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Abstract 
Rainfall is a vital component in the rice water demand model for estimating irrigation requirements. Information on how 
the future patterns are likely to evolve is essential for rice-growing management. This study presents possible changes 
in the future monthly rainfall patterns by perturbing model parameters of a stochastic rainfall using the change factor 
method for the Kerian rice irrigation scheme in Malaysia. An ensemble of five Global Climate Models under three Shared 
Socioeconomic Pathways (SSPs) (SSP1-2.6, SSP2-4.5, and SSP5-8.5) were employed to project rainfall from 2021 to 2080. 
The results show that the stochastic rainfall generator performed well at preserving the statistical properties between 
simulated and observed rainfall. Most scenarios predict the increasing trend of the mean monthly rainfall with only a 
few months decreasing in April and May occurring in off (dry) season. The future patterns 2051–2080 show a significant 
increasing trend during main (wet) season compared to the near future period (2021–2050). The projected future rain-
fall under SSP1-2.6 and SSP2-4.5 are higher than SSP5-8.5 from January to July, and December but lower from August 
to November. The projected annual rainfall will significantly increase toward 2080 during the main-season but uniform 
during the off-season except under SSP5-8.5, which is significantly decreasing. The output results are essential for rice 
farmers and water managers to manage and secure future rice irrigation water under the impact of future climate change. 
The projected changes in rainfall on the river basin demand further study before concluding the impact consequences 
for the rice sector.

Article highlights 

• The rainfall generator performs well in simulating 
future rainfall based on an ensemble of five different 
GCMs considering three different scenarios emission 
(low, medium, and high) caused by greenhouse gas 
and radiative forcing.

• The future rainfall projection predicted that off (dry) 
season would become wet, and main (wet) season 

would become wetter due increase in monthly and 
annual rainfall.

• The outcomes of this paper are beneficial for rice 
farmers and water managers of the study area to man-
age their rice cultivation and water release from the 
reservoir schedules to avoid losses due to flood and 
drought.
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1 Introduction

Malaysia experiences hot and humid weather through-
out the year, named equatorial climate. The Southwest 
and the Northeast Monsoons cause climate variability, 
occurring in April to September and October to March. 
The Southwest Monsoon features drier weather, while 
Northeast Monsoon has abundant rainfall [1]. However, 
in the last two decades, Malaysia has faced warming and 
rainfall irregularities [2]. Climate change in Malaysia is 
mainly related to surface air temperature, sea surface 
temperature, sea level, and precipitation [3, 4]. Kurau 
River Basin, with an area of approximately 322  km2 
located in the north of Peninsular Malaysia, is a domi-
nant upstream part of the Bukit Merah Reservoir catch-
ment [5], where it is the primary irrigation source for 
large scale Kerian rice irrigation scheme. The Asia region 
is the leading rice producer with approximately 94% of 
the world’s production, consuming over 90% of the total 
irrigation supply from river basins [6, 7]. The uncertain 
rainfall pattern in rice cultivation will produce a com-
plex way for operators to predict and plan the irrigation 
demand for the coming month if the climate is incon-
sistent. More than 51% of rice water requirements of 
massive rice fields are primarily fulfilled by rainfall with 
wet-season (February–July) practicing supplemental 
irrigation while dry-season (August–January) practicing 
full irrigation [8]. Although Malaysia is blessed with rain-
fall all year round, there is still an unanswered question 
about water availability coupled with climate change’s 
impact on rice cultivation in this area.

One step forward to face the climate forcing chal-
lenges is through the projection of future rainfall scenar-
ios. Global climate models (GCMs) developed by many 
organizations with Coupled Model Intercomparison 
Project (CMIP) are the progressive and advanced data 
to assess future challenges [9]. The current version of 
CMIP is CMIP6 is an ensemble of CMIP-endorsed Model 
Intercomparison Projects (MIPs) that provides an exten-
sive version compared to CMIP5 in terms of the num-
ber of models and releases scenarios [10]. GCMs under 
CMIP6 differ from CMIP5 in three general ways such as 
higher horizontal resolution, more complexity of physi-
cal scheme of models, and new shared socio pathways 
(SSPs) scenarios replacing representative concentration 
pathways (RCPs) [11–14]. In the latest most advanced 
structure of CMIP6, the SSP scenarios are advanced in 
energy, land use, and uncertainty related to greenhouse 
gases and emissions compared to RCPs scenarios [15]. 
Specifically, CMIP6 simulation seeks to broaden the 
understanding of three raised questions: how the earth 
system reacts to climate change signals, what are the 

origins and consequences of systematic model biases, 
and how future climate forcings can be assessed based 
on the scenarios narratives [16].

Average conditions of hydro-meteorological parame-
ters are always considered in crop cultivation [8, 17], unlike 
when dealing with flood assessment where the extreme 
event is crucial to be analyzed [10]. Therefore, the selection 
of downscaling technique plays a vital role in the analysis 
considering the different focus areas and time scales of 
climate change impact assessment. Weather generators 
are stochastic models under statistical methods used for 
generating hydro-meteorological parameters for local-
scale by referring to historical data series as a baseline [18]. 
The stochastic nature of the model is receiving attention 
in water resources-related applications such as agriculture 
to generate long daily synthetic data as input parameters 
[17, 19]. Weather generator models have evolved, adapt-
ing with the GCM models as climate change related stud-
ies and relatively inexpensive and less time-consuming 
[20]. Two types of weather generator models are para-
metric models and semi-parametric models. Richardson 
weather generator (WGEN) is one of parametric models 
based on Markov-chain dependent and distribution func-
tion for simulating rainfall occurrence and rainfall amount, 
respectively [20, 21]. In comparison, Semenov and Barrow 
(1997) developed semi-parametric models that applied 
semi-empirical distributions to simulate rainfall processes. 
Details for further review on their history and previous suc-
cessful application can be found from Wilby [22], Dlamini 
et al. [8], Fadhil et al. [23], and Liu et al. [24].

Several studies have implemented the CMIP models, 
especially CMIP5, in projecting future rainfall in differ-
ent parts of Malaysia. Dlamini et al. [8] and Adib et al. [25] 
examine 10 CMIP5 models for future rainfall projection 
in the Northwest and North part of Peninsular Malaysia, 
respectively. Their results indicated a similar pattern, 
in which most GCMs predicted a decreasing trend in 
future rainfall from January to February and an increase 
from July to December. Tan et al. [26] used 17 ensemble 
models under CMIP5 to forecast future rainfall patterns 
in the Southern part of Malaysia, and the result indicated 
a clear increase pattern during Southwest Monsoon and 
decreased pattern during Northwest Monsoon periods. 
Hussain et al. [27] conducted a study at Sarawak of Bor-
neo Island, Malaysia, to assess the future rainfall changes 
using CanESM5 of the CMIP5 model. The model reveals 
that Sarawak will experience lesser rainfall during Decem-
ber to February period and more during June to August. 
In another study using the latest CMIP model, Tan et al. 
[28] assessed rainfall patterns in the Kelantan river basin, 
the northeast part of Peninsular Malaysia, using CMIP6 
HighResMIP Experiments. The study showed that monthly 
rainfall is projected to increase during the Southwest 
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Monsoon (June–September) and the early phase of the 
Northeast Monsoon (December), and the remaining 
months experienced a decreasing pattern. All the result 
showed that most of the region in Penisular Malaysia 
seem to have similar monthly future rainfall patterns yet 
the pattern slightly different from Borneo Island, Malaysia. 
Based on the literatures, very few study in climate change 
assessment conducted in Malaysia region apply the CMIP6 
models, accordingly emerging necessities to understand 
the impact of future climate change using this models.

This study aims to assess the future rainfall pattern con-
sidering climate change in the Kurau River Basin, which 
is the main water source for the Kerian rice irrigation 
scheme in the northern part of Malaysia. The ensemble 
of five GCMs of CMIP6 under three SSP scenarios (SSP1-
2.6, SSP2-4.5, and SSP5-8.5) are used to reveal the rainfall 
pattern over the selected river basin from 2021 to 2080 
based on GHG emission and radiative forcing level. The 
study applied the delta change factor method for perturb-
ing rainfall generator parameters in downscaling the GCMs 
to the local scale for impact assessment. This paper ana-
lyzes the rainfall pattern for two planting seasons of the 

rice scheme. The first planting season is from August to 
January, also known as main-season (wet-season), and the 
second planting season is from February to July, known 
as off-season (dry-season). Understanding the patterns of 
future rainfall characteristics is crucial for water resource 
management for the rice field, which always deals with a 
huge amount of water supply to cope with water stress 
during dry-season.

2  Materials and methods

2.1  Study area

The study area, Kurau River Basin, with a total area of 
322  km2, is located at the northern of Perak in Peninsu-
lar Malaysia within latitude 4°51′ ~ 5°10′N and longitude 
100°38′ ~ 101°55′E as shown in Fig. 1. Kurau River Basin 
is a dominant upstream part of the Bukit Merah Res-
ervoir catchment [5], where its headwork is integrated 
with Kerian rice irrigation scheme to satisfy the irrigation 
demands and cope with water shortages. It has a humid 

Fig. 1  Location of Kurau River Basin Malaysia and rainfall stations
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tropical climate which experiences an average tempera-
ture of about 27–28 °C with total annual rainfall of around 
2500 mm [29]. The climate is influenced by two monsoon 
seasons: Southwest monsoon (May to August), which is 
considered the rainy season, and Northeast monsoon 
(November to February). Heavy rainfalls in the form of 
thunderstorms are expected during two inter-monsoon 
months, from March to April and from September to Octo-
ber, which causes intense convective rainfall to the west-
ern coast of Peninsular Malaysia [30, 31].

2.2  Data

2.2.1  Observations

In order to simulate rainfall at Kurau River Basin, daily 
rainfall is obtained from the Department of Irrigation and 
Drainage (DID) of Malaysia. Table 1 shows a list of rainfall 
stations chosen for the study area. The data selected are 
within the study area due to the availability and suitability 
of the data for coupling with a stochastic rainfall generator 
[23]. The period of data used in this study is from 1976 to 
2005 to validate rainfall from the CMIP6 model (historical 
period).

2.2.2  CMIP6 models and scenarios

This study used precipitation data of CMIP6 models for the 
first realization (‘r1i1p1f1’) for five GCMs (CanESM5, MPI-
ESM1-2-LR, MR-ESM2-0, NESM3, NorESM2-LM) (Table 2). The 

GCMs are selected based on the availability of the required 
SSP scenarios under the first realization (r1i1p1f1). Three 
shared socioeconomic pathways (SSPs) scenarios, including 
SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios used, represent 
low, medium, and high emission scenarios, respectively. The 
selected three ssp scenarios are appropriate to represent the 
level of emission scenario since rice fields are always associ-
ated with reference evapotranspiration mainly influenced by 
temperature. Details of summary regarding SSP narratives 
can be referred to Riahi et al. [14]. For analyzing the future 
rainfall, the future periods are segmented into 30 years’ time 
period 2021–2050 (near future) and 2051–2080 (far future).

2.3  Modeling rainfall occurrence

Rainfall occurrence modeling based on a two-state Markov 
chain of first-order relies on whether the day is wet or dry 
and the probability of rain occurrence the previous day. This 
technique has performed well in many studies to generate 
synthetic rainfall [37–39]. This model is defined by the two 
transition probabilities, which are; (1)  P01, the probability of 
wet day proceeded by dry day, and (2)  P11, the probability 
of a wet day proceeded by another wet day, as expressed in 
Eqs. 1 and 2. These transitional probabilities are estimated 
from observed rainfall data.

A generated random numbers  Rn between 0 to 1 are used 
to simulate rainfall occurrence  Ps(t). The value is then com-
pared to the critical transition probability,  Pc (Eq. 3), which 
relies on the rainfall state of the previous day where wet 
day = 1 and dry day = 0.

Whenever the  Rn is less or equal to the  Pc, the rainy day 
will be simulated, or else, it is simulated as a dry day as 
stated in Eq. 4.

The other complementary probabilities for dry day follow-
ing a dry day  (P00) and dry day following wet day  (P10) are 
related by Eqs. 5 and 6, respectively.

(1)P01 = P{wet on day t∣dry on day t − 1}

(2)P11 = P{wet on day t∣wet on day t − 1}

(3)Pc =

{

P01 if Ps(t − 1) = 1(wet)

P11 if Ps(t − 1) = 0(dry)

(4)Ps(t) =

{

w if Rn ≤ Pc
d if Rn > Pc

(5)P00 = 1 − P01

(6)P10 = 1 − P11

Table 1  List of rainfall stations

Station no. Station name Latitude Longitude

4907019 Ladang Norseman 4°57′55″ 100°45′50″
4908013 Ibu Bekalan Sempeneh di Batu 

Kurau
4°56′05″ 100°49′40″

4908018 Pusat Kesihatan Kecil di Batu 
Kurau

4°58′45″ 100°48′15″

Table 2  List of selected GCMs under CMIP6

No. Model name Country Atmos-
pheric 
resolution

Key references

Lat Lon

1 CanESM5 Canada 2.8 2.8 Swart et al. [32]
2 MPI-ESM1-2-LR Germany 1.9 1.9 Mauritsen et al. [33]
3 MRI-ESM2-0 Japan 1.1 1.1 Yukimoto et al. [34]
4 NESM3 China 1.9 1.9 Cao et al. [35]
5 NorESM2-LM Norway 1.9 2.5 Seland et al. [36]
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The transition probabilities for each station and month 
are computed as in Table 3.

The maximum likelihood estimation is used to deter-
mine transition probabilities for all months by employing 
Eq. 7 as

where  Nt is  N0 when i is equal to 0, and  Nt is  N1 when i is 
equal to 1.

2.4  Modeling rainfall amount

The amount of rainfalls on wet days is generated by 
employing the distribution function to get the mean rain-
fall per wet day. The gamma distribution has been used in 
this study because it is quite a synonym in rainfall mod-
eling among researchers [37, 39, 40]. It is also the most 
appropriate and relevant method to model daily rainfall 
amount generation until today. The gamma distribution 
selects a threshold value of 1 mm for the Malaysia region 
due to high humidity conditions, as suggested by previ-
ous studies [29, 41]. Rainfall amount is then generated by 
sampling from two parameters of Gamma distribution. The 
probability density function (PDF) of the gamma distribu-
tion is given in Eq. 8 as

where Γ(α) is the gamma function, α and β are a shape and 
scale parameters, respectively. The maximum likelihood 
estimator is applied to compute the gamma parameters 
for each month to characterize the rainfall algorithm by 
four parameters  (P01,  P11, α, and β).

2.5  Perturbing rainfall generator parameters

The validated rainfall model is used to downscale GCMs 
outputs and simulates future rainfall series for each station 
in study area over Kurau River Basin. The model param-
eters are used to simulate future rainfall under climate 
scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) to be per-
turbing the derived observed rainfall parameter from GCM 

(7)PIJ =
Nij

Nt

for i, j = 1, 2

(8)f (x) =

(

x

𝛽

)𝛼−1

exp
(

−x

𝛽

)

𝛽Γ(α)
; 𝛼, 𝛽 > 0; x > 0

outputs using the change factor method [8, 20, 42]. The 
change factors express the difference between the statics 
of the rainfall computed for the three scenario periods. 
Equation 9 represents the general approach adopted in 
change factors to calculate the ratio between statistical 
parameters for baseline and future periods [42] as

where R is the statistical property of rainfall, OBS and FUT 
represent observed and future rainfall scenarios, respec-
tively, and GCM.CTS and GCM.FUT denote the GCM model 
generated for baseline and future scenarios, respectively.

2.6  Model verification

A site-specific rainfall modeling requires calibration 
and validation of statistical properties at each selected 
rainfall station. Daily observed rainfall data for 30 years 
(1976–2005) is used to evaluate the model performance. 
Estimating station representative parameters from gener-
ated daily series is done by running the model with 100 
replications based on observed data to achieve reason-
able generate statistical attributes that describe rainfall 
occurrence, quantity, and distribution, including monthly 
mean rainfall, standard deviation, rainy days, and wet 
and dry spells. The output from the rainfall model is then 
compared to the rainfall stations of the study area. Rainfall 
model performance is evaluated before it is applied for 
downscaling and future simulation to see how well the 
model preserves the statistical properties of the original 
data. Although this model generated daily rainfall series, 
the data analysis will use a monthly scale due to most crop 
cultivation practices considering average conditions of 
hydro-meteorological parameters.

3  Results and discussions

3.1  Stochastic rainfall generator model 
performance

Estimated transition probabilities and gamma parameters 
derived from the observed data indicate that during off 
(dry) season, the probability of rainfall to occur of the next 
day if the previous days not receiving rainfall is high. While, 
the chance of rainfall occurring when it is raining on the 
previous day is also high, and it increases during the main 
(wet) season of the rice planting period. Estimated transi-
tion probabilities of three rainfall stations for the observed 
period from 1976 to 2005 are shown in Table 4.

(9)
RFUT

ROBS
=

RGCM.FUT

RGCM.CTS

Table 3  Estimation of transition probabilities of observed rainfall

State of the day Current day Total  (Nt)

Dry (0) Wet (1)

Previous day Dry (0) N00 N01 N0

Wet (1) N10 N11 N1
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Figure 2 presents simulated total mean monthly rainfall 
and standard deviation for the observed period. It shows 
that the model is highly efficient in simulating mean daily 
rainfall with the R-squared value of 0.99 through all the 
months for all stations. High mean daily rainfall occurs 
during October and decreases gradually with a minimum 
value in January. A similar study on rainfall patterns in the 

west region of Peninsular Malaysia also reported that peak 
rainfall occurs in April, May, and mid-August to late Octo-
ber, and the lowest mean rainfall occurs in late November 
to late February caused by the two inter-monsoon seasons 
[43, 44].

The model shows acceptable performance for stand-
ard deviation despite underestimating values for all 

Table 4  Estimation of 
transition probabilities of 
observed rainfall for different 
months and stations

P01 = Probabilities for dry days followed by rain days;  P00 = Probabilities for dry days followed by dry 
days;  P10 = Probabilities for rain days followed by dry days;  P11 = Probabilities for rain days followed by 
rain days

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Station 1 (4907019)
P00 0.82 0.78 0.69 0.58 0.72 0.77 0.79 0.75 0.67 0.56 0.59 0.75
P10 0.27 0.20 0.19 0.16 0.20 0.26 0.22 0.22 0.18 0.14 0.12 0.19
P01 0.18 0.22 0.31 0.42 0.28 0.23 0.21 0.25 0.33 0.43 0.41 0.25
P11 0.73 0.80 0.80 0.84 0.80 0.74 0.78 0.78 0.82 0.86 0.88 0.81
Station 2 (4908013)
P00 0.82 0.73 0.68 0.56 0.67 0.74 0.73 0.65 0.53 0.40 0.51 0.75
P10 0.30 0.23 0.22 0.15 0.16 0.24 0.25 0.20 0.16 0.11 0.13 0.22
P01 0.18 0.27 0.32 0.44 0.33 0.26 0.27 0.35 0.47 0.60 0.49 0.25
P11 0.70 0.77 0.78 0.85 0.84 0.76 0.75 0.80 0.84 0.89 0.87 0.78
Station 3 (4908018)
P00 0.73 0.65 0.57 0.44 0.56 0.70 0.68 0.65 0.51 0.44 0.40 0.65
P10 0.39 0.34 0.27 0.24 0.25 0.39 0.40 0.33 0.28 0.18 0.19 0.30
P01 0.27 0.35 0.43 0.56 0.44 0.29 0.32 0.35 0.49 0.56 0.60 0.35
P11 0.61 0.66 0.72 0.76 0.75 0.61 0.60 0.66 0.72 0.81 0.81 0.70

Fig. 2  Comparison of observed and model-simulated mean monthly rainfall at three stations
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months except December for station 2 and March, 
August, and November for station 3 (Fig. 3), with the 
R-squared value of more than 0.95. Hence, indicating 
that the model has the ability to simulate rainfall pat-
terns for the study area. It has also been reported that 

most rainfall generator models have limitations in simu-
lating rainfall variance [45].

Figure 4 shows a comparison of observed simulated wet 
and dry spells length where it is considered critical crite-
ria for climate variability and climate change analysis, and 

Fig. 3  Comparison of observed and model-simulated standard deviation at three stations

Fig. 4  Comparison of rainfall observed and simulated wet and dry spells for each station
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water resources management. The model simulated both 
the wet spell and dry spell with R-squared values of more 
than 0.85. In detail, for the wet spell, the R-squared values 
are 0.846, 0.856, and 0.874 for station 1, station 2, and sta-
tion 3, respectively. While for the dry spell, the R-squared 
values are 0.933, 0.876, and 0.947 for station 1, station 2, 
and station 3, respectively. The simulated dry spell shows 
more precise matches to the observed dry spell through 
all the months compared to the wet spell for all stations. 
The rainfall generator model proved to be able to simulate 
both wet and dry spell lengths excellently.

3.2  Projected changes in rainfall

The variability of downscaled individual CMIP6 models 
under SSP1-2.6, SSP2-4.5, SSP5-8.5, and multi-GCM ensem-
ble for each scenario with recorded monthly rainfall for 
the period 2021–2080 can be observed in Fig. 5. The wide-
spread in the selected climate models giving uncertain-
ties prove the essential of implementation more than one 

GCM in climate change study. As illustrated in Fig. 5, each 
GCM has its prediction representing a single projection of 
several future predictions. The projected mean monthly 
rainfalls are based on the CMIP6 multi-GCM simulations 
and three SSPs (SSP1-2.6, SSP2-4.5, and SSP5-8.5) for two 
future periods of 2021–2050 (near future) and 2051–2080 
(far future) are illustrated in Fig. 6. The three SSP scenarios 
reveal an increasing trend of the future mean monthly 
rainfall during 2021–2050 and 2051–2080 except in April 
and May, which predicted decreasing trend of rainfall. Fig-
ure 7 illustrates the CMIP6 multi-GCM ensemble of pro-
jected changes by five GCMs with rainfall is predicted to 
be higher from July to December and January to March 
compared to the baseline period. It is more significant in 
February for the two future periods with a higher incre-
ment of 61.1% under SSP5-8.5 for the near future period 
and 60.2% under SSP2-4.5 for the far future period. While 
from April to June seem to be lower compared to the base-
line period and more significant for April and May with 
a higher reduction of 14.5% under SSP5-8.5 for the near 

Fig. 5  Variability of downscaled individual CMIP6 model and multi-GCM ensemble under; a SSP1-2.6, b SSP2-4.5, c SSP5-8.5, and d multi-
GCM ensemble for each scenario with recorded monthly rainfall
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Fig. 6  Projected ensemble mean monthly rainfalls under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios for future periods 2021–2050 and 
2051–2080 and with respect to baseline period of 1976–2005 with mean of baseline values (line)

Fig. 7  Percent of changes of projected ensemble mean monthly rainfalls under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios for future periods 
2021–2050 and 2051–2080 and with respect to baseline period of 1976–2005
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future period and 20% under SSP1-2.6 for the far future 
period. SSP5-8.5 indicates a higher rainfall increase than 
SSP1-2.6 and SSP2-4.5 from August to November for two 
future periods, with increments ranging between 11.1 and 
23% for the near future period and 19.4% to 36.1% for the 
far future period. The projected future rainfall under SSP1-
2.6 and SSP2-4.5 seems to be higher than SSP5-8.5 from 
January to July and December, but SSP5-8.5 seems to be 
higher than July to November SSP1 and SSP2.

In Malaysia, lower rainfall is observed normally during 
February to July compared to the remaining months of 
the year. Therefore the result predicted that more dry 
days would appear in these months in the future. The 
CMIP6 multi-GCM ensemble predicted mean monthly 
rainfalls show significant increasing trends in Febru-
ary, July to December in both future periods. Greater 

increase in the mean monthly rainfall is predicted under 
SSP5-8.5 scenario compared to SSP1-2.6 and SSP2-4.5 
scenarios during 2021–2050 and 2051–2080. In general, 
the model shows that most scenarios predict the increas-
ing trend of the mean monthly rainfall with only a few 
months project negative changes in April and May.

Figure  8 illustrates cumulative frequency distribu-
tion for CMIP6 multi-GCM ensemble mean monthly 
projected rainfalls of Kurau River Basin for 2021–2050 
and 2051–2080. The projected output is more likely to 
increase for all three SSP scenarios in the future. It is 
clearly evident that the mean monthly rainfall pattern is 
expected to change in the future compared to the base-
line period of 1976–2005. The future projection reveals 
increasing trends in most of the months with decreasing 
only a few months of the year. The projected monthly 

Fig. 8  Cumulative frequency distribution of the projected multi-GCM ensemble mean monthly rainfall at Kurau River Basin of observed 
(1976–2005) and future periods; a 2021–2051 and b 2051–2080

Fig. 9  Projected ensemble annual rainfall under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios over 2021–2080 for a main-season and b off-
season
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rainfall will be range between 200 and 400 mm with a 
higher possibility of around 200 mm.

The impact of climate change will affect agricultural 
water management by causing excess rainfall, especially 
during the main-season, as illustrated in Fig. 9. The figure 
reveals that the main (wet)-season will become wetter 
under all SSP scenarios, with SSP5-8.5 being the highest. 
While during the off-season the amount of rainfall is much 
less compared to the main-season, with SSP5-8.5 being 
the worst and significantly decreasing toward 2080. The 
result is supported by the statistical analysis displayed in 
Table 5, where the future period is expected to face longer 
wet and dry spells with rainy days increasing during the 
main-season, and decreasing during the off-season except 
for SSP1-2.6. Wet and dry spells mentioned in this study 
are the maximum consecutive wet or dry days in a month. 
Dry spell series have often been given attention when 

dealing with agriculture as they can adversely impact 
cultivation and production. These changes will alter the 
hydrologic response on the basin, affect the inflows to the 
reservoir, and affect the two planting seasons of rice cul-
tivation every year. Rice cultivation practices involve the 
uniform application of 100 mm irrigation water around 7 
to 10 days to maintain the standing water depth on rice 
system, where this volume is depleted in assuming daily 
evapotranspiration and seepage occur 3–4 and 2–3 mm, 
respectively [46]. The portion of rainfall stored in the root 
zone after the rest evaporated from the earth’s surface and 
used for rice crops is called effective rainfall.

Effective rainfall is a crucial component in assessing 
optimum rice irrigation water requirements. Future effec-
tive rainfall will follow a trend similar to projected rainfall, 
as portrayed in Fig. 10. Higher rainfall will have higher 
effective rainfall, thus reducing the irrigation supply from 

Table 5  Summary of monthly 
statistical analysis in rainfall 
parameters for baseline (1976–
2005) and future scenarios 
(2021–2080) with percent 
change from baseline

Statistics analysis Baseline SSP1-2.6 SSP2-4.5 SSP5-8.5

Effective rainfall (main-season) 839 mm 904 mm (8%) 891 mm (6%) 918 mm (9%)
Effective rainfall (off-season) 771 mm 800 mm (3%) 785 mm (2%) 793 mm (3%)
Rainy days (main-season) 19.06 19.50 (2%) 19.70 (3%) 19.55 (3%)
Rainy days (off-season) 17.35 17.65 (2%) 17.26 (− 1%) 16.97 (− 2%)
Wet-spell length (days) 4.13 4.65 (12%) 4.43 (7%) 4.15 (0.5%)
Dry-spell length (days) 3.12 3.21 (3%) 3.31 (6%) 3.14 (0.6%)

Fig. 10  Projected ensemble mean monthly effective rainfalls under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios for future periods 2021–2050 
and 2051–2080 and with respect to baseline period of 1976–2005
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the reservoir to the rice field and vice-versa. Projected 
effective rainfall for SSP1-2.6, SSP2-4.5, and SSP5-8.5 is 
predicted to increase about 15.8%, 12.0%, and 12.7%, 
respectively, with SSP1-2.6, has the highest increases fol-
lowed by SSP5-8.5 and SSP2-4.5. Furthermore, the SSP1-
2.6 illustrates that 2021–2050 have higher mean monthly 
effective rainfall compared to SSP2-4.5 and SSP5-8.5, but 
during 2051–2080 it is predicted to be lower than SSP2-
4.5 and SSP5-8.5. February is predicted to have the most 
significant mean monthly effective rainfall increase for 
SSP1-2.6, SSP2-4.5, and SSP5-8.5 with values 43.3%, 36.1%, 
and 43.6% for 2021–2050 and 41.7%, 43.0%, and 26.4% for 
2051–2080, respectively.

Based on the findings, there is a possibility of floods 
occurring during the main rice-growing season and heat 
stress during the off-season. Therefore the results suggest 
that a higher projection of future rainfall during the main 
(wet) season of planting period months (August–July) 
stored in the reservoir should be well managed and opti-
mized. The aim is to reduce wastage of water supply to 
the rice field to cope with the possibility of water shortage 
during off (dry) season of planting period months (Febru-
ary–July) due to possible longer dry spells and less number 
of rainy days.

4  Conclusion

Rainfall is a driving element to ensure the sustainability of 
rice cultivation and production. Therefore, awareness of 
how the future rainfall pattern is likely to change is manda-
tory within the rice-growing areas in Malaysia. This study 
reveals the impact of climate change on future rainfall by 
an ensemble of five GCMs under CMIP6 and three SSP nar-
ratives (SSP1-2.6, SSP2-4.5, and SSP5-8.5) at a grid point 
considering the rice-growing area of Kerian, Perak, Malay-
sia. The stochastic rainfall generator model (Markov-chain 
and Gamma distribution) combined with the change fac-
tor method is adopted to statistically downscale and simu-
late future rainfall for Kurau River Basin, the water source 
of the Kerian rice field. The selected technique provides 
satisfactory performance to reproduce observed data and 
downscaled multi-GCM outputs to establish future rainfall 
changes under different scenarios. However, the applica-
tion of this method is not enough to capture extreme rain-
fall and drought events. As a recommendation, for these 
advanced studies, it is best to consider multi states and 
higher-order formulation.

The results obtained for each downscaled rainfall under 
GCM are variable, giving the uncertainties in future rainfall 
changes. Therefore it is recommended to use more GCM 
models to bridge this gap. Despite that, the projected pat-
tern agrees with the direction of changes in the rainfall 

scenario for the study area. The CMIP6 multi-GCM ensem-
ble models show that most scenarios predict the increas-
ing trend of the mean monthly rainfall with only April 
and May project decrease changes occurring in off (dry) 
season. The future monthly patterns for 2051–2080 show 
a significant increasing trend during main (wet) season 
compared to the near future period (2021–2050). Gener-
ally, future annual rainfall is projected to increase signifi-
cantly during the main-season period under all SSPs, but 
the changes are insignificant during the off-season except 
under SSP5-8.5, which decreases toward the end of the 
period.

The future monthly effective rainfall will have a simi-
lar trend pattern as projected future rainfall from CMIP6 
multi-GCM ensemble. Effective rainfall is an important 
parameter in assessing optimum rice irrigation water 
requirements. Based on the projected rainfall results, the 
rice-growing area is expected to experience an increase 
of effective rainfall for both planting seasons and signifi-
cantly during the main-season. The rice-growing area will 
become wet during off (dry) season and wetter during 
main (wet) season. This finding is important for rice farm-
ers and water managers to make decisions for future water 
management to secure the rice sector of the area. How-
ever, the projected changes in rainfall on the river basin 
require further study before concluding its impact conse-
quences on the rice field.
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