places on the I-V curve are all
advantages of meta-heuristic optimization techniques [34].
Various meta-heuristics optimization techniques have been
utilized in the literature to acquire PV cell parameters.
Some of these techniques include: Genetic Algorithms
(GA) [35], Particle Swarm Optimization (PSO) [36], [37],
Simulated Annealing (SA) [38], Harmony Search (HS) [39],
Bacterial Foraging Algorithm (BFA) [40], [41], Teaching-
Learning Based Optimization (TLBO) [42], Cuckoo Search
algorithm (CSA) [43], Cat Swarm Optimization (CSO)
[44], Differential Evolution (DE) [45], Whale Optimiza-
tion Algorithm (WOA) [46], JAYA Optimization Algorithm
(JAYA) [47], Firefly algorithm (FA) [48], [49], Artificial
Bee Colony (ABC) [50], Gravitational Search Algorithm
(GSA) [51], [52], Grey Wolf optimization (GWO) [43],
Moth-Flame Optimization (MFO) [53]–[55] and Tunicate
Swarm Algorithm (TSA) [56], Chaotic Inertia Weight Parti-
cle SwarmOptimization (CIWPSO) [57], artificial humming-
bird algorithm (AHA) [58] and Flower Pollination Algorithm
(FPA) [59], [60].

The rate of convergence, precision, and implementation
complexity are all important factors to consider when choos-
ing these optimization approaches. Although all of these
methods have been shown to be accurate for parameter esti-
mate, they each have their own set of limitations, such as
the number of essential parameters that must be established,
the complexity of the implementation, and the computa-
tional time necessary to complete the estimation. Research is
underway to develop efficient algorithms to predict param-
eters of PV cells under different environmental conditions
in the hunt for simple and faster techniques. Despite the
fact that metaheuristic algorithms can produce acceptable
results, no algorithm can outperform others in solving all
optimization issues. As a result, various studies have been
conducted to increase the performance and efficiency of the
original metaheuristic algorithms and adapt them to a specific
application.

These algorithms have attained remarkably good results
when estimating the parameters of PV systems. However,
it has to be pointed out that most of the above algorithms have
to use additional parameters, except for the population size.
The parameter settings greatly influence the performance of
these algorithms. Setting the proper parameter values for a
specific problem is still challenging. The parameter tuning is
also a tedious task. Therefore, developing a competitive and
advanced algorithm to extract the parameters of these models
is still demanding work.

Tunicate Swarm Algorithm (TSA) is a recently devel-
oped bioinspired meta-heuristic optimization technique that
is firstly proposed by Kaur et al. [61]. Tunicates employ
swarm intelligence and jet propulsion at sea to find the best
state in their environment for finding food. TSA is better
than other competitive methods at finding optimal solutions
and is suitable for tackling real-world optimization problems.

However, it suffers from getting trap in local optima and
couldn’t converge to a best solution for some complex
cases [62].

In order to overcome this weakness, an improved ver-
sion of the tunicate swarm algorithm (ITSA) is developed
and utilized for parameter identification of photovoltaic sys-
tems in the current study. According to the ‘‘No free lunch
theory’’, there is no metaheuristic algorithm providing a
superior performance than others in solving all optimiz-
ing problems [63]. By far, no universal methods are found
to be suitable for all the problems. In other words, one
method may produce satisfying solutions for some par-
ticular problems but fail to achieve it in other problems.
As a result, it is of great importance to further develop
some new and effective metaheuristic methods for real-
world problems with unknown decision spaces. Motived by
this practical necessity, this research successfully develops
ITSA and utilized it for parameter identification of photo-
voltaic systems. The major contributions of this study are as
follows:

- Introducing a novel algorithm called ITSA with the
purpose to enhance the behavior of tunicates in the TSA.

- Introducing a new phase in TSA to pick a candidate solu-
tion at random instead of the best solution to increase the
exploration and allows the TSA algorithm to perform a
more powerful global search all around the search space.

- Investigation the effectiveness of ITSA algorithm for
parameter extraction of different PV models, single-
diode, double-diode, and PV module. A parameter
perturbation approach is proposed to validate these
algorithms for solving parameter estimation issues using
I-V data. In addition, statistical analysis was performed
over 100 trials to compare the effectiveness of these
algorithms with existing algorithms.

- Comparing the performance of ITSA for global opti-
mization with swarm intelligence (SI) algorithms such
as GSA, GWO, and SCA.

The results prove that the ITSA has the capability to improve
the performance of the original TSAwith better solutions and
a fast convergence rate.

The rest of the paper is organized as follows: Section 2
introduces the mathematical equation formulation for param-
eter evaluation of PV models is presented. Sections 3 and 4
explain the proposed modified optimization algorithm.
The comparative time complexity analysis is explained in
section 5. The Performance evaluation of the ITSA is pre-
sented in section 6. Section 7 exhibits the experimental results
and discussion. Section 8 discusses the conclusion and future
work.

II. MATHEMATICAL MODELING & PROBLEM STATEMENT
OF PV
Manymodels exist in the relevant publications to describe the
physical PV cell’s features. The SDM and the DDM are two
of the most commonly used equivalent circuit mathematical

VOLUME 10, 2022 34071



B. Arandian et al.: Effective Optimization Algorithm for Parameters Identification of Photovoltaic Models

models to define the nonlinear features of PV systems.
The mathematical formulas for the three different PV models
(SDM, DDM, and PVM), as seen in Fig. 1, are described
in this section. This section also covers the objective func-
tion. [39], [64].

A. SDM
Because of its simple form and precision, the SDM is fre-
quently used to illustrate the static features of solar cells.
The SDM is made up of a diode, a current source, a shunt
resistor, and a series resistor, as shown in Fig. 1. (a). It’s
worth mentioning that the shunt and series resistors are used
to indicate leakage current and load current loss, respectively.
To account for the contact resistance between silicon and
electrode surfaces, electrode resistances, and current flow
resistances, they’re all modelled as Rs. In addition, Rsh is
used to account for the leakage current of a P-N junction
diode. As a result, the SDM has five parameters: Iph, Isd ,
n, Rs, and Rsh. The SDM’s I-V characteristics are given
by Eq. (1) [26].

IL= Iph−Isd

(
exp

(
VL+RsIL
n kTq

)
−1

)
−
VL+RsIL

Rsh
(1)

where Isd denotes the diode’s saturation current; and VL
and IL denote the measured I-V data acquired from the
PV cell. Rs denotes series resistance; q and k denote elec-
tron charge (1.60217646× 10−19C) and Boltzmann constant
(1.3806503× 10−23 J/K), respectively; n denotes diode ideal
factor; T denotes cell temperature (K ); Rsh stands for shunt
resistance. The photovoltaic effect causes current to flow
through the P-N junction, which is referred to as Iph, in the
presence of irradiance.

It can be seen that there are five unknown parameters in
SDM that need to be retrieved (Iph, Isd , n, Rs and Rsh).

B. DDM
The effect of recombination current loss in the depletion
area has been integrated into DDM to improve the accuracy
of the PV cell circuit model offered in SDM. A second
diode is added to represent current loss in the depletion
area. As a result, at low irradiance levels, the DDM model
is more accurate. This extra diode, however, adds two new
parameters: n and Isd . The DDM’s circuit model is shown in
Fig. 1. (b). Equation (2) can be used to obtain the DDM’s I-V
characteristics.

IL = Iph − Isd1

(
exp

(
VL + RsIL
n1 kTq

)
− 1

)

− Isd2

(
exp

(
VL + RsIL
n2 kTq

)
− 1

)
−
VL + RsIL

Rsh
(2)

where Is1 and n1 stand for diffusion current and ideal-
ity factor, respectively; n2 and Is2 stand for composite
diode ideality factor and saturation current, respectively.

As a result, the DDM model comprises seven parame-
ters that must be precisely extracted: Iph, Isd1, n1, Isd2,
n2, Rs and Rsh.

C. PVM
To form a PVM, PV cells are linked in series or par-
allel, depending on the voltage and current requirements.
Fig. 1. (c) shows the comparable circuit schematic for the
single diode PVM. Formula (3) can be used to compute the
output current of this model [64], [65].

IL = IphNp − IsdNp

(
exp

(
VL + RsILNs

/
Np

nNs kTq

)
− 1

)

−
VL + RsILNs

/
Np

RshNs
/
Np

(3)

where Ns and Np denote the number of solar cells connected
in series or parallel, respectively. Np is set to 1 because the
PVM used in this study are all in series. As a result, Eq. (3)
can be written as follows:

IL = Iph − Isd

(
exp

(
VL + RsILNs

nNs kTq

)
− 1

)

− s
VL + RsILNs

RshNs
(4)

There are five unknown parameters for the PVM (Iph, Isd ,
n, Rs and Rsh) that must be extracted.

D. PROBLEM FORMULATION
The parameter identification problem must identify the min-
imal error value by measuring and simulating I-V data
under various lighting temperatures and other environmen-
tal circumstances in order to find the ideal parameter
value. To make use of optimization algorithms, parameter
extraction issues are typically turned into a class of opti-
mization problems. In the table’s last row, the root mean
square error (RMSE) is the objective function used to eval-
uate the overall difference between measured and simu-
lated current data. The RMSE is employed as the objective
function in this study, as it is in [20], and it is defined
as follows:

RMSE (X) =

√
1
M

∑M

d=1
f (VL .IL .X)2 (5)

X is a vector that concludes the unknown parameters to
be retrieved, and M is the number of measured I-V data.
As a result, the error function values f (VL .IL .X) of SDM,
DDM, and PVM for various PV models can be represented
as follows:
• For SDM:

f (VL .IL .X) = Iph − Isd

(
exp

(
VL + RsIL

n kTq

)
− 1

)

−
VL + RsIL

Rsh
− IL

X =
{
Iph.Isd .Rs.Rsh.n

}
(6)
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• For SDM:



f (VL .IL .X) = Iph − Isd1

(
exp

(
VL + RsIL
n1 kTq

)
− 1

)

− Isd2

(
exp

(
VL + RsIL
n2 kTq

)
− 1

)
−
VL + RsIL

Rsh
− IL

X =
{
Iph.Isd1.Isd2.Rs.Rsh.n1.n2

}
(7)

• For PVM:


f (VL .IL .X) = Iph − Isd

(
exp

(
VL + RsILNs

nNs kTq

)
− 1

)
−
VL + RsILNs

RshNs
− IL

X =
{
Iph.Isd .Rs.Rsh.n

}
(8)

III. TUNICATE SWARM ALGORITHM
Tunicate swarm algorithm (TSA) is a relatively simple
meta-heuristic optimization technique inspiration by the per-
formance of marine tunicates and their jet propulsion sys-
tems during navigation and foraging [61]. This animal has
a millimeter-scale form. Tunicate can locate food sources
in the sea. In the supplied search space, however, there is
no indication of the food source. When traveling with a jet
propulsion behavior, a tunicate must meet three fundamental
conditions: (i) it must avoid confrontationwith other tunicates
in the search space, (ii) it must take the right path to the
best search location, and (iii) it needs to be as near to the
finest search agent as feasible. The candidate solutions (i.e.
tunicates) in TSA are looking for the best food source (i.e.
the best value of the objective function). In this process, the
tunicates update their positions in relation to the best tunicates
that are stored and enhanced in each iteration. The TSA
begins with the population of randomly generated tunicates
considering the permissible bounds of the design variables
according to the following equation:

ETp = ETminp + rand ×
(
ETmaxp − ETminp

)
(9)

where, ETp is the position of each tunicate and rand is a random
number within range [0,1]. ETminp and ETmaxp are minimum and
maximum values of design variables, respectively. During
the iterations, the tunicates update their position through the
following formula [61]:

ETp (Ex + 1) =
ETp (x)+ ETp (Ex)

2+ c1
(10)

where, c1 is a random number within range [0,1] and ETp (x)
refers to the updated position of the tunicate with respect to

the position of the food source based on Eq. (11).

ETp (x)=

 SF+A×
∣∣∣SF−rand × ETp∣∣∣, if rand ≥ 0.5

SF−A×
∣∣∣SF−rand × ETp∣∣∣, if rand < 0.5

(11)

where SF is the food source, which is represented by the
population’s optimal tunicate position; and A denotes a ran-
domized vector to prevent tunicates from colliding with one
another which is modelled as:

A =
c2 + c3 − 2c1

VTmin + c1 (VTmax − VTmin)
(12)

where, c1, c2 and c3 are random numbers within range [0,1];
VTmin and VTmax reflect the minimum and maximum speeds
that are used to create social interaction which considered as
1 and 4, respectively [61].

The TSA algorithm’s steps are presented below:
Step 1: Initialize the tunicate population ETp based

on Eq. (9).
Step 2: Choose the initial parameters and maximum num-

ber of iterations.
Step 3: Calculate the fitness value of each search agent.
Step 4: The best tunicate is explored in the given search

space.
Step 5:Update the position of each tunicate using Eq. (11).
Step 6: Adjust the updated tunicate which goes beyond the

boundary in a given search space.
Step 7:Compute the updated tunicate fitness value. If there

is a better solution than the previous optimal solution, then
update the best.
Step 8: If the stopping criterion is satisfied, then the algo-

rithm stops. Otherwise, repeat the Steps 5–8.
Step 9: Return the best optimal solution which is obtained

so far.

IV. MODIFIED TUNICATE SWARM ALGORITHM
Despite the TSA’s ability to produce efficient results when
compared to other well-known algorithms, it is susceptible to
becoming trapped in local optima and is not ideal for very
complex problems with several local optima [62]. As shown
in Eqs. (10) and (11), In TSA, every tunicate update its
position based on the position of food source (i.e. position
of the best tunicate in the whole population). It means that
at each iteration pass, the TSA algorithm updates the posi-
tion of candidate solutions around a single point. However,
without any knowledge of the position of the food source
(FS), there will not be any recovery for the algorithm if
premature convergence happens. In other words, once the
algorithm has converged, it loses its potential to explore and
becomes inactive. Therefore, the TSA algorithm becomes
locked at local minimum points as a result of this mechanism.
In light of these conditions, ITSA is proposed to overcome the
mentioned weakness and to increase the search capability and
flexibility of the algorithm.
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FIGURE 1. Schematic of PV cell models (a) SDM (b) DDM (c) PVM.

FIGURE 2. Flowchart of the ITSA.

Generally, exploration and exploitation are two key fea-
tures to the success of any meta-heuristic algorithm and they
need to be designed effectively. The exploration is the ability
of expanding global investigation of the search space, where
the exploitation is the ability of finding the optima around
a good solution. In the proposed ITSA, the original algo-
rithm is modified to increase its exploration and exploitation
capability.

In order to improve the performance and exploration ability
of the algorithm, the proposed ITSA has two main phases
in each iteration. In the first phase, a candidate solution is
picked at random instead of the best solution and the position

of the candidate solutions will be updated according to the
position of this random tunicate. This procedure encourages
exploration and allows the TSA algorithm to perform a more
powerful global search all around the search space. The
exploration phase of the ITSA is mathematically modeled as
follows:

ETp (Ex + 1) = ETp (r)− rand × |ETp (r)− 2rand × ETp (Ex) |

(13)

where ETp (r) is randomly selected tunicate form the current
population.
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TABLE 1. Description of benchmark functions.

TABLE 2. Bound setting of the proposed methods.

In the second phase of the ITSA algorithm, the tuni-
cates update their position according to the position of the
best tunicate based on Eq. (10) to explore the near-optimal
positions and constructive movement toward the global best
solution. Furthermore, in the proposed ITSA, the worst
tunicate with the highest objective function value will be
replaced with a randomly generated tunicate at each iteration.

Figure 2 shows the flowchart of the proposed ITSA
algorithm.

V. COMPARATIVE TIME COMPLEXITY ANALYSIS
The time complexity analysis of most algorithms involves
analyses of three components. Likewise, the time complexity
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TABLE 3. Results comparison of different algorithms in solving test functions.

analysis of ITSA also requires analyses of these three
components:

1. Time complexity of initialization of the population,
generally bounded by 8(n × d) where n denotes the
population size and d denotes the dimensions/design
variables of the problem

2. Time complexity of initial fitness evaluation, generally
bounded by8(n×C0bj), where Cobj represents the cost
of the objective function.

3. Time complexity of the main loop, generally bounded
by 8(Maxiterations × (n × d + n × C0bj)), where
Maxiterations is the maximum number of iterations.

Hence, the total time complexity of ITSA algorithm is
8(Maxiterations(n× d + n× C0bj)).

VI. PERFORMANCE EVALUATION OF THE ITSA
In this section the effectiveness verification of the proposed
ITSA method will be investigated. To this aim, the perfor-
mance of the new algorithm is compared with the standard

version of the algorithm (TSA) as well as some well-known
metaheuristic algorithms on a collection of benchmark test
functions from the literature. These are all minimization prob-
lems that can be used to assess the robustness and search
efficiency of new optimization algorithms. Table 1 shows the
mathematical formulation and features of these test functions.

The ITSA algorithm’s performance is compared with orig-
inal TSA and some efficient optimization methods include
GSA, GWO, and SCA. It’s worth noting that the ITSA algo-
rithm evaluates the objective function twice per iteration,
whereas the TSA and other approaches do so just once.
Therefore, to have fair comparison between the results, the
size of population (N ) is considered equal to 40 for ITSA and
equal to 80 for TSA and other approaches. In addition, for all
techniques, themaximum number of iterations are considered
equal to 1000.

In this way, the same number of function evaluations
equal to 80,000 is considered in all experiments. Because
metaheuristics approaches are stochastic, the findings of a
single run may be erroneous. As a result, statistical analysis
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FIGURE 3. Convergence progress of the algorithms.

VOLUME 10, 2022 34077



B. Arandian et al.: Effective Optimization Algorithm for Parameters Identification of Photovoltaic Models

FIGURE 3. (Continued.) Convergence progress of the algorithms.

should be used to make a reasonable comparison and assess
the algorithms’ effectiveness. In order to address this issue,
30 separate runs are done for the specified algorithms and the
results are presented in Tables 3.

Table 3 shows that, when compared to standard TSA and
other optimization algorithms for all functions, ITSA could
produce better solutions in terms of the best and mean value
of the objective functions.

As shown in this Table, the new algorithm could con-
verge to the global optimum for F1, F2, F3, F4, F6, F7 and
F9. In addition, for the other functions (i.e., F5, F8, F10),
the new method could provide better results compared with
the other techniques. The results also reveal that the ITSA
algorithm’s standard deviations are substantially smaller than
those of the other approaches, indicating the algorithm’s
stability. In Figure 3, for all benchmark test functions, the
convergence progress curves of ITSA are compared to those
of TSA and other approaches. As shown in this figure, the
ITSA is capable of doing a full investigation of the search area
and promptly identifying the most promising position. Based
on the findings, it can be inferred that ITSA outperforms
the original algorithm as well as alternative optimization
methods. The parameters of the ITSA and other methods are
presented in table 2. These parameters have been selected
based on the suggestions presented in the original papers of
each technique.

VII. EXPERIMENTS AND DISCUSSIONS
Based on the main objective of the current study, in this
section the proposed ITSA algorithm is applied for param-
eter identification of PV models. In this subsection, three
different solar PV models (SDM, DDM, and PVM) param-
eter extraction problems are solved using ITSA in order
to further examine the effectiveness of the proposed ITSA.
The SDM, DDM, and poly-crystalline Photowatt-PWP201
modules are the three models in issue. The 57 mm diameter
commercial silicon RTC France is used to obtain the I-V
data of the SDM and DDM [66]. At a temperature of 33 ◦C

and an irradiance of 1000 W/m2, a silicon solar cell from
France works. In addition, the Photowatt-PWP201 is used as
a PVM to evaluate the ITSA and determine the associated
parameters. [67], [68]. The Photowatt-PWP201, in particular,
includes 36 silicon cells with series conductivity of less than
1000 W/m2 at 45 ◦C. The parameter search ranges for the
three PV models are provided in Table 4 [69]–[71].

TSA, SCA, GSA, GWO, and PSO are five well-known
meta-heuristic algorithms that are examined to validate the
competitive performance of ITSA. On each PV model, all of
the compared methods were run 30 times in a row. The max-
imum number of evaluations for the comparative methods is
set to 50,000 for each execution. Furthermore, the accuracy of
the six analyzed approaches was demonstrated by comparing
their best RMSE values. Through the study of data results and
convergence curves, their resilience and convergence speed
were also assessed.

A. RESULTS ON THE SDM
Table 5 shows the ideal parameters extracted and the RMSE
values for the SDM, with the best results shown in boldface
when the RMSE is at its minimum. Table 4 shows that among
the six algorithms, the ITSA has the best RMSE values
(9.86E-04 and 1.16E-03, respectively); also, the GWO has
the second best RMSE value (1.16E-03), followed by GSA,
PSO, TSA, and SCA. Because correct parameter values are
not accessible, the RMSE is used to indicate the accuracy of
experimental results. Despite the small difference between
the best and second best RMSE values, in the objective
function, reducing the disparity between the true and esti-
mated parameter values is crucial. Because the RMSE of the
objective value is smaller, the estimated parameters are more
accurate. In addition, the best parameters retrieved from ITSA
are used to plot I-V and P-V curves. The SDM’s I-V and P-V
characteristic curves in Fig. 4 reveal that the computed data
provided by ITSA closely matches the actual data, implying
that the suggested technique is more accurate than conven-
tional SDM algorithms. Fig. 5 shows the convergence curves
of all algorithms over the entire process.
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FIGURE 4. The measured data and simulated data obtained by ITSA on SDM.

TABLE 4. Parameters boundaries of the three different photovoltaic (PV) models.

TABLE 5. Comparison between algorithms on the SDM.

FIGURE 5. The convergence curves in the SDM.

B. DOUBLE DIODE MODEL
In comparison to the SDM, the DDM requires the identifica-
tion of seven parameters. Although the number of parameters
to be retrieved rises, it is thought to be more precise since the
influence of the model’s recombination current loss is taken
into account. The retrieved parameters and RMSE values of

the compared algorithms are shown in Table 6. Table 6 shows
that among the six algorithms, only ITSA produced the best
result (9.82E-04). The DDM’s ideal RMSE value (9.82E04)
is obviously smaller than the SDM’s RMSE value (9.86E-04),
confirming the DDM’s accuracy. This also implies that as
the number of factors increases, the performance of many
algorithms to discover the best solution begins to deteriorate.
Figure 6 shows a comparison of simulated and measured
current and power values, similar to the SDM. The simulated
current data agrees well with the measured current data,
as shown in Fig. 6(a). The simulated power data and the mea-
sured power data in Fig. 6(b) support the same conclusion,
indicating that RLDE continues to outperform the DDM.
Fig. 7 shows the convergence curves of all algorithms over
the entire process.

C. RESULTS ON THE PV MODULE MODEL
There are five parameters that must be estimated for the PVM.
For each of the six examined approaches, Table 7 shows the
best RMSE and the five extracted parameter values based
on 30 tests. Table 7 shows that ITSA has the lowest RMSE

VOLUME 10, 2022 34079



B. Arandian et al.: Effective Optimization Algorithm for Parameters Identification of Photovoltaic Models

TABLE 6. Comparison between algorithms on the DDM.

FIGURE 6. The measured data and simulated data obtained by ITSA on DDM.

TABLE 7. Comparison between algorithms on the PVM model.

value (2.42E-03), whereas the RSO has the highest RMSE
value (2.42E-03) (2.44E-03). Furthermore, Fig. 8 indicates
that the calculated parameters by ITSA have good I-V and
P-V curve features that match the experimental values. Using
this data, ITSA can extract parameters with high accuracy.
Figure 8 shows that the simulated current (power) data pro-
vided by the proposed method is extremely compatible with
the measured current (power) data, regardless of which mod-
ules are used. Table 6. There is a comparison among different
algorithms on the PVMmodel. Fig. 9 shows the convergence
curves of all algorithms over the entire process.

D. STATISTICAL RESULTS AND CONVERGENCE CURVES
The best value (Best), worst value (Worst), average value
(Mean), and standard deviation (Std) of the method’s RMSE
value are also utilized to evaluate the overall performance of
the proposed algorithm, in addition to the optimal parameters
listed in the preceding subsection.

FIGURE 7. The convergence curves in the DDM.

A full comparison of the preceding algorithms is made
in this subsection, and the statistical results are pro-
vided in Table 8, where some conclusions can be drawn.
The dependability and convergence speed of the ITSA are
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FIGURE 8. The measured data and simulated data obtained by ITSA on PVM model.

TABLE 8. C comparison statistical results.

FIGURE 9. The convergence curves in the PVM module.

compared to the other six methods using convergence curves
and statistical statistics.to see if there are any notable dis-
crepancies between the outcomes obtained by the various
methods. Table 8 displays the statistical results of the six
methods across 30 separate tests on each of the three PV
models, where the best, mean, worst, and standard values of
RMSE represent the extracted parameters’ accuracy, average
precision, and dependability, respectively. To see if there are

any notable discrepancies between the outcomes obtained
by the various methods. A Wilcoxon signed-rank test with
a significance level of 0.05 is used to compare the average
results from 30 runs for each algorithm. The test results
are shown in Table 8. All check symbols in Table 8 are
’+,’ indicating that there are significant differences in all
test instances between ITSA and the comparison algorithms.
Table 8 shows that the ITSA algorithm outperforms the other
five algorithms in terms of model dependability and average
accuracy. Furthermore, the results of the Wilcoxon signed-
rank test in Table 8 show that ITSA outperforms all of the
compared approaches on all three models.

VIII. CONCLUSION
In the optimization of PV systems, parameter extraction
is crucial. This paper introduces ITSA, an improved opti-
mization technique to retrieve parameters from photovoltaic
models based on tunicate swarm optimization. ITSA is used
to extract parameters from three photovoltaic models in
order to test the performance of the suggested method. The
experimental results show that the suggested ITSA outper-
forms the original TSA in terms of accuracy and reliability,
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especially when compared to recent publications in the lit-
erature. Furthermore, the purpose of extracting photovoltaic
model parameters is to improve the optimization and control
of practical solar systems. The performance of proposed
method has been assessed using parameter extraction prob-
lems from several PVmodels. Themean RMSE values gener-
ated by ITSA, are 9.84E−04, 9.82E−04, 2.42E−03 for SDM,
DDM, and PVM, respectively. According to the experimental
results, the solutions produced by the suggested ITSA are
superior options for optimizing and managing real-world
solar systems than the comparison algorithms. As a result,
ITSA might be considered a good candidate technique for
extracting parameters from other complex PV models.
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