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Abstract

Retinal tissue plays a crucial part in human vision. Infections of retinal tissue and delayed treatment or untreated infection could lead
to loss of vision. Additionally, the diagnosis is prone to errors when huge dataset is involved. Therefore, a fully automated model of
identification of retinal disease is proposed to reduce human interaction while retaining its high accuracy classification results. This paper
introduces an enhanced design of a fully automatic multi-class retina diseases prediction system to assist ophthalmologists in making speedy
and accurate investigation. Retinal fundus images, which have been used in this study, were downloaded from the stare website (157 images
from five classes: BDR, CRVO, CNV, PDR, and Normal). The five files were categorized according to their annotations conducted by the
experienced specialists. The categorized images were first processed with the proposed upgraded contrast-limited adaptive histogram filter
for image brightness enhancement, noise reduction, and intensity spectrum normalization. The proposed model was designed with transfer
learning method and the fine-tuned pre-trained RESNET50. Eventually, the proposed framework was examined with performance evaluation
parameters, recorded a classification rate with 100% sensitivity, 100% specificity, and 100% accuracy. The performance of the proposed model
showed a magnificent superiority as compared to the state-of-the-art studies.
c⃝ 2021 The Korean Institute of Communications and Information Sciences (KICS). Publishing services by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Eye is the main organ in human vision. It bonds several mu-
tual anatomical and physiological links with the brain which
is protected by a skeletal rampart. Human eye has fibrous
layers and a twin blood resource that connect to the specific
nervous layer in the retina. The internal cavities of eye and
brain are filled with fluids that are of similar formation and
under comparable pressures, where infections could affect both
eye and central nervous system. Therefore, physicians should
stay aware of illness conditions that incline to simultaneously
implicate the patient’s eye and the nervous system [1].
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Fig. 1 shows five classes of retinal images for healthy eye
and of different disease progressions. In fact, leaving retinal
illness without receive any treatment may cause blindness in
several cases [2]. According to Hagiwara et al. the physicians
determine imperfections in the visual part with boundary track-
ing, typically perimeter measurement to evaluate the width of
the cornea, tonometry in incorrect intraocular pressure detec-
tion, and ophthalmoscopy device in tracking the glaucomatous
optic circle [3]. These testing processes can only be carried out
by trained ophthalmologists. Nonetheless, the retinal diseases
diagnosis was generally made by analyzing and evaluating
the captured retina images, and hence the procedure could
be time-consuming, even for skillful ophthalmologists [4].
Meanwhile, the global increment in the number of patients
with eye problem might exacerbate the situation in delayed
disease detection. Kaur et al. claimed that about a 0.4 million
blindness in the world had been detected while 2.6 million
patients faced critical vision weakness in 2015 due to retina
iences (KICS). Publishing services by Elsevier B.V. This is an open access
nc-nd/4.0/).
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Fig. 1. Sample of the five different image classes: BDR, (CNV&Hist), CRV,
PDR, and Normal.

diseases [5]. In short, the tedious diagnosis process could
possibly lead to severe retinal tissue impairments and the risk
of human error during the investigation procedures.

On the contrary, the computer-aided automatic diagnosis
model shows strong capability in solving the aforementioned
drawbacks and potentially to be referred as a major approach
in recent studies [4]. Transforming from human inspection
into machine inspection imposes more novel approaches in
processing medical images typically disease analysis with mul-
tilane classification. Retinal illnesses include eyes ailments,
brain tumor ailments, breast cancer ailments, rectum ailments,
and heart ailments [6]. The techniques that are commonly im-
plemented in retina photography are “fluorescein angiography,
optical coherence tomography (OCT) and Color stereographic
photography”. Additionally, newer technologies have become
more widely applied to capture the funduscopic images due to
their simplicity, wide accessibility, and their utility in offering
color images which are crucial in documentation [2,7].

Machine inspection (neural network hypothesis) involves a
variety of procedures, for instance a classifier in distinguish-
ing multiple illnesses among image datasets [5,8,9], and a
trained model in extracting set of features in differentiating
the retinal diseases [10–12]. In medical image processing, the
specialists have been increasingly focusing on the intervention
of AI (Artificial Intelligent) in analysis, disease diagnosis and
prediction [13,14]. Additionally, DL (Deep Learning) methods
have delivered impressive contributions in yielding accurate
results in diagnosis and prediction of pulmonary tuberculo-
sis from chest X-ray images and diabetic retinopathy (DR)
[15,16]. Notably, eye illnesses have two leading phases in the
recent studies. The first phase aims to detect the symptoms
of diabetic retinopathy (DR) (including glaucoma, age-related
macular degeneration, retinopathy of prematurity, and refrac-
tive error). The second phase is a new research area that deals
with a new variety of retinal illnesses, for instance choroidal-
neovascular [CNV], macular degeneration AMD, and diabetic
macular edema (DME) [12]. The automated diagnosis models
are assisted with CNN in disease identification (Convolution
Neural Network) [17–20].

Introduced by [21], Contrast-Limited Adaptive Histogram
Equalization (CLAHE) filter was proven to be effective in
improving the micro-aneurysms pixels. There are two meth-
ods for image contrast enhancement to improve veins’ con-
trast [22]. First, CLAHE filter manages to produce adequate
enhancement in veins, and remains robust in dealing with
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noisy environments. The filter performs better than other
global enhancement approaches, such as conventional contrast
extending and general histogram equalization. The second
method in improving vein’s contrast is by using independent
element analysis. Recent studies have included several image
enhancement techniques in pre-processing stage that includes
the procedure as follows: image grayscale conversion, spec-
trum normalization, brightness improvement with CLAHE and
gamma adjustment to improve the overall appearance. The
third pre-processing step target to enhance the (foreground–
background) contrast of the entire dataset [23]. The proce-
dure eventually ends with data augmentation. An explicitly
designed contrast enhancement method named Prominent Re-
gion of Interest (RoI) Contrast Enhancement (PROICE) was
proposed to improve the distinctiveness of the RoI’s sub-
distribution [24]. However, the majority pixels of fundus
images were black pixels which might experience excessive
enhancement effect that could distort the image overall visibil-
ity. Long et al. claimed that the accuracy of MA recognition
is closely related to the image quality [25], and hence further
pre-processing steps are required. CLAHE is normally applied
to improve the distinctiveness between the background and the
tinted dark areas (BVs, HMs, and MAs in the shade-corrected
image).

Transfer learning based on pre-trained network reveals a re-
markable improvement in network accuracy, and it is exclusive
to train a network with smaller datasets, especially the case of
medical imaging.

Generally, the transfer learning technique is a process to
reuse the ready neural networks that have been applied in
other applications. Additional refining processes are required
to recognize new object areas (such as detection of glau-
coma in fundus pictures). To fine tune the networks, the
weights of original design are referred as the initial marks,
then they are adjusted to translate the pre-trained networks
to be more relevant in another object recognition (for in-
stance, the transformed network “Image-Net” that used to
detect general images in, detecting retinal images) [12]. D.
Le et al. [26] presented a study to assess the viability of
deep learning in identifying diabetic retinopathy from the
dataset of coherence tomography angiography with the transfer
learning method based on pre-trained VGG16 networks for
strong OCTA classification. In normal circumstances, common
CNN requires substantial amount of training set which is
less feasible in training labeled medical images due to its
high demand from experts in annotations and limited samples
of data. Therefore, X. Li et al. suggested to screen small
datasets by using the transfer learning technique in the four
pre-trained networks, namely Alex-Net, Vgg-s, VggNet-vd-16,
and VggNet-vd-19 [27]. The optimized pre-trained networks
focus on extracting the fundus features that are later fed to
the support vector machine (SVM) classifier to minimize the
overfitting problem that might be invoked in training small
dataset. Prokofyeva offered notable contributions in generaliz-
ing a series of pre-processing steps for deep transfer learning
when the information is inadequate [28].

In this work, a novel design of an automated retinal diseases
detection model to identify a variety of eye illnesses has been
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Fig. 2. A framework of proposed approach.
roposed. The proposed model simplified the conventional
odel and introduced a series of pre-processing procedures

hat allow high accuracy rate in disease identification. More-
ver, the automated framework reduced the human attention
evel thus resulting in a huge improvement in its efficiency.
he retina illnesses classification was performed through the
re-trained convolution neural networks that were fine-tuned to
t the case of retina illnesses. The fine-tuned networks were

hen investigated with an open sources database (Structured
nalysis of the Retina “STARE”) (152 images) [29]. The
erformance of the model was then examined with evalu-
tion metrics, namely accuracy, sensitivity, and specificity.
he achieved scores of the framework in every measure were
ompared to the state-of-arts methods. Furthermore, a series of
re-processing techniques were used to reduce the overfitting
o achieve a higher accuracy rate. The presented preprocess-
ng approach managed to boost the retina picture aspect.
enerally, the suggested model can contribute better feature
etection than classification accuracy. Fig. 2 is a general
llustration of the proposed method.

. Materials and methods

.1. Material

A group of retina fundus images with conforming tags
BDR, CRVO, CNV, PDR, and Normal) were acquired. The
mages were annotated with labels to become the training
ataset for the following stage. The fundus images with severe
rtifacts distortions were not included in this study. Only the
ictures that had strong agreement marks annotated by the
phthalmologists were obtained from the image store. Antic-
pated strategies include a succession of handling stages in
eveloping a straightforward CNN model to enhance the image
oundaries and classify the images to their corresponding
ickness classes. We also took precautional steps in checking
f any picture required additional adjustment in order to result

n good image visuality that could contribute in yielding high

144
Fig. 3. Flowchart of the proposed method.

accuracy rate in disease identification. Every stage is presented
in Fig. 3.

The newly initialized network was trained on a computer
with Windows operating system, Intel Core i9-10900X @
3.70 GHz CPU, 128 Gb RAM, and AMD Radeon RX 5700
Graphics with 8 Gb RAM.

2.1.1. Dataset acquisition
The dataset was downloaded from the STARE (Structured

Analysis of the Retina) web-database. The database provides
400 raw funduscopic images which cover varieties of cases
including 13 diseases and normal cases [7].

2.2. Fundus preparation

Some fundus images appeared to have sloping retina, un-
wanted distortion, and blurry effect. during the acquisition
process. These conditions demanded a necessity to optimize
the image features to improve the trained CNN in disease

classes identification.
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Fig. 4. Fundus image preprocessed by Conventional CLAHE and Upgraded
CLAHE with various (T/Th).

2.2.1. CLAHE employed
Several image processing methods had been experimented

to process the dataset. However, CLAHE provided the ut-
most improvement in lifting the prediction accuracy. The
CLAHE clipped histogram at a predefined clipping value to
avoid excessive contrast enhancement that may result in pro-
cessed image with odd appearance and undesired artifacts [30].
Moreover, implementation of improper contrast improvement
technique could lead to a poor manifestation in vanishing re-
gions, typically the tiny veins. The problem could be overcome
with the upgraded CLAHE by adding a global threshold value
to the fixed contrast point in the filter. Later, histogram of
the targeting image would be improved adaptively according
to the pre-defined global threshold value. The outperformance
of the improved CLAHE, which overtakes the fixed clipping
feature offered by the conventional CLAHE is exemplified
in Figs. 4 and 5. Notably, the proposed model greatly im-
proved the image distinctiveness, especially the tiny veins.
Subsequently, we conducted normalization to increase wider
intensity distribution within a proper range and allow more
valuable features to be input into the CNN model. Observing
that the images might result in undesirable distortion, see the
light ring at the outer border in Fig. 4. The problem could
be solved by replacing the region (light ring) with original
dark background. The corrective process could be operated in
“LAB” color space, and eventually changed the color space
back to RGB color space.

Fig. 5 shows the histogram of the resulting images in Fig. 4
that was enhanced with the CLAHE method and the modified
CLAHE at T/80. Eq. (1) expressed the clipping limit of the
conventional CLAHE, while Eq. (2) explained the controllable
threshold value offered by our proposed method.

CLIP LIMIT =

[ϕ

L

]
+

[
β.

(
ϕ −

[ϕ

L

])]
(1)

LIP LIMIT =
T

(2)

80
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Fig. 5. Histogram of conventional CLAHE-enhanced image (left) and
histogram of upgraded CLAHE-enhanced image with a variety T division
(right).

where T is the global threshold, ϕ is the pixels population in
ach block, β is the clip factor, and L is the gray scale.

.2.2. Augmentation step
Accuracy of classification of a trained network depends

trongly on the training dataset size which consists of adequate
f variants. Due to limitation of training data, the augmentation
ethods are often applied to feed the network. The augmen-

ation applied in this study included the rotation of the dataset
mages by 30 degrees for eleven times (ranges from 30◦ to

330◦). This stage was taken to feed the CNN network with
images of different views and thus forming a trained network
that enabled recognition of the region of interest from different
orientations. Table 3 shows the numbers of fundus images in
the training and validation groups after applying augmentation
step.

2.3. Single CNN model

In past decades, different CNN models have been proposed.
They are differently designed in terms of the number of
convolution layers with different window size, type of kernel
filter used, max-pool layer (average and max), solver (’sgdm’,
‘rmsprop’, and ‘adam’) in training the network, batch sizes,
and epochs sizes. The CNN model presented in this paper
consisted of convolution layers with depth of 4; while the
kernel size used was 3 × 3 with stride equal to one. In
order to preserve the scope of the feature diagrams, one pixel-
padding was added. Similar case to the max-pooling layer
of size 2 * 2 where the stride equal to two. At the final stage,
the images were compacted to one-dimensional matrix in the
fully-connect dense-layers.

The last dense-layer applied the soft-max activation to
convert the result into a 1 × 6 vector in the base model (normal
and abnormal), and eventually became 1 × 2 vector in the
classification of images according to their disease classes. The
soft-max function converted the output of the fully-connected
layer into probability distributions. The classification decisions
were made referring to their probability in each disease class.



S.S.M. Sheet, T.-S. Tan, M.A. As’ari et al. ICT Express 8 (2022) 142–150
Fig. 6. Flowchart of the proposed approach for categorizing retinal fundus images using the pre-trained network.
In most cases, the main drawback of multi-class classification
model is overfitting [31]. Generally, the proposed single CNN
network aimed to examine the quality of the enhanced fundus
images before entering the following classification stage. A
small CNN network was applied at this stage as regular CNN
with numerous layers could consume longer time.

2.4. CNN-transfer-learning approach

One of the main contributions added into CNN networks
was the combination of the data-store necessities into a single
data-store [32]. Inputs of variations were blocked in the single
input layer. In most cases, the most widely used pre-trained
networks are “Google-Net”, “Vgg16” and “RESNET50”. The
major contributors in the pre-trained networks are classifier,
feature extractor, and deep-transfer learning. . The RESNET50
was proven to have better feature extractions that allowed
higher accurate prediction rate as compared to the other CNN
networks, which recorded an accuracy score of 67%.

Residual Network “50” was claimed to have more im-
portant outcomes than the “Image-Net”. RESNET50 consists
of several dimensions of convolutional filters which could
minimize the training period and to avoid the over-fitting issue.
Therefore, RESNET50 was implemented in this study, given
that the network was previously trained with the “Image-Net”
database [33]. The images input into the RESNET50 network
had size of 224 × 224 × 3, which exemplified width, height,
and channel. Later, we applied the transfer-learning for fused
feature extraction with the features from the untrained dataset.
As a result, the proposed technique potentially assisted the
architecture in learning the common features from the raw
images without additional training for common data, which
indeed minimized the required training time. The merged
features were inputted into the new-FC layer for the classifi-
cations of background diabetic retinopathy, central retina vein
occlusion, choroidal neovascularization, proliferative diabetic
retinopathy, and normal case. Fig. 7 showed the proposed fully
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connected layer that was specified to have five classes identifi-
cation and the pre-mentioned pre-trained RESNET50 network
on the” Image-Net” data. In fact, full-connected layer [34]
consumed the second longest processing than other layers.
However, the problem was overcome with the transfer learning
concept instead of trained a CNN model from scratch. Fig. 6
showed the overall framework of the proposed automated
retinal disease detection model.

3. Results

In deep learning, there are several critical factors to be
considered, for example, epochs and learning rate. The best
combination of parameters was identified experientially to
allow better training performance and classification accuracy.
The number of training images used were 650 images, and 280
images for validation from five disease categories. The pictures
were arbitrarily separated into training (70%) and test sets
(30%). Table 1 showed the accuracy, sensitivity, and specificity
of the outputs resulted from the proposed single CNN model
that aimed to classify pairs of various retina diseases (BDR:
Background Diabetic retinopathy, CRVO: Central retina vein
occlusion, CNV: choroidal neovascularization, HIST: Histo-
plasmosis, PDR: Proliferative diabetic retinopathy and Nor-
mal) that had been improved with the proposed upgraded
CLAHE.

In the framework of classification presentation, a true pos-
itive value (TP)” is a result that fittingly forecasts the positive
class. Also, a true negative value (TN) is a result that fit-
tingly forecasts the negative class. Meanwhile, false negative
value (FN) and false positive (FP) represents the misclassified
samples. Implementing these parameters, the equations of
the accuracy, specificity and sensitivity can be expressed as
follows [35]:

Sen =
TP

(TP + TN )
(3)

Spe =
TN (4)
(TN + FP)
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Fig. 7. A sketch to explain the idea of transfer learning concept. (BDR: Background diabetic retinopathy, CRVO: Central retina vein occlusion, CNV:
Choroidal neovascularization, PDR: Proliferative diabetic retinopathy and normal case).
Table 1
Output parameters for several single CNN models.

Single
CNN

Classified
diseases

Accuracy % Sensitivity% Specificity%

A B

BC1 CNV_hist BDR 100 100 100
BC2 PDR BRV 100 100 100
BC3 CRVO Normal 100 100 100
BC4 CNV_hist Normal 100 100 100
BC5 BDR PDR 100 100 100
ACC =
(TN + TP)

(TN + FP + TP + FN )
(5)

From the result obtain through confusion matrix, the pro-
osed model resulted in zero misclassified images, recorded
he sensitivity of 100.0% and specificity of 100.0%. As result,
he classification model yielded an accuracy rate of 100 per-
ent. Fig. 8 showed clearly that the validation accuracy rose
o 100 percent when the parameters were set as follows: 100
pochs, the learning rate at 0.0003, and elapsed time within
62 min, see Table 2. The total images after augmentation
ecame 1800. As the RESNET50 commonly deals with the
roups that have identical enumerate images, thus we adjusted
he groups’ images with a software according to the smallest
numerate image classes of fundus images, which was 186
mages and 960 images for training and validation in our case.
he classification accuracy of the proposed RESNET50 was
hown in Fig. 8. Table 2 displayed the training plot together
ith the parameters for the transfer-learning RESNET50.

. Discussion

.1. Single CNN networks

Deep learning has been magnificently applied in medi-
al image investigation, analyzation, and reconstruction [36].
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Nonetheless, disease recognitions in fundus images remain
challenging in the recent approaches that involved convolu-
tional neural network (CNN). The proposed single CNN was
used as a meter to evaluate the upgraded CLAHE-enhanced
images. Referring back to Fig. 4 which displayed four en-
hanced fundus images with the proposed clipping parameter,
the clipping parameter at T/80 was found to achieve the best
image enhancement effect according to the validation accuracy
test.

Generally, the proposed single CNN framework outper-
formed in terms of its precision and its great classification
accuracy, as shown in Table 1.

4.2. Transfer learning approach

The proposed technique was trained on a modified CNN
named RESNET50 [34]. The experimental results outputted
from the RESNET50 network were compared and analyzed
with set of fused features accompanied by different existing
approaches, including feature extraction and transfer learn-
ing. The transfer learning method was proven to have the
best performance, referring to Fig. 7. The transferred CNN
managed to accurately classify the retinal diseases into their
respective classes, while the transfer learning method took
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Fig. 8. Confusion matrix for proposed Transferred RESNET50 model.
Table 2
Training Plot values for proposed Transferred RESNET50.

Validation
accuracy

Training
time

Training
cycle
(epoch)

Validation
frequency

Learning
rate

100% 262 min 100 65 iteration 0.0003

Table 3
Distribution of fundus images in the training and validation groups after
applying augmentation.

Dataset
numbers

Retina illnesses sorts

BDR CRVO CNV PDR Normal

Training 186 186 186 186 186
Validation 56 56 56 56 56

shorter training process instead of training the model from
scratch with one thousand classes, as presented in Fig. 8.

Based on Table 2 and Fig. 8, the proposed pre-trained
RESNET50 network provides good classification accuracy
after augmentation implementation, despite the limitation of
available training dataset. The proposed design was competi-
tive with state-of-arts methods introduced in previous studies.
The automated detection model using (VGG19) network and
(STARE) database proposed in previous study had achieved
95.63% in classification accuracy, 92.99% in validation accu-
racy and sensitivity ranged from 40 to 100% [31]. Table 4
summarized the strength between the presented work and the
previous study. The proposed framework showed superiority
148
Table 4
Comparison between the proposed model and related work in [31].

Methods Proposed
method

A method
in [31]

Number of
augmented
images

960 2484

CNN
Pre-trained

RESNET50 VGG19

Classification
accuracy

100% 95.6

Sensitivity 100% 40%–100%
Specificity 100% 99%–100%
Training-set
validation-set

70%
30%

80%
20%

Deep
learning
technique

Transfer
learning

Transfer
learning

Epochs 100 50

in terms of its classification accuracy even though the input
training dataset was smaller.

Besides the Deep Transferred method, Table 5 shows that
proposed model was able to achieve a higher classification
accuracy based on deep feature extraction method compared
with a previous study in [18].

5. Conclusions

Late treatment or untreated infection leads to blindness.
Hence, an early detection of retina infections is crucial. In
this paper, upgraded CLAHE technique in improving image
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Table 5
Performance of different models tested on STARE
dataset using the Feature extraction technique.

Network Accuracy

Resnet_101 [18] 81.6%
DesNet_121 [18] 85.5%
SetNet_101 [18] 83.21%
WP_CNN_101 [18] 90.84%
Proposed model 96.7%

brightness has been introduced. The enhanced-fundus images
were analyzed to diagnose retina illnesses using transfer learn-
ing method on CNN (RESNET50) model. The performance of
the presented methodology in retinal disease detection revealed
superior accuracy as compared to other popular methods. The
proposed model was completely independent of the abrupt
feature changes thus it could be applied by ophthalmologists in
retina illness prediction. However, the proposed model had a
drawback that its classification only covered five retina classes.
Therefore, further investigation is required to evaluate the
model in detecting more disease cases. The superior perfor-
mance offered by the proposed model could possibly be added
into the screening medical devices in viewing retina, such as
electrocardiograph, ultrasonic imaging system or other medical
detection devices.
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