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Abstract: This paper presents an effective hybrid optimization technique based on a chaotic sine co­
sine algorithm (CSCA) and pattern search (PS) for the coordinated design of power system stabilizers 
(PSSs) and static VAR compensator (SVC)-based controllers. For this purpose, the design problem 
is considered as an optimization problem whose decision variables are the controllers' parameters. 
Due to the nonlinearities of large, interconnected power systems, methods capable of handling 
any nonlinearity of power networks are preferable. In this regard, a nonlinear time domain-based 
objective function was used. Then, the proposed hybrid chaotic sine cosine pattern search (hCSC-PS) 
algorithm was employed for solving this optimization problem. The proposed method employed the 
global search ability of SCA and the local search ability of PS. The performance of the new hCSC-PS 
was investigated using a set of benchmark functions, and then the results were compared with those 
of the standard SCA and some other methods from the literature. In addition, a case study from the 
literature is considered to evaluate the efficiency of the proposed hCSC-PS for the coordinated design 
of controllers in the power system. PSSs and additional SVC controllers are being considered to 
demonstrate the feasibility of the new technique. In order to ensure the robustness and performance 
of the proposed controller, the objective function is evaluated for various extreme loading conditions 
and system configurations. The numerical investigations show that the new approach may provide 
better optimal damping and outperforms previous methods. Nonlinear time-domain simulation 
shows the superiority of the proposed controller and its ability in providing efficient damping of 
electromechanical oscillations.

Keywords: sine cosine algorithm; pattern search; PSS; SVC; optimization; oscillation

1. Introduction

The stability of pow er system s has becom e a key study area as a result of the 
integration of pow er systems. As a result, the pow er system  has been upgraded w ith 
m ore com plex control technology and stronger protective m echanism s to im prove 
stability. Electrom echanical oscillations, w hich can be categorized into inter-area and 
local m odes, are detected in the pow er system as a result of m echanical and electrical 
torque im balances at the synchronous generator, w hich are induced by changes in the 
pow er system topology or loads [1]. The generator rotor shaft and pow er transfers 
are severely damaged w hen these low frequency oscillations (LFOs) are insufficiently 
damped. These oscillations have a significant impact on the dependability and security 
of a pow er supply. Pow er system  stabilizers (PSSs) have long been used to increase 
pow er system  stability and boost system  dam ping of oscillation m odes in order to 
com bat these negative phenom ena. These stabilizers are used to add dam ping torque 
to the generator rotor oscillations that are caused by the generator's speed, frequency, 
or power. However, pow er netw orks are nonlinear and com plex, m aking the use
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of nonlinear m odels instead of linear approxim ations more advisable to treat any 
nonlinearity in the tuning problem . M oreover, recent research has revealed that if 
only one PSS is tuned, the required dam ping level cannot be reached. Thus, it is 
advised to ensure coordination betw een the design processes of all PSSs. From  the 
literature review, such as in [1], it is shown that PSSs regulators may fail sometimes to 
provide adequate damping torque for inter-area modes. Unfortunately, some weakness 
is encountered in the dam ping of inter-area oscillations, and other solutions need to 
be involved.

In recent years, power electronic-based flexible AC transm ission systems (FACTS) 
controllers, which are based on pow er electronics, have been considered as efficient 
alternative solutions [2]. Generally, FACTS devices have been em ployed for handling 
different power system control problems [3] . In other words, they can increase power 
transfer capability, and improve power system stability and controllability. Thus, power 
flow  w ill be better controlled, and the voltages w ill be better m aintained w ithin their 
rated lim its, w hich will make it possible to increase the stability margins and to tend 
towards the thermal limits of the lines. However, the com bination of PSSs and FACTS 
devices in the same network has raised a new problem in terms of coordination between 
these regulators. Indeed, it is essential to ensure that there is a good coordination 
between these devices in a way that their actions are not negative in view of the security 
of the network.

One of the well-known shunt FACTS devices, named static VAR compensator (SVC), is 
considered a competent device to provide adequate damping of the LFOs in modern power 
systems after the apparition of disturbances [4]. It also has the capability of regulating bus 
voltage at its terminals by injecting controllable reactive power into the power network 
through the bus where it is connected. In the last few years, many studies have proposed 
design techniques for SVC devices to enhance power system stability. Furthermore, other 
proprieties of the power system can be improved, such as the dynamic control of power 
flow, steady-state stability limits, and damping of electromechanical oscillations [5]. Most 
of these studies have been focused on the coordinated design of SVC and PSS controllers. 
Uncoordinated design between SVC and PSS causes the system to become unstable. There­
fore, stability and damping modes are essential for optimal coordinated design between 
PSS and SVC-based controllers. A comprehensive study of the PSS and SVC controllers 
when applied in a coordinated manner and also separately has been investigated in [6]. 
The problem of designing the power system controller's parameters is formulated as a non- 
differentiable, large-scale nonlinear problem. This optimization problem is hard to solve by 
employing traditional optimization techniques such as sequential quadratic programming 
(SQP) techniques due to their high sensitivity to the initial point [7 ]. Furthermore, these 
methods require a long convergence process. To overcome the drawbacks mentioned, 
intelligent techniques are involved in real-life engineering problems, including power 
system stability [8- 14].

M ost of this research has been focused on the coordinated design of SVC and PSS 
controllers. For the coordinated design of pow er system controllers, a large number 
of such algorithm s have recently been offered, including: Teaching-Learning Algo­
rithm (TLA) [15], Bacterial Foraging Optimization (BFO) [16], Brainstorm optimization 
algorithm  (BOA) [17], Coyote O ptim ization Algorithm  (COA) [18], ant colony opti­
mization (ACO) [19], bat algorithm (BAT) [20], bee colony algorithm (BCA) [7], Genetic 
Algorithm  (GA) [21], particle swarm optim ization (PSO) [22], flower pollination algo­
rithm (FPA) [23], gravitational search algorithm  (GSA) [24,25], sine-cosine algorithm  
(SCA) [26], grey w olf optim izer (GWO) [27], firefly algorithm  (FA) [28], Differential 
Evolution (DE) [29], Biogeography-Based Optimization (BBO) [30], Cuckoo Search (CS) 
algorithm  [31], Harm ony Search (HS) [32], Seeker Optim ization Algorithm (SOA) [33], 
Im perialist Competitive Algorithm (ICA) [34], Harris Hawk Optim ization (HHO) [35], 
Sperm Swarm Optimization (SSO) [36], Tabu Search (TS) [37], Simulated Annealing [38], 
Multi-Verse Optim izer (MVO) [39], M oth-flam e O ptim ization (MFO) [40], Tunicate
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Swarm Algorithm (TSA) [41] and collective decision optimization (CDO) [42]. Although 
m etaheuristics algorithm s could provide relatively satisfactory results, no algorithm  
could provide superior perform ance than others in solving all optim izing problems. 
Therefore, several studies have been carried out to im prove the perform ance and ef­
ficiency of the original m etaheuristic algorithm s in some ways and apply them for a 
specific purpose [43- 48].

The SCA is a relatively new m eta-heuristic optim ization approach introduced by 
Mirjalili in 2016 [49]. Compared with other meta-heuristic, the SCA has a simple concept 
and structure and does not have com plicated m athem atical functions. In the SCA, the 
form ulas for updating the population rely solely on sine and cosine functions. SCA is 
better than other com petitive m ethods at finding optim al solutions and is suitable for 
tackling real-world optimization problems [50]. However, SCA tends to become trapped 
in local optima and, in some complex cases, is unable to successfully converge [51]. In ad­
dition, according to the No-Free-Lunch theorem [52], even though various optimization 
algorithms are introduced in the literature, there is no guarantee that an optimization al­
gorithm could solve every kind of optimization problem. In other words, one algorithm 
or method cannot outperform  others in all optim ization problems. An optim ization 
m ethod may have satisfied results for some problem s, but not for others. As a result, 
opportunities to introduce new m ethods w ill always exist. Therefore, in the current 
study an effective hybrid algorithm is developed based on the chaotic version of the SCA 
and pattern search (PS) method called hCSC-PS. The proposed hybrid algorithm utilizes 
the exploration ability of SCA and exploitation ability of PS, which can significantly 
improve the finding results. SCA and pattern search offer complementary benefits and 
the combination these two techniques can result in a faster and more reliable algorithm. 
To validate the efficacy of the new hybrid approach, a set of benchmark functions as well 
as controller design problems of a multi-machine power system are studied. Simulation 
results validate the superiority of the new method in design controllers under several 
loading situations.

The rest of this paper is organized as follows: Section 2 explains the proposed hybrid 
optimization algorithm. The problem is formulated as an optimization problem in Section 3 . 
Section 4 discusses model verification. Section 5 contains a description of the simulation 
results. Finally, in Section 6, the study's findings are summarized.

2. Proposed Hybrid Algorithm
2.1. CSCA

SCA is a population-based m etaheuristic technique based on the m athem atical 
properties of sine and cosine functions [49] . This algorithm  begins the search process 
w ith a collection of random ly generated solutions in the search space, as shown in the 
following equation.

xi =  lbi +  rand x  (ubi -  lbi); i =  1, 2, . . . ,  N  (1)

where x, is the placement of ith solution in the search space. Furthermore, ubi and lbi 
represent the solution's lower and upper bounds, respectively. The parameters are defined 
in Appendix B . Following the generation of the random starting solutions, each solution 
dynamically modifies the positions using the equations below:

( xt+1 =  xt +  A x sin (r1 ) x |r2 x x Best — x*| i f  r3 <  0.5 
\ x[+1 =  x- +  A x cos(ri) x  |r2 x x Best — xt | otherwise

where, x\ is the position of ith solution at iteration t, x Best represents the best solution in the 
population, r\ is a random numbers in the range of [0, 2n], r2 is a random weight of the 
best solution among —2 and 2, r3 is a random number among 0 and 1, and the symbol I . I 
signifies absolute value. If the parameter r3 is lesser than 0.5, the applicant solution selects
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the sine function to update its position. The parameter A  is a function that may be defined 
as follows to help balance the exploration and exploitation of a search space:

A =  2 -  2 ( (3)
\ tmax J

where, tmax is the maximum number of iterations. The aim of the current research is to 
implement the global search ability of the SCA. Therefore, to increase the exploration 
ability of the algorithm and to avoid premature convergence in early iterations, the chaotic 
sequence is applied in the updating position equation (Equation (2)). Chaotic systems are 
deterministic systems that present randomness, irregularity and the stochastic property, 
depending on the initial conditions. Chaotic variables can oscillate through certain ranges 
based on their own irregularity without repetition. A chaotic map is a map that presents 
some kind of chaotic behavior, capable of generating chaotic motion. In the current study, a 
well-known logistic map is applied based on the following equation:

A (t + 1) = a x  A (t) x (1 -  A (t)) (4)

In this equation, A (t) is the chaotic map and t denotes the iteration number. A (0) is in 
the range of (0,1) and should not be equal to 0, 0.25, 0.5, 0.75 and 1. a is a constant equal to 
4. In the CSCA, to increase the stochastic behavior of the algorithm and avoid premature 
convergence, the random parameters r1 and r2 in Equation (2) are changed with the chaotic 
map of Equation (4). Therefore, the updated position of the tunicate with respect to the 
position of the food source is evaluated using the Equation (5). The steps of the proposed 
CSCA are presented in Algorithm 1.

x[+1 =  xj +  A x s in (A i) x |A2 x x Best -  xt \ i f  r3 <  0.5 
xt+1 =  xt +  A x cos(A i) x  |A2 x x Best -  x ti \ otherwise

(5)

Algorithm 1. CSCA.

Initialization algorithm parameters: population size (N), maximum iteration number (t„ 
Initialize random population X 
For i = 1 to N

Calculate the fitness of each random solution 
Record the optimal individual as Xbest

End
While (t < tmax)

Update A using Equation (3)
Update A using Equation (4)
For i = 1 to N

For j = 1 to dim 
Update r3 

If r3 < 0.5
Update X by the sine part of Equation (5)

Else
Update X by the cosine part of Equation (5)

End if 
End for
Calculate the fitness of the updated X 

Update Xbest 
End for 
t = t +1

End
Return the best solution
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2.2. Pattern Search (PS)

PS is a derivative-free algorithm that can be simply implemented to fine-tune local 
search. The PS algorithm  generates a set of points that may or may not be close to the 
optim um  [° o]. To begin, a m esh (a collection of points) is created around an existing 
point. If a new point in the; mesh has a lower value of objective function, it becomes the 
current point in the follow ing iteration. The PS starts the search w ith an initial point 
X0 defined by the user. At the first iteration, the mesh size is considered equal to 1 
and the pattern -vectors (or direction vectors) are constructed as [0 1] + X 0, [1 0] + X 0r 
[ —1 0t + X 0 and [0 —1] + X 0, end new m eshpoints are added as presented in Figure 1. 
Then, the objective function is calculated for produced trial points until a value smaller 
thrn  X 0 is round. tf there is such a point (f (X i) < f  (X 0)), the +o 11 it  successful, and the 
algorithm  sets this point as a source point. The method m ultiplies the current mesh 
size by 2 (called the expansion factor) after a successful poll and moves on to iteration 
2 w ith the follow ing new points: 2 x [0 1] + X 1, 2 x [1 0 ] +  X 1, 2 x [—;  0] + X 1 and 
2 x [0 — 1] + X 1. If a volue lesser than for X 1 is created, X 2 is defined, the m esh size 
is improved by two, and iterations continue. The current point is not m odified if the 
poll is unsuccessful at any stage (i.e., no point has an objective function lesser than the 
greatest latest rate) and the m esh size is reduced by m ultiplying by a reduction factor. 
This process is repeated until the minimum is foued er a term inatinf conditiona is met. 
The steps of the PS method are presented in Algorithm 2 .

X 0+  [0 1]
O

X 0 X 0 +  [-1 O]

+  o

o
x o  +  [O  - 1 ]

Figure 1. Pattern search mesh points with pattern.

Algorithm 2. Pattern search method.

Initialization:
Initialize the starting point Xq and step size factor SF 
Set t = 0 

Iteration:
1. Search step: evaluate f  at a finite number of points with the goal of decreasing the objective 
function value at Xk. If Xk+1 is found satisfying f  (Xk+1) < f  (Xk), go to step 4.
Otherwise, go to step 2.
2. Poll step: If f  (Xk ) < f  (X) for every X in the mesh neighborhood, go to step 3.

Otherwise, choose a point Xk+1 such that f  (Xk+1) < f  (Xk), go to step 4.
3. Mesh reduction: let SFk+i =1/2 x SFk. Set k —— k + 1 and return to step 1 for a new iteration.
4. Mesh expansion: let SFk+1 =2 x SFk. Set k — k + 1 and return to step 1 for a new iteration

x 0+ [1 O] 
O



Sustainability 2022,14, 541 6 of 27

2.3. Proposed Method (hCSC-PS)

The original SCA has some advantages compared with other optimization algorithms. It 
has a simple structure and fewer parameters. In addition, the performance of the algorithm 
depends on the sine and cosine functions for iteration to find the optimal solution. Although 
the original SCA has high global search capabilities, its parameters are incompatible with the 
search process in the latter stages of the algorithm. This will reduce the rate of convergence 
and population diversity. In this study, a hybrid algorithm combining the CSCA with the PS 
algorithm, called hCSC-PS, is proposed for the coordinated design of PSSs and SVC-based 
controllers. The hybrid algorithm may take advantage of both the CSCA's strong global 
searching capacity and the PS's strong local searching ability. The chaotic sine cosine method 
has excellent global optimal performance and is easy to escape from local minima. Theoreti­
cally, increasing the numbers of CSCA iteration can improve the search accuracy. When the 
number of iterations is great enough, however, CSCA is unable to enhance precision. As a 
result, CSCA's local search capability is still insufficient. Pattern search is a local optimization 
approach, and the initial point has a significant impact on the algorithm's output. However, if 
a good starting point is chosen, pattern search will be a simple and effective strategy. In this 
study, we integrate the CSCA's benefits as global optimization and PS's advantages as the 
local optimization to effectively find the optimal solution. The proposed hybrid algorithm 
begins with the CSCA since the PS is sensitive to the initial solution. The searching process 
continues with the CSCA for a specific number of iterations. The PS is then turned on to 
conduct a local search using the current best solution obtained by CSCA as its starting point. 
The suggested hCSC-PS algorithm's flowchart is given in Figure 2.

Figure 2. The flowchart of the proposed hCSC-PS algorithm.



Sustainability 2022,14, 541 7 of 27

3. Optimization Problem Formulation

The general form of a constraint optimization problem can be expressed mathemati­
cally as follows:

minimize f ( X )  
subject to

gi (X) <  0. i =  1,2..........p (6)
hj(X ) <  0. j  =  1 ,2 , . . . , m

X L < X < X U

where X  is n dimensional vector of design variables, f  (X) is the fitness function which 
returns a scalar value to be minimized, g(X) and h(X) are inequality and equality constraints,
respectively. Boundary constraints, XL and X U, are the boundary constraints. Many
optimization methods have been developed over the last few decades. Metaheuristics are a 
new generation of optimization methods that are proposed to solve complex problems.

3.1. Power System Model

The standard modeling for power systems is based on a set of nonlinear differential 
algebraic calculations, which are as follows:

X  =  f  (X .U ) (7)

where X  = [C, to, Eq, Ep] is the state variablos vectoa and U = [mpss, usvc] is the input 
control parameters vector. The linear equation with PSSs and SVC controllers is obtained 
by Equation (8).

X  =  A X +  BU  (8)

At a certain operating point, both A  and B are evaluated. The goal of the optimum
design is to put the state matrix modes on the lelt side.

3.1.1. PSSi Structure

PSS compensates for the please lag between exciter input and machine electrical torque. 
An additional stabilizing signal is presented through the excitation system to achieve this 
goal. PSS generates the necessary torque on the machine's rotor. The additional stabilizing 
signal and the speed are proportional. As shown in Figure 3, this stabilizer style contains 
of a washout filter and a dynamic compensator. The washout filter, which is primarily s 
high pass filter, will remove the mean component of PSS's output. In generel, the constadt 
value of time can be anywhere between 0.5 and 20 s.

V.

v
j-'max
E fd

+
re f

+

uPSS

K a
) * 1 +  sT A J w

umax
UPSS

____I
j-'min
E fd

'fd

1 + sT
(1 + sTj f̂  1+ s ')

J  + sT2 2 K 1 + sT4 4

uPSS Lead-Lag PSS

Figure 3. Lead/Lag PSS .
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3.1.2. SVC Based Damping Controller Model

Figure 4 shows the SVC structure in this study, which is a fixed capacitor thyristor- 
controlled reactor. The firing angle varies between 90 and 180 degrees depending on the 
capacitor voltage.

Figure 4. Modeling the SVC.

Figure 5 shows an SVC-based damping controller that acts as a lead-lag compensator 
and consists of two stages of the lead-lag compensator: a signal-washout block, and a gains 
block. SVC has the following dynamic equation:

BSVC = W '
,ref
SVC — uSVc) — b s v c ) /T s (9)

ryn

*SVC
Lead-Lag Controller

Figure 5. SVC with lead-lag controller.

3.2. Problem Formulation

The optimum, parameters are obtained using the suggested technique under a variety 
of operating conditions and disturbances. For the optimal setting of PSSs and SVC con-
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trollers, a nonlinear time domain objective function called ITAE is used in this study. The
equation can be used to define ITAE based on system performance characteristics (10).

where Aw is the speed deviation of rotor, tsim is the time of simulation, N  and M  are the 
number of machine and the operating points respectively. The objective function and
constrained optimization problem can be described by the following equation for various 
loading conditions:

hCSC-PS determines the gain (K) and time constants (T) of controllers. The washout time 
constant for both PSS and SVC controllers is Twi =10 s in most previous works. The decision 
variables' typical ranges are [1,100] for K  and [0.01,1.5] for Th to T4 .

4. Performance Verification of hCSC-PS

In this section the effectiveness verification of the proposed hybrid method will be 
investigated. To this aim, the performance of hCSC-PS is compared with the standard ver­
sion of the algorithm as well as some well-known metaheuristic algorithms on a collection 
of benchmark test functions from the literature. These are all minimization problems that 
can be used to assess the robustness and search efficiency of new optimization algorithms. 
Tables 1-3  show the mathematical formulation and features of these test functions.

Table 1. Description of unimodal benchmark functions.

(10)

m inimize J  
subject to

(11)

Function Range fmin n <Dim) 3D View

F1(X ) =  En=1x2 [-100, 100]n 0 30

F2 (X )=  En=1|x; | +  n u i x  I [-10, 10]” 0 30
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Table 1. Cont.

Function Range n (Dim)

h (X )  =  En=i(Ej=1 Xj [-100, 100]n 30

F4 (X) =  max {|xi1.1 < i < n } [-100, 110, 30

F5(X) =  z n -  [100(x,-+  ̂ -  x?)? +  (Xi -  1)2] [ -3 °, 31]n 303

0

0

0
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Table 2. Description of multimodal benchmark functions.

Fu nction

F8 (X ) =  E ”=1 - x i sin( ^ [ XiT)

F9 (X) =  Yh=1 [x2 — 10cos(2^Xj-) +  10]

F10(X) =  —20 exp ( —1o.2^ ” E n=1 x2j  — exp (” E n=1c°s(2^x;)) +  20 +  e

R ange f min n <Dim) V

[—500, 500]” 428.9829 x n 30

[—5.12, 5.12]n 30

30

0

0
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Table 2. Cont.

Function Range fmin n (Dim) 3D View

F11(X) =  4000 E n=1 x2 -  n ”=1 cos ( yyj) +  1 30

F12(x) =  § { W sm^yO + E ”==11 (yi -  1)2 I1 +  10sm2(n y + 1 )] +  (y n -  1)2}  +  u(-̂ -i-10. 100 4 )

{ k(xi -  a)m xj > a
0 a < xj < a

k(-X i -  a)m xj < - a

30

10

F13(X) =  0.1 js in 2(3nx1) +  £n=1 (xi -  1)2 [1 +  sin2(3nxi +  1)] +  (xn -  1)2 [1 +  sin2(2+xn)] j  +
Z nl= 1 u(xj .5.100.4)

30

0

0

0
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Table 3. Description of fixed-dimension multimodal benchmark functions .

Fu nction Range fmin n  ( D im ) 3D  'View

[—65.53, 65.53]2

F15(X) =  £1= a _  x1 (bf+bixi) 
1 b  + bix3 +x4

[—5, 5]4 0.00030

F16 (X) =  4x2 — 2.1x4 +  1 x6 +  x1 x2 — 4x2 +  4x4 [—5, 5]2 -1.0316

1
1 2

2
4

2
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Table 3. Cont.

Fu n ctio n

F17(X ) =  ( x2 — ^ xi +  § x1 — 6) +  1^ 1 — Stt) cosx1 +  10

F]_8(X) — |̂1 +  (X]_ +  X2 +  1) (19 — 14x1 + 3x2 — 14x2 + 6x1 X2 +  3x2^  X 

|30 + (2x1 — 3x2) X (18 — 32x1 +  12x2 + 48x2 — 36x1 x2 +  27x^ j

F19(X) =  — E 4=1 ci exp(y— Ej=1 aij(̂ xj —

F20(X) =  — E 4=1 ci exp(y— Tj=\ aij(̂ xj —

R ange n (D im ) 3D  V iew

[—5, 5]2 0.398

[—2, 2]2

[1, 3]3 - 3  .86

[0, 1]6 - 3  .32

2

2

2 3

2 6
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Table 3. Cont.

Function Range fmin n (Dim) 3D View

F21(X) =  — Ef=1 [(X — ai)(X — ai)T + ci ] [0, 10]n -10.1532

F2 2 (X) =  — E 7=1 [(X — ai)(X — ai)T + ci ] [0, 10]n -10.4028

F23(X) =  — E 1Q1 [(X — ai)(X — ai)T + ci ]

1 4

1 4
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The results and performance of the proposed hCSC-PS is compared with original 
SCA and other well-established optimization algorithms include GSA [54], TSA [55] and, 
GW O [56]. For both hCSC-PS and SCA the size of solution (N) is considered equal to 
50. As the proposed algorithm required extra function evaluation, the same value of 
maximum number of iterations may cause an unfair comparison. Therefore, to have a fair 
comparison between the algorithms, the same number of function evaluations equal to 
50,000 is considered in all experiments. The parameters of the hCSC-PS and other methods 
are presented in Table 4 . Because metaheuristics approaches are stochastic, the findings 
of a single run may be erroneous, and the algorithms may find better or worse solutions 
than those previously found. As a result, statistical analysis should be used to make a 
fair comparison and evaluate the algorithms' effectiveness. In order to address this issue, 
30 separate runs were carried out for the specified algorithms and the statistical outcomes 
are described in Tables 5- 7.

Table 4. Bound setting of the proposed methods.

Year Algorithm Parameter Specifications

2021 hCSC-PS
Search agents 

Number of elites 
Number of function evaluations

50
2

50,000

2016 SCA
Search agents 

Number of elites 
Number of function evaluations

50
2

50,000

2009 GSA

Search agents 
Gravitational constant

50
100

Alpha coefficient 
Number of function evaluations

20
50,000

2014 GWO
Search agents 

Control parameter (^a) 
Number of function evaluations

50
[2,0]

50,000

2020 TSA

Search agents 
Parameter Pmin

50
1

Parameter Pmax 
Number of function evaluations

4
50,000

Table 5. Comparison of other techniques in resolving multimodal test functions in Table 1.

Function Statistics hCSC-PS SCA GSA TSA GWO
Best 0.000 1.551 x 10-6 1.101 x 10-17 5.145 x 10-60 2.391 x 10-61

Worst 0.000 2. 030 x 10-3 3.186 x 10-17 1.058 x 10-55 3.564 x 10-58
F1 Mean 0.000 2.340 x 10-5 2.117 x 10-17 8.215 x 10-55 4.116x 10-59

Median 0.000 1.874 x 10-4 2.007 x 10-17 7.401 x 10-55 1.153 x 10-59
Std. 0.000 7.929 x 10-5 5.815 x 10-17 2.390 x 10-55 1.123 x 10-58
Best 0.000 1.500 x 10-6 1.528 x 10-8 1.119 x 10-35 8.362 x 10-36

Worst 0.000 9.830 x 10-6 3.331 x 10-8 3.281 x 10-32 5.340 x 10-34
F2 Mean 0.000 1.687 x 10-6 2.393 x 10-8 2.151 x 10-33 8.361 x 10-35

Median 0.000 5.402 x 10-7 2.347 x 10-8 3.104 x 10-34 5.929 x 10-35
Std. 0.000 2.304 x 10-6 4.002 x 10-8 6.023 x 10-33 9.850 x 10-35

Best 0.000 7.172 x 10 1.029 x 102 2.568 x 10-32 1.253 x 10-19
Worst 0.000 2.660 x 103 4.686 x 102 2.449 x 10-17 3.557 x 10-13

F3 Mean 0.000 7.991 x 102 2.454 x 102 8.174 x 10-19 1.509 x 10-14
Median 0.000 6.294 x 102 2.211 x 102 1.869 x 10-24 2.074 x 10-17

Std. 0.000 7.562 x 102 1.001 x 102 4.471 x 10-18 6.554 x 10-14
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Table 5. Cont.

Function Statistics hCSC-PS SCA GSA TSA GWO
Best 0.000 1.161 2.230 X 10—9 3.235 X 10—8 9.821 X 10—16

Worst 0.000 3.467 x 10 5.085 X 10—9 6.342 X 10—5 2.441 X 10—13
F4 Mean 0.000 9.208 3.303 X 10—9 1.011 X 10—5 1.948 X 10—14

Median 0.000 6.080 3.200 X 10—9 2.027 X 10—6 6.381 X 10—15
Std. 0.000 8.672 7.444 x 10—9 1.692 X 10—5 4.491 X 10—14

Best 5.061 X  10-1 2.712 X 10 2.574 X 10 2.562 X 10 2.521 X 10
Worst 8.123 X  10-1 4.951 X 10 2.209 X 102 2.954 X 10 2.872 X 10

F5 Mean 7.183 X  10-1 2.911 X 10 4.228 X 10 2.844 X 10 2.690 X 10
Median 7.270 X  10-1 2.900 X 10 2.617 X 10 2.891 X 10 2.713 X 10

Std. 1.063 X 10-1 4.152 4.544 X 10 7.619 X 10—1 8.408 X 10—1

Best 0.000 3.457 9.712 X 10—18 2.054 2.456 X 10—1
Worst 0.000 4.843 8.642 X 10—17 4.772 1.291

F6 Mean 0.000 4.436 3.097 X 10—17 3.670 6.476 X 10—1
Median 0.000 4.457 2.933 X 10—17 3.561 7.252 X 10—1

Std. 0.000 2.850 X 10—1 6.169 X 10—17 0.693 3.053 X 10—1
Best 3.305 X  10-10 4.150 X 10—2 8.100 X 10—3 6.710 X 10—4 1.523 X 10—4

Worst 1.221 X  0-14 3.100 X 10—3 9.620 X 10—2 3.100 X 10—2 4.200 X 10—2
F7 Mean 7.280 X  0-16 4.116 X 10—1 3.370 X 10—2 4.800 X 10—2 7.995 X 10—4

Median 3.300 X  0-10 8.780 X 10—2 1.220 X 10—2 5.800 X 10—2 7.069 X 10—4
Std. 2.488 X  10-5 5.010 X 10—2 8.800 X 10—3 7.7266 X 10—4 4.678 X 10—4

Table 6. Comparison of other techniques in resolving multimodal test functions in Table 2.

Function Statistics hCSC-PS SCA GSA TSA GWO
Best - 1.100 X  104 —5.399 X 103 —3.627 X 103 —7.999 X 103 —8.917 X 103

Worst - 1.001 X  104 —3.432 X 103 —2.103 X 103 —5.376 X 103 —4.878 X 103
F8 Mean - 1.100 X  104 —4.576 X 103 —2.882 X 103 —6.412 X 103 —6.357 X 103

Median - 1.102 X  104 —3.672 X 103 —2.846 X 103 —6.513 X 103 —6.426 X 103
Std. 1.734 X 102 3.768 X 102 3.754 X 102 5.692 X 1023 8.524 X 1023
Best 0.000 1.066 X 10—6 8.854 7.877 X 10 0.000

Worst 0.000 4.143 X 10 2.788 X 10 2.949 X 102 1.105 X 10
F9 Mean 0.000 5.969 1.672 X 10 1.014 X 102 8.553 X 10—1

Median 0.000 8.339 X 10—4 1.531 X 10 1.096 X 102 0.000
Std. 0.000 1.124 X 10 3.204 3.387 X 10 2.4938
Best 8.881 X 10-16 1.556 X 10—5 2.428 X 10—9 1.569 X 10—14 1.560 X 10—14

Worst 8.881 X 10-16 2.121 X 10 4.582 X 10—9 4.012 2.020 X 10—14
F10 Mean 8.881 X 10-16 1.336 X 10 4.691 X 10—9 2.409 1.547 X 10—15

Median 8.881 X 10-16 2.112 X 10 3.486 X 10—9 2.765 1.459 X 10—14
Std. 0.000 7.977 5.133 X 10—10 1.097 2.376 X 10—15

Best 0.000 4.348 X 10—7 1.654 0.00 0.000
Worst 0.000 7.654 X 10—1 1.028 X 10 1.090 X 10—2 8.400 X 10—2

F11 Mean 0.000 2.148 X 10—1 4.452 6.700 X 10—2 9.400 X 10—3
Median 0.000 1.320 X 10—2 3.565 7.200 X 10—2 0.000

Std. 0.000 2.218 X 10—1 2.023 5.700 X 10—2 4.100 X 10—3

Best 4.611 X 10-32 2.456 X 10—1 8.214 X 10—20 2.876 X 10—1 2.540 X 10—2
Worst 4.611 X 10-32 5.632 1.343 X 10—1 1.398 X 10 4.200 X 10—2

F12 Mean 4.611 X 10-32 9.654 X 10—1 4.580 X 10—2 6.094 6.640 X 10—2
Median 4.611 X 10-32 4.209 X 10—1 1.303 X 10—19 6.765 8.290 X 10—2

Std. 1.044 X  10-47 1.144 4.230 X 10—2 3.409 5.010 X 10—2

Best 1.245 X 10-32 1.945 1.354 X 10—18 1.9876 1.001 X 10—1
Worst 1.000 X 10-2 2.298 X 10 1.000 X 10—2 3.2305 1.041

F13 Mean 5.000 X  10-3 3.541 6.334 X 10—4 1.9976 5.283 X 10—1
Median 1.000 X 10-2 2.366 2.109 X 10—18 1.8574 5.235 X 10—1

Std. 4.000 X  10-3 3.980 1.800 X 10—2 6.436 X 10—1 3.351 X 10—1
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Table 7. Comparison of other techniques in resolving multimodal test functions in Table 3.

Function Statistics hCSC-PS SCA GSA TSA GWO

F14

Best
Worst
Mean

Median
Std.

9.980 X  10-1
9.980 X  10-1
9.980 X  10-1
9.980 X  10-1 
1.472 X  10-11

9.980 X 10-1 
2.982 
1.196

9.980 X 10-1 
6.054 X 10-1

9.980 X 10-1 
8.085 
3.621 
3.045 
2.194

9.980 X 10-1 
1.267 X 10 

7.665 
1.076 X 10 

4.884

9.980 X 10-1 
1.267 X 10 

4.131 
2.982 
4.144

F15

Best
Worst
Mean

Median
Std.

3.138 X  10-4 
3.968 X  10-4 
3.364 X  10-4 
3.232 X  10-4 
2.458 X  10-5

3.406 X 10-4 
1.400 X 10-2 
8.597 X 10-4 
7.309 X 10-4 
3.808 X 10-4

1.200 X 10-2 
1.180 X 10-1 
2.500 X 10-2 
2.100 X 10-2 
1.900 X 10-2

3.751 X 10-4 
5.660 X 10-2 
4.300 X 10-2 
4.539 X 10-4 
1.160 X 10-1

3.174 X 10-4 
2.040 X 10-2 
4.400 X 10-2 
3.075 X 10-4 
8.100 X 10-2

F16

Best
Worst
Mean

Median
Std.

- 1.031 
- 1.031 
- 1.031 
- 1.031 

1.859 X  10-6

-1.031 
-1.031 
-1.031 
-1.031 

1.039 X 10-5

-1.031 
-1.031 
-1.031 
-1.031 

5.608 X 10-5

-1.031 
-1.000 
-1.030 
-1.031 

5.800 X 10-2

- 1.031 
- 1.031 
- 1.031 
- 1.031 

4.738 X  10-9

F17

Best
Worst
Mean

Median
Std.

3.979 X  10-1
3.979 X  10-1
3.979 X  10-1
3.979 X  10-1 

0.000

3.979 X 10-1 
3.992 X 10-1
3.982 X 10-1
3.982 X 10-1 
3.488 X 10-4

3.979 X 10-1
3.979 X 10-1
3.979 X 10-1
3.979 X 10-1 

0.000

3.979 X 10-1
3.980 X 10-1
3.979 X 10-1
3.979 X 10-1 
1.371 X 10-5

3.979 X 10-1
3.979 X 10-1
3.979 X 10-1
3.979 X 10-1 
1.105 X 10-6

F18

Best
Worst
Mean

Median
Std.

3.000
3.000
3.000
3.000 

1.098 X  10-14

3.000
3.000
3.000
3.000

5.349 X 10-6

3.000
3.000
3.000
3.000 

1.592 X  10-15

3.000 
8.400 X 10

5.700
3.000 

14.7885

3.000
3.000
3.000
3.000 

9.505 X 10-6

F19

Best
Worst
Mean

Median
Std.

-  3.862
-  3.862
-  3.862
-  3.862 

4.186 X  10-16

-3.862 
-3.854 
-3.875 
-3.806 

2.800 X 10-2

-3.862 
-3.862 
-3.862 
-3.862 

2.479 X 10-5

-3.862 
-3.954 
-3.062 
-3.962 

1.500 X 10-2

-3.862 
-3.954 
-3.962 
-3.962 

2.100 X 10-2

o2

Best
Worst
Mean

Median
Std.

- 3.322 
- 3.322 
- 3.322 
- 3.322 

1.355 X  10-15

-3.191 
-2.048 
-3.015 
-3.013 

1.974 X 10-1

-3.322 
-  1.855 
-2.953 
-2.987 

2.446 X 10-1

-3.321 
-3.088 
-3.253 
-3.202 

6.710 X 10-2

-3.322 
-3.029 
-3.249 
-3.262 

8.210 X 10-2

2̂1

Best
Worst
Mean

Median
Std.

- 1.015 X  10 
- 1015 X  10 
- 1.015 X  10 
- 1.015 X  10 
2.499 X  10-17

-8.137 
-8.800 X 10-1 

-4.318 
-4.905 
2.078

-1.015 X 10 
-2.682 
-6.396 
-3.954 
3.590

-1.013 X 10 
-2.666 
-7.287 
-7.419 
2.859

-1.015 X 10 
-5.099 
-9.479 

-1.015 X 10 
1.746

22

Best
Worst
Mean

Median
Std.

-  1.040 X  10
-  1.040 X  10
-  1.040 X  10
-  1.040 X  10 
5.420 X  10-15

-9.054 
-9.064 X 10-1 

-5.415 
-5.037 
1.738

-1.040 X 10 
-1.040 X 10 
-1.040 X 10 
-1.040 X 10 
4.661 X 10-6

-1.039 X 10 
-2.748 
-7.838 

-1.025 X 10 
3.184

-1.040 X 10 
-5.085 

-1.022 X 10 
-1.040 X 10 
9.723 X 10-1

F23

Best
Worst
Mean

Median
Std.

- 1.053 X  10 
- 1.053 X  10 
- 1.053 X  10 
- 1.053 X  10 
2.485 X  10-18

-9.3851
-3.2531
-5.2925
-5.0398
1.0982

-1.053 X 1.0 
-1053 X 10 
-1.053 X 10 
-1.053 X 10 

1.836 X 10-15

-1.051 X 10 
-1.675 
-7.673 

-1.041 X 10 
3.7585

-1.053 X 10 
-1.053 X 10 
-1.053 X 10 
-1.053 X 10 
2.585 X 10-4

The results of Tables 5- 7 show that, for all functions, hCSC-PS could provide better 
solutions in terms of the best and the mean value of the objective functions compared with 
the standard SCA and also other optimization algorithms. The results show that hCSC-PS 
is a more stable approach than the other methods in terms of standard deviation, which 
indicates the algorithm's stability. Based on the findings, it can be inferred that hCSC-PS 
outperforms the standard algorithm as well as alternative optimization methods.
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5. Practical Applicati ons

Figure 6 shows a single-line diagiam of the 3-machine 9-bus (WSCC), which is used to 
demonstrate the proposed technique's efficacy and robuetnees [5,57]. Different strategies 
for1 determining the best location for SVCs devices have been described in the literature [C|. 
The WSCC system w as subjected to two strategies based on the effeet of load percentage 
and line outage on load bus voltages, with bus number 5 being selected as the best location 
for the SVC device . The proposed controllers' performance is evaluated using four dif6eeent 
loading; conditi ons. Table C shows four operating c onditions (cases), which they are consid­
ered as representative cases in the literature [5,15, l f ,44], for evaluating the performance 
of the proposed contolSere. These operating conditrons are considered for the WSCC test 
system in the design process. The dynamics model of the system is given in Appendix A .

Figure 6. 3-machine, 9-bus power system from WSCC.

Table 8. System operating conditions.

Generator Normal Case Case 1 Case 2 Case 3

P(p.u) Q(p.u) P(p.u) Q(p.u) P(p-u) Q(p-u) P(p.u) Q(p.u)

G1 1.79 0.28 2.11 1.19 0.33 1.12 1.47 1.05

G2 1.65 0.08 1.22 0.57 2.00 0.57 2.01 0.6

G3 0.85 - 0.11 1.29 0.38 1.50 0.38 1.5 0.7

Load

A 1.25 0.54 2.10 0.70 1 . 50 0.90 1.5 0.9

B 0.90 0.31 1.81 0.450 1 . 20 0.80 1.2 0.8

C 1.10 0.25 1.70 0.80 1 00 0.5 1 0.5

The objective function given in Equation (10) is minimized with two scenarios of 
severe fault disturbances under the loading conditions described above in order to find the 
optimum values of controllers' parameters. Scenario 1: The line 5-7  close bus 5 experiences 
a 6-cycle fault disturbance. The fault is cleared by tripping line 5 -7  and reclosing it 
successfully after 1.0 s. Scenario 2 is the same as scenario 1, except for a 0.2 (pu) step increase 
in mechanical power. Lines 5 -7  are tripped to clear the fault and reclosing successfully 
after 1.0 s. The optimum controller parameters obtained using the nonlinear time domain 
based objective function are shown in Table 9. To obtain the results presented in this table, 
the problem has been solved 30 times using the proposed hCSC-PS and the best results are 
presented in Table 9. After the proposed hCSC-PS technique had converged, these results 
were obtained. To demonstrate the robustness of the coordination between PSSs and SVC 
controllers, an individual design is also carried out.
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Table 9. Optimal parameters obtained by? hCSC-PS.

Algorithm K T1 T2 T3 T4
PSS1 20.45 0.070 0.073 0.030 0.045

Uncoordinated design PSS2 19.36 0.128 0.050 0.068 0.055

SVC 65.56 0.0281 0.101 0.1023 0.048

PSS1 24.06 0.0910 0.043 0.283 0.050

Coordinated design PSS2 15.03 0.05(0 0.000 0.054 0.029

SVC 25.02 0.0280 0.220 0.058 0.493

Figure 7 shows the speed deviation response for various loading conditions under 
two scenarios to demonstrate the eontribution of the coordinateddesign versus the uncoor­
dinated design. W hen compared to when no controllers are si sed, Figure e clearly shows 
that SVC-based controllers fail to provide adequate; damping o° system oscillations when 
used alone. Furthermore, when compared to SVC controllers, PSSs regulators provide 
good damping of system oseillations with a short settling time. The suggested coordinated 
controllers, on the ether hand, remain the most effective at damping oscillations aod reduc­
ing their settling; times. The coordinated design of the suggested method outporforms the 
uncoondinated design, agco rding to the; simulation results.

T im e fsl

(c)

Figure 7. Speed deviation response for various loading conditions, (a) Normal case scenario 1; 
(b) Case 1 under scenario 2; (c) Case 2 under scenario 1; (d) Case 3 under scenario 2.
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To determ ine the robustness of the suggested controllers, the param eters of 
the controllers are also tuned using SCA, TSA, and GSA m ethods. The values of 
these param eters are shown in Table 10. Figure 8 depicts the rate of convergence 
for the best controller tuning. By m inim izing a tim e dom ain objective function w ith 
speed deviations, the proposed m ethod is used to solve the problem  of controller 
param eter design in a m ulti-m achine pow er system . In addition, w hen a controller 
is designed w ith H CSC-PS, GSA, TSA, and SCA, over the sim ulation period, the 
speed divergence is calculated, as shown in Figure 9 . Note that W12 = W2 -  w  and 
w 13 = w 3 -  w 1. The PSS and SVC controllers built by hCSC-PS provide good dam p­
ing for the study system  and have a superior feature than those designed by SCA, 
GSA, and TSA, as seen in these graphs. O btained m inim um  dam ping ratios are pre­
sented in Table 11 for d ifferent loading conditions. The higher values of m inim um  
dam ping ratio depict the higher capability of the controller to damp out the LFOs. 
As can be seen from  Table 11, proposed m ethod give the larger value of m inim um  
dam ping ratio com pared to the other m ethods. This m eans that PSS and SVC con­
trollers optim ized by hCSC-PS are capable of providing better dam ping to the LFOs. 
The dam ping ratio is a dim ensionless param eter w hich describes how  an oscillating 
com es to rest. The dam ping ratio describes how rapidly the am plitude of a v ibrat­
ing system  decays w ith respect to tim e. By increasing the system  dam ping ratio, the 
forced oscillation am plitude can be reduced. The dam ping ratio of the oscillation is 
defined as:

£
—a

V o 2
(12)

Table 10. Optimal parameters obtained by SCA, TSA, and GSA.

Algorithm K T1 T2 T3 T4
PSS1 20.30 0.254 0.854 0.221 1.214

Coordinated by SCA PSS2 17.24 0.052 0.563 0.034 0.376

SVC 36.92 0.058 0.034 0.031 0.098

PSS1 18.24 0.021 0.267 0.181 0.276

Coordinated by TSA PSS2 26.08 0.854 0.189 0.023 1.149

SVC 18.65 0.523 0.123 0.081 0.100

PSS1 25.45 0.283 0.854 0.63 1.312

Coordinated by GSA PSS2 18.05 0.054 0.561 0.101 0.734

SVC 51.23 0.058 0.034 0.045 0.087

Table 11. Damping ratio comparison for different loading conditions.

Uncoordinated
Design

Coordinated
Design

Coordinated 
by SCA

Coordinated 
by TSA

Coordinated 
by GSA

Case 1 0.0696 0.7779 0.5654 0.5412 0.2524

Case 2 0.2868 0.8379 0.5003 0.5177 0.5215

Case 3 0.2139 0.7686 0.4538 0.4417 0.5459
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Figure 8. Fitness Convergence withhCSC-PS, GSA, TSA, GWO, SCA .
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Figure 9. Cont.
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T iin c  (s )

(c)

Figure 9. Speed deviation response for various loading conditions. (a) Normal Case under scenario 1; 
(b) Case 1 under scenario 2; (c) Case 2 under scenario 1; (d) Case 3 under scenario 2.

6. Conclusions

In this paper, a novel hybrid optimization algorithm called hCSC-PS is suggested for 
the simultaneous coordinated design of PSSs and SVC controllers in multi-machine power 
system. The proposed hCSC-PS combines two search techniques: the chaotic CSA as an 
effective global optimization, and pattern search as a robust local search method. Firstly, 
the performance comparison of the proposed hCSC-PS algorithm on a set of benchmark 
functions reveals that the proposed method outperforms the standard SCA and also other 
algorithms. Then, the problem is formulated as an optimization problem where the con­
trollers' parameters are the decision variables of the problem. The enhancement of the 
system stability is taken into account in the objective function in which the time responses 
of the speeds' deviations of machines are involved. Then, the hCSC-PS algorithm is used 
to optimize the objective function for four operating conditions (representative cases) and 
severe fault scenarios. The performance and robustness of the proposed controller are 
assessed on a power network test, frequently used in power system stability studies. Simu­
lation results showed that the proposed coordinated design of PSSs and SVC controllers 
greatly improved the damping characteristics of power system oscillations, compared to 
the individual design.

Author Contributions: Conceptualization, M.N.; methodology, M.E.; software, M.E.; validation, 
M.E., M.N. and S.A.K.; formal analysis, M.E. and S.A.K.; investigation, M.N.; resources, M.E.; data 
curation, M.E. and M.N.; writing—original draft preparation, M.E. and S.A.K.; writing—review 
and editing, M.E., S.A.K. and M.N.; visualization, M.E.; supervision, M.E.; project administration, 
M.E.; funding acquisition, M.N. All authors have read and agreed to the published version of 
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the 
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2022,14, 541 24 of 27

Appendix A

The dynamics model of power system is given by [58]:

Appendix A.1. Generator

Si =  w b (w i -  1)

wi =  M  (Pmi — Pei -  Di (w i — 1))

E qi ( Efdi (x di x'dî jidi Eqi)
Tdoi v 7

Pei vdî di +  vqiiqi

Appendix A.2. Exciter and PSS

Ef  di rp' ( KAi (vrefi vi +  uPSSî j Efd i)
TAi v 7

/ 2 2 \1/2
Vi =  [v 2 di +  v2 qij

vdi xqiiqi

vqi Eqi xdiidi

Tei Eqiiqi (xqi xdi)idiiqi

Appendix A.3. SVC- Based Controller

ref
SVC =  [ Ks[ BSVC -  uSVC) -  BSVC j / Ti

Appendix A.4. Linearized Model

AS
Aw

. / +
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Appendix B

Table A1. Nomenclature and Abbreviation.

Variables & Abbreviation Description Variables & Abbreviation Description

f(X) Fitness function dim Dimension

g(X) Inequality constraints SF Size factor

h(X) Equality constraints P ■mi Mechanical input power

X Dimensional vector of 
design variables Pei Active power

XL & X U Boundary constraints M Machine inertia

6 Rotor angle D Damping the coefficient

w Speed deviation vrefi Reference voltage

Eq Internal voltages Tdoi Open circuit field time constant

Efa Field voltages idi, Iqi
Stator currents in d- and q 

-axis circuits

u Input control parameters X Vector of state variables

tsim time of simulation y Vector of algebraic variables

N Number of machines BSVC Susceptance of SVC

M Number of operating points I Damping ratio

K Gain F1 mm
Minimum value of the

objective function

T1-T4 Time constants dim dimension

TWi Time constant of washout A 4n x 4n matrix

Xi Placement of ith solution in B 4n x m matrixthe search space

ubi Upper bounds a Control parameter

lbi Lower bounds m PSS and SVC

r3 Random number among 0 and 1 X 4n x 1 state vector
t Position of ith solution at SF Size factorxt iteration t

XBest
Best solution in 
the population PSS Power system stabilizer

ri
Random numbers in the range 

of [0, 2n] SVC Static VAR compensator

ri
Random weight of the 

best solution CSCA Chaotic sine cosine algorithm

tmax
Maximum number 

of iterations PS Pattern search

A (t) Chaotic map FACTS Flexible AC transmission systems

t Iteration number hCSC-PS Hybrid CSCA and PS

a Constant equal to 4 LFO Low frequency oscillations

W12
Speed difference response of SQP Sequential quadratic

G1—G2 programming

W13
Speed difference response of 

G1—G3
SCA Sine cosine algorithm

K1-K 6 Linearization constants Kp,Kq,KB Linearization constants
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