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an emerging crop grown in Malaysia and Indonesia 
and is regarded as a significant candidate lignocel-
lulosic fibre in biocomposites. Sugar palm fibres are 
mainly made up of cellulose, which leads to outstand-
ing mechanical properties. From a literature review, 
no comprehensive review paper has been published 
on the mechanical behaviour of sugar palm lignocel-
lulosic fibre biocomposites to provide a good source 
of literature for doing further research on this topic 
to consider them construction and building materi-
als. The present review concentrates on recent work 
on the properties of sugar palm lignocellulosic fibres, 
starches, and nanofillers and their fabrication as 
biocomposites.

Keywords  Sugar palm fibre · Thermoplastic · 
Thermoset · Mechanical properties · Biocomposites

Introduction

Natural fibres have been widely applied since early 
times. Nowadays, the implementation of natural fibres 
in composites has received global attention. Polymeric 
composites are usually made up of polymer resin rein-
forced with fibre. Natural fibres are sourced from ani-
mal parts, plants and minerals. Various lignocellulosic 
fibres, such as kenaf (Asyraf et al. 2021c), ramie (Yu 
et  al. 2009), flax (Chandrasekar et  al. 2019), hemp 
(Nayak et al. 2020), pineapple leaf (Asim et al. 2018) 
and roselle (Radzi et  al. 2019a), have been used for 

Abstract  The significant reduction in petroleum 
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from engineers and researchers because of their sus-
tainable nature and wide availability. Sugar palm is 
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numerous composite engineering applications. The 
production of lignocellulosic fibres has been progres-
sively growing, given that they are easily available and 
present great advantages in terms of eco-friendliness. 
Lignocellulosic fibre biocomposites also exhibit high 
sustainability, good formability, renewability, abun-
dance, low cost, thermal insulation properties, suf-
ficient energy requirements and safety towards health 
(Ali et  al. 2021; Roslan et  al. 2021; Asyraf et  al. 
2022c). Furthermore, lignocellulosic fibres have good 
potential in composites due to their chemical composi-
tion. They are made up of cellulose, pectin, hemicel-
luloses, lignin, waxes and water-soluble substances. 
The chemical constituents of lignocellulosic fibres 
may differ even within the same plant species. They 
highly depend on geographical factors, plant parts, 
plant growth conditions and fibre extraction technique 
(Ishak et  al. 2012; Oladele et  al. 2018; Asyraf et  al. 
2021a).

The capability of fibres depend on various fac-
tors, including the mechanical strength of fibres, 
surface topography, fibre polarity and presence of 
reactive locations (Dai 2006; Ramesh 2016). Despite 
the promising features of lignocellulosic fibres, draw-
backs, such as lack of thermal stability, lowered 
impact properties, high water absorption and strength 
degradation, are also highlighted (Asyraf et al. 2021b, 
a). As a solution to these issues, lignocellulosic fibres 
can be improved through hybridising with either syn-
thetic or other lignocellulosic fibres. Lignocellulosic 
fibres have high specific strength and low density and 
are highly valuable in several industrial applications, 
such as civil construction (Amir et  al. 2021), safety 
equipment (Asyraf et  al. 2020b), packaging (Ilyas 
et  al. 2020) and household products (Mazani et  al. 
2019).

Sugar palm fibres (SPFs) are increasingly well-
known throughout the world, and considerable 
research has been conducted and contributed to the 
progress of green technology for automotive, sports, 
food packaging and furniture industries (Mansor et al. 
2014; Pil et al. 2016; Yusup et al. 2019; Asyraf et al. 
2022b). SPFs grasp much attention owing to their 
potential as polymer reinforcements in the biocompos-
ite industry. Various researchers have demonstrated 
the higher mechanical performance of sugar palm 
biocomposites than that of other types of lignocellu-
losic fibre polymer composites; hence, they are suit-
able for high-structural performance lignocellulosic 

fibre-reinforced polymer biocomposites (Ishak et  al. 
2011). SPFs as reinforcement phases are prominent 
materials for conventional products, such as brushes, 
brooms and roofs (Ishak et al. 2013). Sugar palm bio-
composites can eventually replace petroleum-based 
composite materials in various known industrial 
applications, such as cross arms in transmission tow-
ers (Asyraf et al. 2022a), body armour (Nurazzi et al. 
2021b), tissue engineering (Sharma et al. 2021), auto-
motive components (Azammi et al. 2018).

Recently, available review papers have been report-
ing more on mechanical performance of general fibre-
reinforced polymer composites with different types 
of fibre reinforcement. However, these review papers 
are lacking in comprehensive information, especially 
on sugar palm biocomposites. Therefore, this review 
article focuses on the findings of mechanical analyses 
such as tensile, flexural, and impact tests to measure 
various sugar palm biocomposites. This comprehen-
sive review also apprises the recent works on the 
thermal properties of SPFs and SPF biocomposites 
for various applications in different sectors. This 
review is also expected to gather the information on 
the mechanical behaviour of SPF-reinforced polymer 
composites with numerous influential factors, such as 
fibre loading, fibre sequence with the use of two or 
more fibres, polymer resins, and fibre modifications. 
Thus, sugar palm biocomposites are proposed to be 
used as innovative environmental, agricultural, manu-
facturing, and consumer products, which could pro-
mote the green technology.

Sugar palm and its current commercial products

Sugar palm, a tall tree (8–15  m high in average) 
named Arenga pinnata, belongs to the subfamily of 
Arecoideae. The tribe of Caryoteae is widely grown 
in humid parts of the Asian tropics at the elevation 
from 700 to 1200  m with an annual temperature of 
19–27  °C in areas with rainfall of 500–1200  cm, 
from South Asia to South-East Asia and from Taiwan 
to the Philippines, Indonesia, Papua New Guinea, 
India, North Australia, Malaysia, Thailand, Burma 
and Vietnam (Sahari et al. 2012b; Ishak et al. 2013; 
Muda and Awal 2021). It is a natural forest species 
which can reach maturity within 10–12  years, with 
150 local names, such as A. pinnata, areng palm, 
black fibre palm, gomuti palm, aren, irok, bagot and 
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kaong (Sahari et al. 2012b; Sanyang et al. 2016a). In 
Malaysia, it is known as either enau or kabung, which 
can be found widely along the rivers and bushes in 
the rural areas of Bruas-Parit (Perak), Raub (Pahang), 
Jasin (Melaka) and Kuala Pilah (Negeri Sembilan), 
with approximately 809  ha plantation land area in 
Tawau (Sabah) and 50  ha sugar palm plantation in 
Benta (Pahang) (Sanyang et al. 2016a; Huzaifah et al. 
2017). Figure 1 shows a sugar palm tree.

A sugar palm tree is classified as one of the most 
versatile multipurpose trees amongst more than 3000 
palm species of the tropics, given that almost all parts 
of the tree can be used for various purposes and for 
making numerous local products; hence, they have 
economic value for the people in rural areas (Sahari 
et al. 2012b; Ishak et al. 2013; Sanyang et al. 2016a; 
Azhar et  al. 2019). The products from a sugar palm 
tree can be divided into four groups: fibres (all fibre-
based products), trunks (starches), flowers (sap for 
making sugar) and fruit. Twelve products based on 

sugar palm trees, namely, fibres, starches, roofs, 
ropes, brooms, brushes, bottle brushes, vinegar, fruits, 
liquid sugar, refined sugar and block sugar, have been 
developed (Sapuan 2018). The main product from a 
sugar palm tree is sap, traditional sweet cold drink 
(known as nira enau), which is collected from male 
flower bunches (locally called nira) (Sapuan 2018; 
Azhar et al. 2019). Several products can be produced 
from sap, including sugar palm block (known as gula 
enau), sugar palm syrup, fine sugar, vinegar (using a 
fermentation process) and bioethanol (used as a raw 
material for the production of various products, such 
as chemical products, solvents, pharmaceuticals, 
cosmetics, medicines and beverages) (Sahari et  al. 
2012b; Ishak et  al. 2013; Sapuan 2018). Four litres 
to five litres of sap can be collected from each bunch 
twice a day, depending on the fertility of the trees and 
the number of male bunches present in a tree (Sap-
uan 2018). Sugar palm can produce sugar 2–4 times 
higher than sugarcane from its sap (Terryana et  al. 
2020). Palm sugar is believed to be an alternative 
sweetener and a more nutritious sugar compared with 
sugarcane, considering that palm sugar usually does 
not undergo any purification process or at least has no 
synthetic chemical to bleach the colour, resulting in a 
sugar with potential nutritional benefits due to phy-
tochemical compounds, such as polyphenols (Victor 
and Orsat 2018). A sugar palm tree bears fruit (has 
an oval shape, spikes and a clear or white colour) that 
can be processed for food and is traditionally named 
beluluk, buah kabong or kolang kaling amongst the 
Malaysian in accordance with certain areas. This fruit 
is one of the popular side dishes and desserts in the 
Malay community, and it is widely used in the food 
industry (Sahari et al. 2012b; Sapuan 2018).

SPFs and Sugar Palm Starch (SPS) are the two 
products with registered trademarks (Sapuan 2018). 
SPFs can compete with most lignocellulosic fibres in 
the market, such as coir, oil palm, kenaf, cotton and 
jute, owing to their outstanding mechanical properties 
(Sanyang et al. 2016a). They have several names, such 
as aren, gomuti and black, and are locally known as 
ijuk fibres (Hrabĕl et al. 2018). Each sugar palm tree 
can yield approximately 15 kg of ijuk fibres (Sahari 
et  al. 2012b; Sapuan 2018). These fibres are tradi-
tionally utilised by the local people to make brooms, 
brushes, filters, door mats, cushions, ropes, roofing 
materials and handicrafts for making kopiah (Sahari 
et al. 2012b; Sanyang et al. 2016a; Hrabĕl et al. 2018; 

Fig. 1   Sugar palm tree (Bachtiar et  al. 2011a, b). Creative 
Common CC BY license
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Sapuan 2018). SPFs are extremely durable, even 
when in contact with seawater. As a result, they have 
a great potential to be used as reinforcement materi-
als in the fabrication of biocomposites (Sanyang et al. 
2016a; Huzaifah et al. 2017; Sapuan 2018). Currently, 
several SPF biocomposite products are being devel-
oped, such as a hybrid unsaturated polyester (UPE) 
composite boat made from the combination of SPFs 
and glass fibre, which reduces the weight of the boat 
by up to 50% due to the utilisation of SPFs in place 
of glass fibre (Fig.  2) (Ishak et  al. 2013; Sanyang 
et al. 2016a). Sugar palm is also a potential source of 
starch (usually obtained from the core of a nonpro-
ductive matured sugar palm tree’s trunk) for develop-
ing biodegradable polymers (Ishak et  al. 2013; San-
yang et al. 2016a). One sugar palm tree can produce 
50–100  kg of starch (Sahari et  al. 2012b; Sanyang 
et  al. 2017). The products that could be made from 
these materials, such as flushable undergarment lin-
ers, shopping bags, packaging films and medical 
delivery devices and systems, present high potential 
(Sanyang et al. 2017; Ilyas et al. 2018). SPS is con-
sidered a green material and can be utilised to make 
green composites when reinforced with lignocellu-
losic fibres (Sahari et al. 2012b; Huzaifah et al. 2017; 
Ilyas et al. 2018). Various advantages of using SPFs 
and SPS in green composites have been reported; the 
advantages include decreasing the dependence on 
petroleum products, reducing the negative environ-
mental impact of synthetic materials and developing 
sugar palm as a new industrial crop in near future in 
tropical South-East Asian countries, such as Malay-
sia, resulting in improved socioeconomic status of 
rural people by providing further job opportunities 
(Sanyang et al. 2016a).

A sugar palm tree has many other traditional 
applications. The young fresh leaves have been 

used in salad, cooked for soup, fried or transformed 
into cigarette wrappings (Sahari et  al. 2012b; Muda 
and Awal 2021). Sugar palm has been used in folk 
medicine. Palm sap can be used for indigestion, 
rashes and pulmonary irritation; in the Philippines, 
fermented palm sap is consumed to avoid tuberculosis 
(Sahari et  al. 2012b). Sugar palm roots are believed 
to break down kidney and bladder stones when boiled 
with water (Sahari et  al. 2012b; Muda and Awal 
2021).

SPF

Sugar palm is locally well-known as ijuk and can be 
found in Malaysia and Indonesia. SPFs are presently 
considered waste products from sugar palm culti-
vation, in which sugar palm is a multipurpose plant 
grown in these countries. Owing to the large demands 
from consumers, SPFs have been amongst the major 
products from a sugar palm tree. The fibres are ver-
satile and can be applied to a wide range of prod-
ucts, including ropes, roofs, brushes, brooms, pul-
truded components, mats and hammocks, as shown 
in Fig.  3. A sugar palm tree produces fibre before 
flowering after approximately 5 years of plantation. 
In general, the SPFs are black in colour and can have 
a length of up to 1.19 m. The diameter of SPF is usu-
ally 94–370 µm, with an overall density of 1.26 kg/m3 
(Bachtiar et al. 2010b). The fibre’s strength is affected 
by altitude and the age of the sugar palm tree. The 
SPFs can be heat resistant at a maximum of 150 °C, 
with a flash point at 200 °C (Sastra et al. 2006). After 
harvesting the SPFs from its tree, it can be graded 
with five classes from A to E depending on its length 
and thickness (Ishak et  al. 2013). Bachtiar et  al. 
(2011a, b) reported the tensile strength, tensile modu-
lus and elongation at break of SPF to be 190.29 MPa, 
3.69 GPa and 19.6%, respectively.

SPFs are resilience towards seawater, and it could be 
embedded in marine applications (Ishak et  al. 2009). 
Ishak et al. (2011) characterised the tensile properties 
of SPF from different heights of sugar palm trees (1, 
3, 5, 7, 9, 11, 13 and 15 m). The outcomes showed that 
the fibre from the upper part of the tree (palm frond) 
exhibited higher tensile modulus and strength than 
that from the bottom part. Moreover, the elongation at 
break and toughness of the lignocellulosic fibre seemed 
to increase with the tree height. Table  1 displays the 

Fig. 2   Sugar palm biocomposite boat (Ishak et  al. 2013). 
Reproduced with permission from Ishak et al. 2013. Copyright 
2013 Elsevier
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mechanical properties of SPF from various parts of 
sugar palm trees. According to Sahari et  al. (2012a, 
b), the tensile properties of frond SPF were the high-
est, followed by those of bunch, ijuk and trunk fibres. 
These findings were influenced by their cellulose con-
tents. The cellulose component provided strength and 

stability to the cell walls to maintain the structural 
integrity of the fibres. The different heights of trees 
led to a difference in their chemical compositions. The 
aging process of wood-based materials is also affected 
by the chemical composition of the fibre (Asyraf et al. 
2020a; Alias et  al. 2021). The fibre located at 1  m 
height from the ground contains many impurities, such 
as silica, which indicated a higher ash content (30.92%) 
compared with that of the fibres obtained from the 
tree’s upper parts (2.06–5.84%). This observation can 
be found from the FT-IR analysis conducted by Ishak 
et al. (2010). Owing to its remarkably high ash content, 
the fibre from 1 m height had lower moisture content 
(5.36%) than other fibres (3–15 m height), which were 
in the range of 7.72–8.7%. Table 2 displays the chemi-
cal composition of SPF depending on the heights of 
sugar palm trees.

Fig. 3   The products of SPF

Table 1   Tensile properties of SPFs from different parts of 
sugar palm tree (Sahari et al. 2012a, 2013)

Fibre Tensile strength 
(MPa)

Tensile modulus 
(GPa)

Elongation 
at break (%)

Ijuk 276.6 5.9 22.3
Trunk 198.3 3.1 29.7
Bunch 365.1 8.6 12.5
Frond 421.4 10.4 9.8
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In terms of thermogravimetric (TGA) analysis, the 
SPFs from various heights of sugar palm trees were 
characterised by Bachtiar et  al. (2012). From their 
findings, four phases of decomposition of the fibres 
started with the evaporation of moisture, followed 
by the breakdown of hemicelluloses, cellulose and 
lignin, and the last component left was their ash. The 
thermal degradation of these components was found 
in the ranges of 45–123 °C, 210–300 °C, 300–400 °C, 
160–900 °C and 1723 °C. The TGA curves displayed 
that the fibre with 1 m height from ground had higher 
thermal stability than fibres of 3–15 m due to the high 
ash content.

Limitations of SPFs

SPFs are classified as a natural lignocellulosic fibre, 
mainly composed of cellulose, hemicellulose, lignin 
and ash, like other natural fibres such as kenaf. It 
is composed of approximately 37.3–66.48% cel-
lulose. The cellulose component allows the fibre to 
have good mechanical performance, as shown in 
Table  3.  Moreover, the relative amount of cellulose 
in SPFs is lower than that of other established natural 
fibres, as displayed in Table 4. In this case, cellulose 
acts as a vital structural component in natural fibres to 
retain durability and structural integrity (Chen et  al. 
2014).

Another major drawback of SPF is that it has a 
high content of lignin and ash. This drawback leads 
to the lack of compatibility of the fibre when reinforc-
ing in a polymer matrix because it reduces the reactive 
area to bind the composites (Nurazzi et al. 2021a). The 
improper compatibility of fibre/matrix in composites 

would allow laminate crack propagation due to the air 
voids between the fibre interface and matrix, which con-
sequently reduces the impact and tensile properties of 
the composites (Azman et al. 2021). A comprehensive 
action, such as fibre treatments, has to be taken on SPFs 
to increase the cellulose content of the fibre, remove 
impurities and enhance its mechanical properties.

On the basis of the preceding discussion, the 
mechanical performance of SPF composites presents 
several issues. Up to this date, no comprehensive 
review paper has been published on the properties 
of SPFs and SPF biocomposites, as well, as well as 
the factors which influence their mechanical perfor-
mance. Thus, further elaboration on the factors affect-
ing the mechanical behaviour of SPFs and SPF com-
posites based on recent findings is provided in the 
subsequent section.

Table 2   Chemical 
composition of SPFs from 
various heights of sugar 
palm tree (Ishak et al. 2010)

Height Cellulose (%) Hemi-
cellulose 
(%)

Lignin (%) Extractive (%) Ash (%) Moisture 
content (%)

1 37.3 4.71 17.93 2.49 30.92 5.36
3 49.36 6.11 18.941 2.019 14.04 8.64
5 55.28 7.36 20.89 1.71 5.8 7.92
7 56.55 7.68 20.45 1.41 4.23 8.37
9 56.8 7.93 23.6 1.35 2.06 8.19
11 55.75 7.92 22.96 1.48 4.09 7.72
13 54.42 7.89 24.27 1.21 3.98 8.12
15 53.41 7.89 24.92 0.85 4.27 8.7

Table 3   Comparison of mechanical properties with other 
common natural fibres (Sanyang et al. 2016a)

Natural fibre Tensile 
strength 
(MPa)

Tensile 
modulus 
(GPa)

Elongation 
at break 
(%)

Sugar palm (frond) 421.4 10.4 9.8
Henequen 430–580 – 3–4.7
Ramie 500 44 2
Sisal 600–700 38 2–3
Hemp 550–900 70 1.6
Abaca 980 – –
Flax 800–1500 60–80 1.2–1.6
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Key issues affecting mechanical properties of SPF 
reinforced polymer composites

Background: issues and problems of SPFs

Cellulose and lignin are the two main building blocks 
in lignocellulosic fibres. The cellulose component 
acts as structural support and offers mechanical per-
formance for the fibres. The mechanical properties 
of lignocellulosic fibres depend on various aspects, 
including the volume fraction of fibre, fibre length, 
fibre orientation, and surface compatibility between 
the fibre and the matrix. Previous literature reported 
that the flexural and tensile properties of sugar palm 
biocomposite highly depend on the sugar palm load-
ing (Maisara et  al. 2019). Furthermore, the fibre/
matrix adhesion, volume fraction of fibre, and fibre 

size play vital roles in determining the biocomposite 
strength, stiffness and toughness (Johari et al. 2020).

The major issue associated with lignocellulosic 
fibre biocomposites in terms of mechanical proper-
ties is the lack of compatibility between the fibre and 
matrix (Danso 2017; Rashid et  al. 2017a; Ayu et  al. 
2020). Many literature found that most natural fibre-
reinforced polymer composites have several issues 
such as high moisture absorption, poor fibre/matrix 
bonding adhesion, and low melting point (Kuan 
et  al. 2021). The main issue of SPF-reinforced com-
posites is interfacial bonding, which still needs to be 
clarified further. Interfacial bonding can be divided 
into interdiffusion bonding, mechanical interlock-
ing, electrostatic bonding, and chemical bonding as 
shown Fig. 4. Due to low compatibility between SPFs 
and their matrix, the mechanical performance of the 

Table 4   Chemical composition of SPFs in comparison with other natural fibres (Mukhtar et al. 2016)

Natural fibre Cellulose (%) Hemi-cellulose (%) Lignin (%) Moisture 
content (%)

Extractive (%) Ash (%)

Sugar palm 37.5–66.5 4.7–20.6 17.9–46.4 1.5–8.7 0.85–6.3 2.1–30.9
Ramie 68.6–76.2 5.0–16.7 0.6–0.7 – – 8.0
Sisal 47.0–78.0 10.0–24.0 7.0–11.0 – – 0.6–1.0
Hemp 57.0–77.0 14.0–22.4 3.7–13.0 – – 10.8
Abaca 56.0–63.0 15.0–17.0 7.0–9.0 – – 3.0
Flax 64.1–73.8 11.0–16.7 2.0–2.9 7.9–10.0 – –

Fig. 4   Types of interfacial 
bonding: a molecular inter 
diffusion, b electrostatic 
bonding, c mechanical 
interlocking, and d chemi-
cal bonding (Latif et al. 
2019)
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final composites is significantly reduced. The non-
polar nature of lignocellulosic fibre causes the lack 
of fibre dispersion, inadequate adhesion, and decline 
in the fibre performance. Consequently, it is likely to 
agglomerate in the matrix due to the hydrogen bonds 
of the hydroxyl groups, resulting in poor fibre disper-
sion within the matrix and poor fibre/matrix interac-
tion (Shesan et  al. 2019). Since the polymer matrix 
exhibits a nonpolar hydrophobic property, the matrix 
exacerbates the dispersity of the polar fibre, which is 
hydrophilic by nature. The main hindrances in pure 
lignocellulosic fibre biocomposites are the scarcity 
of interfacial adhesion, low melting point, and poor 
resistance to moisture uptake, leading to the initiation 
of composite microcracks. The microcracks lead to 
the reduce in mechanical performance, thereby result-
ing in the less attractive use of lignocellulosic fibre-
reinforced biocomposites (Hamidon et  al. 2019). For 
example, Chaiwong et  al. (2019) reported the high-
est tensile strength in 5% NaOH-treated OPF–wheat 
gluten green composites, which shows a good inter-
facial adhesion between the lignocellulosic fibre and 
the biopolymer matrix. The effectiveness of compos-
ites reinforced with lignocellulosic fibres relies on the 
fibre–polymer matrix interface and the tendency of 
transferable stress to the fibres from the matrix.

Pretreatments either using chemical or physical 
approaches usually shows fine perfection in tensile 
and compression properties due to the enhanced inter-
facial linkage or fibre–matrix adhesion. In this case, 
the lead contributor towards enhanced composite 
strength and toughness is the fibre/matrix adhesion. 
The effective stress distribution of fibre and matrix 
would regulate the brittleness and toughness of com-
posites. An optimum volume ratio of fibre would also 
significantly contribute to maximising the mechani-
cal properties due to high aspect ratio that effectively 
transfers stress to the matrix (Neoh et al. 2011). Sci-
entists have stated that manufacturing and processing 
techniques allow remarkable mechanical behaviour of 
lignocellulosic fibre biocomposites. Chemical treat-
ment techniques for lignocellulosic fibres help clean 
the fibre surface, elevate the surface roughness of 
fibres, and lessen the moisture absorption process 
(Mustafa and Dauda 2014). Chemical modifications 
on lignocellulosic fibre surface include acetylation, 
peroxide treatment, graft copolymerisation, benzoyla-
tion, peroxide treatment, etherification, permanganate 

treatment, mercerisation, and use of coupling agents 
such as silane (Aisyah et al. 2021).

Recent literatures on effect of fibre treatments of 
SPFs in its polymer matrix

A number of works have recognised that chemically 
treated SPFs possess significantly enhanced mechani-
cal properties in contrast to untreated SPFs. Most 
workers have discovered that their SEM micrographs 
show that treatment aids the fibre by removing the 
outer layers that contain impurities (ash, wax and pec-
tin) and less nodes. Researchers have also proposed 
significant improvement in the tensile, flexural and 
impact strengths and stiffness of SPF biocomposites 
by using several types of polymers (Rashid et al. 2016; 
Izwan et al. 2020; Mukhtar et al. 2020). Several fibre 
treatments on SPFs, including seawater treatment, 
mercerisation, benzoylation and combined treatments, 
were conducted by various researchers.

Seawater treatment is considered a low-cost and 
efficient treatment technique to improve natural fibre 
surfaces. It is commonly done by soaking the fibres 
in seawater for a couple of days. Seawater is typically 
composed of 0.035% salt. Many researchers have 
reported that this treatment removes the outer layer 
of hemicellulose and pectin, which later improves 
the fibre/matrix interaction. Ishak et  al. (2009) dis-
covered that the flexural and impact strengths for 30 
wt% SPF loading of seawater-treated sugar palm/
epoxy biocomposites were improved by 7.35 and 
5.06%, respectively. Maisara et  al. (2019) evaluated 
the influence of fibre length and seawater treatment 
on the mechanical behaviour of sugar palm/UPE bio-
composites. They demonstrated that treated SPF com-
posites with 15  cm fibre length presented increased 
tensile and flexural strengths at 18.33 MPa.

Alkaline treatment or mercerisation is a typical 
method to treat natural fibres, especially SPFs. Owing 
to its simplicity and effectiveness, it has become a 
popular approach in treating natural fibres by using a 
sodium hydroxide aqueous solution to achieve good 
compatibility of fibre/matrix and decrease compos-
ites’ moisture absorption. This treatment is useful 
in reducing the water uptake rate and enhancing the 
SPF/matrix interfacial bonding (Mohd Nurazzi et al. 
2017; Syaqira et al. 2020). This modification is highly 
effective in improving the topography, mechanical 
properties and thermal degradation of SPFs. Many 
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studies have reported surface modification of SPFs 
via alkali treatment. Table  5 summarises the condi-
tions used by various researchers for mercerisation of 
SPFs.

Bachtiar et al. (2009) explored the evident impacts 
of mercerisation of SPFs on biocomposite properties 
by using a hand lay-up method. The impact strength 
of SPF/epoxy biocomposites increased by 28.69% via 
0.5 M NaOH treatment of SPFs for 8 h. Another study 
has illustrated that the interfacial adhesion between 
fibres and matrix directly affects the tensile proper-
ties of lignocellulosic fibre-reinforced polymers (ther-
moplastics and thermosets). Researchers have found 
that the alkalisation treatment with sodium hydroxide 
improves the mechanical properties of SPFs com-
pared with those of untreated SPFs, with an optimum 
value of 6% NaOH showing good results for chemical 
treatment methods (Mohammed et  al. 2016; Atiqah 
et al. 2018c). Moreover, the tensile properties of sugar 
fibres are affected by NaOH solution immersion time 
and concentration rate (Bachtiar et al. 2010b, 2014). 
Treatment of SPFs with 6% NaOH would aid the lig-
nocellulosic fibre to split its bundles into very fine 
fibres, resulting in effective entrance of polymeric 
resin and causing high intertwining of the fibres in 
the matrix (Atiqah et al. 2019). This condition leads 
to improved interfacial adhesion, which promotes 
enhanced fibre/matrix adhesion.

Silane treatment of fibres is usually conducted 
through immersion of 2 wt% silane solution for sev-
eral hours. The weight percentage of fibres, dissolved 
for hydrolysis in a mixture of methanol–water (90/10 
w/w), was considered in silane treatment. After the 
treatment, the fibres were thoroughly cleaned using 
distilled water and oven-dried at 60  °C for 72  h to 
remove any moisture effect from the fibres (Atiqah 
et  al. 2017). A lab-scale experiment carried out by 
Atiqah et  al. (2018a) showed that a silane-treated 
SPF/TPU composite exhibited better tensile strength 
than alkali-treated, alkali–silane-treated and untreated 

SPF/TPU composites. The microsurface of the silane-
treated SPFs was roughened to induce mechanical 
interlocking with the TPU matrix.

In addition to the above-mentioned treatments, 
previous researchers have also treated SPFs with 
a sodium bicarbonate solution (Mukhtar et  al. 
2020). The researchers prepared a solution with 
10 wt% bicarbonate. Later, they soaked the fibres 
in the solution for 5  days. Afterwards, the fibres 
were washed completely with distilled water to 
remove excess bicarbonate and oven-dried for 24  h. 
Mukhtar et  al. (2019) demonstrated that the tensile 
properties of sugar palm/polypropylene composites 
were increased via sodium bicarbonate treatment. 
The improvement in tensile performance was said to 
be due to the sodium bicarbonate-treated SPFs that 
removed the excess impurities on the fibre, and the 
sodium-treated SPF composite recorded 58.76  MPa 
against 53.01 MPa for the untreated SPF composite.

Benzoylation is carried out after alkaline treatment 
by using benzoyl chloride. The process starts with 
a pretreatment, including cleaning and drying 
actions within several days, followed by using 18% 
NaOH solution on the fibre for 30  min. Later, the 
treated fibre was suspended in 10% NaOH solution 
and agitated well with 50  ml of benzoyl chloride 
for 15  min. Subsequently, the fibre was removed 
and washed with distilled water (Wang et  al. 2003, 
2007). A study has indicated the mechanisms that 
enhance the interfacial adhesion of sugar palm–epoxy 
biocomposites by employing benzoyl chloride-treated 
SPF-reinforced epoxy biocomposites (Safri et  al. 
2020). In sum, chemical treatment of lignocellulosic 
fibres considerably upgrades the tensile strength 
and modulus of formulated sugar palm–epoxy 
biocomposites (Safri et al. 2020).

Mohammed et al. (2018) evaluated the influence of 
microwave treatment with mercerisation at 6% NaOH 
on SPF/polyurethane biocomposites. They determined 
that the 70 °C microwave treatment allowed enhanced 
interfacial adhesion between the lignocellulosic fibre 
and thermoset matrix, which subsequently led to 
increases in Young’s modulus and tensile strength 
up to certain maximum values of the sugar palm bio-
composites. Other researchers have reported that the 
mechanical and interfacial bonding properties of sugar 
palm/polyurethane biocomposites are enhanced by 
modification of sugar palm nonwoven by alkali-silane 
treatment (Atiqah et al. 2018a). The nonwoven-treated 

Table 5   Alkali treatment of SPFs from previous studies

Concentration Soaking time References

4 and 6% 1 h Bachtiar et al. (2013)
0.25 M and 0.5 M 1, 4, and 8 h Bachtiar et al. (2008)
6% 3 h Atiqah et al. (2018a)
5 and 10% 2 h Ticoalu et al. (2014)
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sugar palm–polyurethane biocomposites have favour-
able and better properties compared with a single 
treatment (6% NaOH and 2% silane) fibre composite 
prepared by the same compression moulding. The 
silane treatment allows to roughen the fibre surface, 
which later introduces mechanical interlocking (Xie 
et  al. 2010; Ramamoorthy et  al. 2015; Atiqah et  al. 
2018b). A comparison study between alkaline and 
seawater treatments on SPF/phenolic biocomposites 
was conducted by Bushra et al. (Rashid et al. 2017b). 
They identified that 0.5% NaOH treatment improved 
the interfacial bonding and wettability of the fibre 
compared with seawater treatment because the alka-
line treatment dissolved certain amount of lignin and 
hemicellulose and removed wax, oils and impurities 
(El-Shekeil et al. 2012).

Mechanical properties of SPF biocomposites

Several researchers and scientists have documented 
reviews on SPFs and their properties (Sahari et  al. 
2012a; Ishak et  al. 2013). However, these articles 
provide limited facts on the mechanical performance 
of SPF-reinforced polymer biocomposites until 2017 
(Mukhtar et al. 2016; Sanyang et al. 2016a; Huzaifah 
et  al. 2017). Thus, the present review covers more 
comprehensive information on the mechanical proper-
ties of sugar palm biocomposites and recent works on 
the mechanical behaviour of SPF biocomposites with 
up-to-date data until 2021. Table  6 demonstrates the 
latest works conducted by various researchers on SPF-
reinforced polymer biocomposites.

SPF‑reinforced thermoset polymer composites

Various studies have been conducted on sugar palm-
reinforced thermoset polymer biocomposites. A team 
of researchers led by Ammar et  al. (2019) demon-
strated that fibre arrangement plays vital roles in the 
mechanical performance of SPF-reinforced vinyl ester 
(VE) biocomposites. They indicated that the flexural 
strength and stiffness of unidirectional fibre compos-
ites showed the highest values compared with ± 45° 
and 0/90° woven fibre composites. Unidirectional 
SPF-reinforced VE biocomposites were fabricated 
through a hand lay-up technique, showing high bend-
ing strength due to tension and compression loads 
from flexural load aligned with the direction of fibres. 

Figure 5 shows the flaws, such as rupture matrix and 
vacant slots, of ± 45° woven fibre VE composites.

Huzaifah et  al. (2019a) demonstrated that the 
high fibre loading of SPFs in a sugar palm/VE 
biocomposite resulted in decreased flexural and 
tensile properties. From their result, 30 wt% SPF 
loading showed the highest impact strength compared 
with other composition because the fibre loading was 
sufficient to absorb impact energy. Table  7 displays 
the influence of fibre weight on the impact properties 
of SPF-reinforced VE biocomposites. Huzaifah et al. 
(2019b) discovered that a long soil burial period 
reduced the flexural, impact and tensile impact 
strengths of composites. The decrease in mechanical 
strength might be due to that the fibre induced 
wettability caused by moisture absorption and the 
poor interfacial adhesion of fibre/matrix.

Moreover, numerous studies have evaluated the 
effect of treated SPFs on its thermoset biocomposites. 
Bachtiar et  al. (2009, 2010a) observed that epoxy 
reinforced by treated SPFs improved the flexural 
and impact strengths by approximately 24.41% 
and 12.85% of those of untreated fibre composites, 
respectively. The strong adhesion at the interface 
of the fibres via chemical treatments contributed 
enhanced permeability, which inhibited detachment, 
debonding or pull-out of fibres (Bledzki et al. 2009; 
Amir et al. 2019).

An investigation has elaborated that 30 wt% of 
fibre loading with unidirectional fibre is sufficient for 
a sugar palm/UPE biocomposite (Nurazzi et al. 2020) 
having tensile properties favourably similar to those 
of the most widely used 50 wt% fibre of unidirectional 
flax-reinforced UPE composites prepared using the 
same compression moulding technique (Marais et al. 
2005).

Many experiments have been performed on sugar 
palm-reinforced thermosets biocomposites in differ-
ent modification, including inclusion of additive par-
ticles and physical and chemical treatments of SPFs. 
Incorporation of additives, such as silica aerogel and 
nanoclay powders, would compatibilise the polymer 
matrix and the cellulosic fibre to allow good adhe-
sion, increase the activation surface area, decrease 
the length of fibre breakage and pull-out, and increase 
the degree of roughness in the matrix (Avella et  al. 
2008). For instance, Shahroze et al. (2018) studied the 
impact of nanoclay addition on the mechanical prop-
erties of SPF/UPE biocomposites. They concluded 



6503Cellulose (2022) 29:6493–6516	

1 3
Vol.: (0123456789)

Ta
bl

e 
6  

R
ep

or
ts

 o
n 

m
ec

ha
ni

ca
l p

ro
pe

rti
es

 o
f s

ug
ar

 p
al

m
 b

io
co

m
po

si
te

s

Fi
br

e
Fi

br
e 

co
nd

iti
on

M
at

rix
M

at
rix

 ty
pe

Tr
ea

tm
en

ts
/ 

C
on

di
tio

ni
ng

Fl
ex

ur
al

Te
ns

ile
Im

pa
ct

Re
fe

re
nc

es

St
re

ng
th

 
(M

Pa
)

M
od

ul
us

 
(G

Pa
)

St
re

ng
th

 
(M

Pa
)

M
od

ul
us

 
(G

Pa
)

St
re

ng
th

 (k
J/

m
2 )

Su
ga

r p
al

m
10

 w
t%

 (l
on

g 
fib

re
)

V
in

yl
 e

ste
r

Th
er

m
o-

se
t

–
93

.0
8

33
28

15
.4

1
25

01
–

A
m

m
ar

 e
t a

l. 
(2

01
9)

Ep
ox

y
0.

5M
 o

f 
N

aO
H

 a
t 

8h
rs

90
.6

8
46

72
41

.8
8

37
80

6.
0

B
ac

ht
ia

r e
t a

l. 
(2

00
8,

 2
00

9,
 

20
10

a)
V

in
yl

 e
ste

r
–

48
.5

22
94

.2
25

.1
25

88
4.

5
H

uz
ai

fa
h 

et
 a

l. 
(2

01
9a

)
20

0 
hr

s o
f s

oi
l 

bu
ria

l
18

.0
1

–
14

.2
2

–
8.

87
H

uz
ai

fa
h 

et
 a

l. 
(2

01
9b

)
30

 w
t%

 
(p

ow
de

r 
fib

re
)

Ph
en

ol
ic

0.
5%

 o
f N

aO
H

 
at

 4
 h

rs
92

.5
9

5.
17

–
–

7.
28

R
as

hi
d 

et
 a

l. 
(2

01
7b

)

30
 w

t%
 (l

on
g 

fib
re

)
Ep

ox
y

Se
aw

at
er

 3
0 

da
ys

54
.2

2
–

–
–

18
.4

6
Is

ha
k 

et
 a

l. 
(2

00
9)

-
U

ns
at

ur
at

ed
 

po
ly

es
te

r
4%

 o
f n

an
o-

cl
ay

68
.1

2
3.

78
8

21
.9

1
3.

68
3

6.
91

9
Sh

ah
ro

ze
 e

t a
l. 

(2
01

8)
30

 w
t%

 (m
at

 
fib

re
)

U
ns

at
ur

at
ed

 
po

ly
es

te
r

3%
 o

f s
ili

ca
 

ae
ro

ge
l

56
.6

3.
00

19
.7

3.
5

68
.3

Sh
ah

ro
ze

 e
t a

l. 
(2

01
9)

30
 w

t%
 (l

on
g 

fib
re

 w
ith

 
15

 c
m

 fi
br

e 
le

ng
th

)

U
ns

at
ur

at
ed

 
po

ly
es

te
r

Se
aw

at
er

 fo
r 

30
 d

ay
s

80
.8

0
–

18
.3

3
4.

25
2

–
M

ai
sa

ra
 e

t a
l. 

(2
01

9)
–

97
.5

6.
9

42
.0

0
4.

43
–

N
ur

az
zi

 e
t a

l. 
(2

02
0)

30
w

t%
 (m

at
 

fib
re

)
Po

ly
-

pr
op

yl
en

e
Th

er
m

o-
pl

as
tic

s
10

w
t%

 o
f 

so
di

um
 

bi
ca

rb
on

at
e 

so
lu

tio
n 

fo
r 

5 
da

ys

60
2.

47
58

.7
6

2.
06

17
.6

1
M

uk
ht

ar
 e

t a
l. 

(2
01

9)

30
w

t%
 

(p
ow

de
r 

fib
re

)

Po
ly

-
pr

op
yl

en
e

2 
w

t%
 o

f 
si

la
ne

 fo
r 3

 h
–

–
23

.0
0

1.
09

6
–

 Z
ah

ar
i e

t a
l. 

(2
01

5)

30
 w

t%
 (S

ho
rt 

fib
re

)
PV

D
F

–
52

.4
9

2.
15

1
23

.0
6

2.
24

3
–

A
la

ae
dd

in
 e

t a
l. 

(2
01

9)
30

 w
t%

 (L
on

g 
fib

re
)

H
IP

S
4%

 o
f N

aO
H

–
–

32
.9

4
1.

35
4

–
B

ac
ht

ia
r e

t a
l. 

(2
01

1a
, b

)
–

–
28

.9
1

0.
76

0
–



6504	 Cellulose (2022) 29:6493–6516

1 3
Vol:. (1234567890)

Ta
bl

e 
6  

(c
on

tin
ue

d)

Fi
br

e
Fi

br
e 

co
nd

iti
on

M
at

rix
M

at
rix

 ty
pe

Tr
ea

tm
en

ts
/ 

C
on

di
tio

ni
ng

Fl
ex

ur
al

Te
ns

ile
Im

pa
ct

Re
fe

re
nc

es

St
re

ng
th

 
(M

Pa
)

M
od

ul
us

 
(G

Pa
)

St
re

ng
th

 
(M

Pa
)

M
od

ul
us

 
(G

Pa
)

St
re

ng
th

 (k
J/

m
2 )

30
 w

t%
 (S

ho
rt 

fib
re

)
Po

ly
ur

et
ha

ne
4%

 o
f N

aO
H

 
an

d 
70

°C
 

m
ic

ro
w

av
e 

tre
at

m
en

t

–
–

18
.4

2
1.

30
7

–
M

oh
am

m
ed

 
et

 a
l. 

(2
01

8)

30
 w

t%
 (S

ho
rt 

fib
re

)
PV

B
30

%
 o

f 
se

aw
ee

d
–

–
1.

59
0.

73
–

Sy
aq

ira
 e

t a
l. 

(2
02

0)
- (

lo
ng

 fi
br

e)
Po

ly
ur

et
ha

ne
2 

w
t%

 o
f 

si
la

ne
 fo

r 3
 h

–
–

17
3.

44
10

.0
7

–
A

tiq
ah

 e
t a

l. 
(2

01
8a

)
- (

lo
ng

 fi
br

e)
Po

ly
ur

et
ha

ne
6 

w
t%

 N
aO

H
 

an
d 

2 
w

t%
 o

f 
si

la
ne

 fo
r 3

 h
 

ea
ch

–
–

14
2.

09
7.

75
–

A
tiq

ah
 e

t a
l. 

(2
01

8a
)

10
 w

t%
 (S

ho
rt 

fib
re

)
PL

A
B

io
-p

ol
ym

er
0.

25
%

 o
f 

N
aO

H
–

–
32

.5
0.

26
3

–
C

ha
lid

 a
nd

 
Pr

ab
ow

o 
(2

01
5)

–
SP

 st
ar

ch
/a

ga
r

30
%

 o
f 

se
aw

ee
d

32
.5

3.
00

22
.0

3.
25

0
5.

5
Ju

m
ai

di
n 

et
 a

l. 
(2

01
7a

)
30

 w
t%

 (S
ho

rt 
fib

re
)

Su
ga

r p
al

m
 

st
ar

ch
72

 h
 im

m
er

se
d 

in
 w

at
er

–
–

1.
75

–
9.

0
Sa

ha
ri 

et
 a

l. 
(2

01
3)

0.
5 

w
t%

 (N
an

o 
cr

ys
ta

lli
ne

 
fib

re
)

Su
ga

r p
al

m
 

st
ar

ch
/P

LA
20

%
 o

f S
P 

st
ar

ch
 

lo
ad

in
g

35
.3

8
2.

38
19

.4
5

1.
19

–
N

az
rin

 e
t a

l. 
(2

02
0)

H
IP

S 
H

ig
h 

im
pa

ct
 p

ol
ys

ty
re

ne
, P

VD
F 

Po
ly

vi
ny

lid
en

e 
Fl

uo
rid

e,
 P

VB
 P

ol
yv

in
yl

 B
ut

yr
al

; P
LA

 P
ol

y(
la

tic
) A

ci
d,

 N
aO

H
 S

od
iu

m
 h

yd
ro

xi
de

 so
lu

tio
n



6505Cellulose (2022) 29:6493–6516	

1 3
Vol.: (0123456789)

that the addition of nanoclay to SPF-reinforced UPE 
biocomposites improved the mechanical proper-
ties, and 2 wt% NC had the best flexural and impact 
strengths. The addition of the nanoclay filler, which 
filled up micropores, enhanced the topological surface 
of the composites. Shahroze et al. (2019) incorporated 
another additive, namely, silica aerogel, into SPF/UPE 
biocomposites and evaluated their mechanical perfor-
mance. They found that 3 wt% silica aerogel in 30 wt% 
SPF-reinforced 70 wt% UPE biocomposites exhibit the 
highest tensile, flexural, and impact properties. This 
finding shows that the addition of nanoclays and silica 
aerogel with optimum concentration can improve the 
mechanical performance of sugar palm biocomposites. 
In this case, the inclusion of 30 wt% silica aerogel in 
the SPF reinforced UPE composites reduces fibre pull 
out because it has higher degree of surface roughness 
as shown in Fig. 6. Subsequently, the higher degree of 
surface roughness would contribute to better mechani-
cal performance at optimum silica aerogel content in 
the SPF-reinforced UPE composites. Thus, it can be 
concluded that incorporation of additives promotes the 
sugar palm biocomposites to be implemented in engi-
neering fields, such as automotive components, aero-
space and structural applications.

SPF‑reinforced thermoplastic polymer composites

The research interest on sugar palm biocomposites 
is growing day by day. A researcher has studied 
the effect of fibre size and loading on the tensile 
properties and moisture absorption of sugar 
palm–polyvinyl butyral (Syaqira et al. 2020). A short 
sugar palm biocomposite (30 wt%) exhibited the best 
performance in terms of tensile performance and 
water uptake rate. Alaaeddin et al. (2019) determined 
that the use of short fibre led to adequate interfacial 
bonding between SPFs and polyvinylidene fluoride 
matrix. Short fibre composites exhibited outstanding 
compatibility, strength and a homogenous structure 
in the fibre/matrix. They also had good physical 
properties and excellent resistance to water 
absorption, moisture content and thickness swelling.

Zahari et  al. (2015) shows that the silane-treated 
SPFs in a polypropylene (PP) thermoplastic matrix 
recorded high tensile strength and modulus of 
23 MPa and 1.098 GPa, respectively. The study shows 
that 30 wt% SPFs is the optimum loading value to a 
reinforced thermoplastic polymer matrix, and silane 
treatment allows the fibre to have enhanced adhesion 
properties within the matrix. Figure  7a–c show that 
the untreated SPF/PP composites exhibit poor adhe-
sion between the SPFs and PP matrix. However, the 
gaps were remarkably less obvious and become nar-
rower because the SPFs were treated with silane. 
This indicates that the SPFs and PP matrix has better 
compatibility when treated with silane solution which 
subsequently increased the strength of the sugar palm 
biocomposite. Additionally, the higher fibre content 
with silane treatment allows better stiffness of the 
composites because the treatment allows better SPF 
distribution within the PP matrix (Ichazo et al. 2001).

Fig. 5   SEM of ± 45° woven 
fibre VE composites show-
ing a ruptured matrix; and 
b vacant slots (Ammar et al. 
2019). Creative Common 
CC BY license

Table 7   Influence of fibre weightage on the tensile properties 
of SPF reinforced VE biocomposites (Huzaifah et al. 2019a)

Fibre 
loading (%)

Impact strength 
(kJ/m2)

Flexural 
strength (MPa)

Tensile 
strength 
(MPa)

10 4.5 48.5 25.1
20 4.5 24.0 12.5
30 5.9 18.8 9.7
40 5.4 2.5 6.1
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Some researchers have combined the aforemen-
tioned technique with fibre treatment to improve 
the performance of sugar palm biocomposites. The 

influence of mercerisation treatment and (polysterene-
block-poly(ethylene-ran-butylene)-block-poly(strene-
graft-maleic-anhydride)) compatibilising agent on 

Fig. 6   SEM morphological analysis of SPF/PE a without silica aerogel and b 3% silica aerogel-infused SFP/UPE biocomposite 
(Shahroze et al. 2019). Creative Common CC BY license

Fig. 7   SEM morphology of a untreated SPF/PP compos-
ites at 10wt%, b untreated SPF/PP composites at 20wt%, c 
untreated SPF/PP composites at 30wt%, d silane treated SPF/
PP composites at 10wt%, e silane treated SPF/PP composites 

at 20wt%, and f silane treated SPF/PP composites at 30wt% 
(Zahari et al. 2015). Reproduced with permission from Zahari 
et al. 2015. Copyright 2015 Elsevier
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mechanical performance has been studied for SPF-
reinforced high-impact polystyrene (HIPS) with 
40/60 blend ratio by weight (Bachtiar et  al. 2011a, 
b). Researchers have demonstrated that the tensile 
strength and modulus of alkaline-treated sugar palm 
and HIPS biocomposites are efficiently increased 
compared with those using a compatibiliser agent. 
This result could be due to fibrillation, reduction in 
fibre diameter, increase in reactive sites and changes 
in the chemical composition of fibres (Kalia et  al. 
2009). Mohammed et  al. (2018) elaborated that the 
combination of microwave and alkaline treatments 
offered excellent tensile properties compared with 
the use of alkaline-treated and -untreated sugar palm/
polyurethane biocomposites. The addition of micro-
wave treatment at 70  °C allowed the removal of the 
remaining wax and impurities on the lignocellulosic 
fibre after the removal of impurities at the outer layer 
of the fibre via alkali treatment. The microwave treat-
ment would also reduce the excess moisture in the 
fibre and subsequently improve the interfacial adhe-
sion of fibre/matrix (John and Anandjiwala 2008). 
However, microwave treatment after 70  °C does 
not efficiently improve composite strength because 
the elevated temperature may damage the fibre and 
reduce the amount of reactive sites within the fibre.

SPF‑reinforced biopolymer composites

The tensile strength and modulus of SPF-reinforced 
polylactic acid (PLA) green composites have been 
amplified smoothly and linearly with a fibre content 
of 20% at 0.25  M sodium hydroxide treatment for 
30  min (Chalid and Prabowo 2015). The change in 
SPF interface would enhance the properties of PLA 
composites via strengthening the mechanical inter-
locking with the resin. Trapped voids and fibre pull-
out could also be lessened by stirring during mixing 
the fibre with the dissolved PLA resin (Puglia et  al. 
2004; Singha and Thakur 2008). Sahari et al. (2013) 
evaluated the effect of fibre loading and water absorp-
tion on the mechanical properties of an SPF-rein-
forced SPS green composite. The impact and tensile 
strengths of the composite shows significant incre-
ment with fibre loading up to 30%. This finding was 
due to the efficient stress transfer between SPFs and 
SPF polymer is optimum at 30% fibre loading. How-
ever, the tensile strength of the sugar palm green 
composite seems degraded after being exposed for 

72 h in 75% relative humidity. In this point of view, 
it can deduced that the SPF/SPS green composites 
shows that SPF has a good dispersion and adhesion in 
SPS biopolymer.

Nazrin et  al. (2020) prepared a sugar palm 
nanocrystalline fibre-reinforced SPS/PLA bionano-
composite through melt blending and compression 
moulding, as shown in Fig.  8. They discovered that 
the increase in starch loading resulted in decreased 
overall mechanical (tensile and flexural) properties 
of the sugar palm bionanocomposite. A high content 
of SPS led to agglomeration, whereas a low content 
resulted in the presence of cracks and voids (Sanyang 
et al. 2016b; Ilyas et al. 2019). Moreover, the thermal 
stability of the sugar palm bionanocomposite was 
reduced as the starch loading increased. The physical 
property, such as thickness swelling, corresponded 
to water absorption and demonstrated an increasing 
trend with increasing starch volume.

Jumaidin et  al. (2017a) studied the influence of 
seaweed on the mechanical, physical and thermal 
properties of SPF-reinforced SPS/agar green 
composites. Substantial improvement in the flexural, 
impact and tensile behaviour of the green composites 
was observed due to the incorporation of seaweed. 
The high intermolecular hydrogen bonding in the 
FT-IR results implied the good compatibility between 
seaweed and SPS/agar. The similar hydrophilic nature 
of seaweed and SPS/agar aided in the improved 
adhesion between the filler and the matrix. Thus, 
Eucheuma cottonii seaweed waste can be used as an 
excellent filler in sugar palm green composites, which 
are useful for packaging applications.

Hybrid SPF/other fibres reinforced polymer 
composites

Hybrid composites are commonly prepared either 
by a combination of two fibres in a single matrix or 
by using one fibre in two polymer blends (Asyraf 
et al. 2020b). These hybrid composites act as a new 
unique material that weighs the sum of the individual 
components. The properties of hybrid composites are 
governed by the fibre/matrix interfacial bonding, fibre 
length, orientation, extent of intermingling of fibres, 
fibre content and hybrid fibre arrangement. Table  8 
displays the most recent works on hybrid SPF-
reinforced polymer biocomposites.
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Several researchers have used hybrid sugar palm 
with other lignocellulosic fibre-reinforced synthetic 
polymer biocomposites. For instance, short sugar 
palm and kenaf fibres (0.1–0.5 mm size) were hybrid-
ised in polypropylene resin by researchers (Bachtiar 
et  al. 2014) to study the pronounced influence of 
hybrid fibre loading on tensile properties. The ten-
sile strength of the hybrid composites decreased as 
the fibre volume was elevated. Hybrid biocomposites 
with kenaf fibre have also displayed higher tensile 
strength, and the stiffness of the hybrid biocomposites 
was higher than that of pure resin due to the ability 
of the hybrid fibre to withstand shape before breaking 
(Srinivasan et  al. 2014). Radzi et  al. (2019b) used a 
hybrid short fibre of sugar palm and roselle to form a 
hybrid fibre-reinforced polyurethane biocomposite. In 
their findings, the hybrid composite showed improved 
impact properties with increasing sugar palm con-
tent. However, the tensile and flexural properties 

declined with the increase in sugar palm volume due 
to fibre pull-out and poor adhesion bonding. Siregar 
et  al. (2020) also explored the effect of fibre layer-
ing sequence of hybrid sugar palm/ramie-reinforced 
epoxy biocomposites on mechanical properties. They 
discovered improved tensile and flexural strength per-
formance when woven ramie existed at the outer layer 
of the compress moulded hybrid biocomposites.

Afzaluddin et  al. (2019) fabricated a sugar 
palm–glass hybrid fibre-reinforced polyurethane 
biocomposite through a compression process and 
reported that high tensile and impact properties were 
obtained at high SPF loading in relative to glass fibre. 
The highest mechanical performance was recorded 
at the hybrid 30% of SPFs and 10% of glass fibre-
reinforced in thermoplastic polyurethane (TPU) 
composite. Figure 9a shows that a quite strong adhe-
sion between the SPFs and glass fibre to the TPU 
matrix. This result might be due to more glass fibre 

Fig. 8   Sugar palm nanocrystalline fibre reinforced sugar palm starch/PLA bionanocomposites preparation (Nazrin et al. 2020). Cre-
ative Common CC BY license
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stretching out causing another SPF breakage and pull 
out at the middle without any stretching as shown in 
Fig.  9b. Meanwhile, Fig.  9d indicates that 40 wt% 
glass fibre displays brittle property of glass fibre as 
noticed in SEM analysis. Besides that, the high fibre 
loading of SPFs would allow effective dispersion of 
the fibres and outstanding load transference occurring 
at this composite composition (Sapuan et  al. 2013). 
However, the flexural strength and modulus were 
elevated when a higher glass fibre content was intro-
duced at 40 wt.%. The increased glass fibre volume 
in the matrix improved the shearing resistance of the 
composite and reduced shear failure (Velmurugan 

and Manikandan 2007). According to Afzaluddin 
et  al. (2019), high density, low thickness swelling 
and water absorption properties can be achieved with 
incorporation of 30 wt% glass fibre into sugar palm-
reinforced polyurethane biocomposites.

A group of researchers hybridised lignocellulosic 
fibre-reinforced biopolymer green composites for 
packaging application (Ibrahim et  al. 2020). They 
demonstrated significant improvement in the tensile 
modulus and strength of the green composite film fol-
lowing a hybridisation process at 6% SPF. This find-
ing showed that SPFs could dominate the mobility of 
thermoplastic starch polymers and promote interfacial 

Fig. 9   SEM micrograph of cracks developed in the a 30/10 SPF/glass, b 20/20 SPF/glass, c 10/30 SPF/glass and d 0/40 SFP/glass 
(Afzaluddin et al. 2019). Reproduced with permission from Afzaluddin et al. 2019. Copyright 2019 Elsevier
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bonding by creating a network to hold the compos-
ites. This condition facilitated the stress transfer 
between the fibre and matrix. The same results were 
obtained by Jumaidin et al. (2017b) through hybridis-
ing seaweed and SPFs in starch/agar green compos-
ites, which promoted enhanced tensile and flexural 
properties.

Conclusion

This review paper comprehensively explains the 
mechanical performance of sugar palm biocompos-
ites from previous studies. SPFs have outstanding 
mechanical performance, especially in terms of ten-
sile and flexural strengths, as confirmed by several 
works. In this case, 30 wt% loading can be considered 
as the optimum loading to achieve a good mechanical 
behaviour in biocomposites although no certain fibre 
volume has been determined to enhance the mechani-
cal properties of biocomposites. Furthermore, this 
review also provides information for further research 
on the mechanical behaviour of sugar palm biocom-
posites especially for engineering applications. Varia-
tions in the mechanical properties of sugar palm-rein-
forced thermoplastic and thermoset biocomposites 
have been reported by several researchers. Overall, 
sugar palm-reinforced UPE biocomposites demon-
strate better mechanical performance than other poly-
mer matrices. In addition, SPFs have great potential 
to replace synthetic fibres for bending, tensional, and 
impact force applications. Thus, the utilisation of 
SPFs in hybrid biocomposites has great potential in 
the construction, structural, and housing sectors.

Sugar palm reinforced green composites can 
be used in many applications such as housing 
materials due to their light weight, great strength 
and insulation, and effective fireproof properties. 
Therefore, future research should consider the 
development of construction and structural products, 
such as cross-arm beams, by using hybrid SPFs along 
with high-performance biodegradable resin with 
enhanced mechanical properties. Thus, the SPFs can 
potentially be a protruding contender in advanced 
material applications.
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