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Abstract: Robotic manipulation refers to how robots intelligently interact with the objects in their
surroundings, such as grasping and carrying an object from one place to another. Dexterous ma-
nipulating skills enable robots to assist humans in accomplishing various tasks that might be too
dangerous or difficult to do. This requires robots to intelligently plan and control the actions of
their hands and arms. Object manipulation is a vital skill in several robotic tasks. However, it
poses a challenge to robotics. The motivation behind this review paper is to review and analyze the
most relevant studies on learning-based object manipulation in clutter. Unlike other reviews, this
review paper provides valuable insights into the manipulation of objects using deep reinforcement
learning (deep RL) in dense clutter. Various studies are examined by surveying existing literature
and investigating various aspects, namely, the intended applications, the techniques applied, the
challenges faced by researchers, and the recommendations adopted to overcome these obstacles. In
this review, we divide deep RL-based robotic manipulation tasks in cluttered environments into three
categories, namely, object removal, assembly and rearrangement, and object retrieval and singulation
tasks. We then discuss the challenges and potential prospects of object manipulation in clutter. The
findings of this review are intended to assist in establishing important guidelines and directions for
academics and researchers in the future.

Keywords: robotics; robotic manipulation; object manipulation; object grasping; deep reinforcement
learning; dense clutter; cluttered environment; sensory data

1. Introduction

Humans’ ability to manipulate objects with little or no prior knowledge continues
to be a source of inspiration for robotics researchers. The skill of manipulating objects is
involved in a variety of robotic applications, from package sorting at a logistics center to
bin picking in a factory. In order for a robot to interact with its environment, it needs to be
able to perceive its surroundings. This gives the robot the information it needs to decide
what an object is and where it is. Traditional robotic manipulation strategies depend on
prior object knowledge, such as computer-aided design models and 3D objects, to estimate
grasp pose [1]. These systems are vulnerable to mistakes when dealing with novel objects
in cluttered situations since they may be inaccessible.

In the near future, robots are anticipated to be integral parts of our everyday lives as
our friends at home and at work. In order to meet this expectation, robots will need to be
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able to do everyday manipulation tasks, which are important for most household tasks
such as cooking, cleaning, and shopping. Robots have been used successfully in factories
for many years to do tasks that require manipulation. Designing skills for robots that work
in dense cluttered environments can be hard in many different areas, such as computer
vision, automated planning, and how humans and robots interact.

As described in [2], the sensing approach, the learning approach, and the gripper
design approach are all used to tackle manipulation challenges in robotics. Each has made
a significant contribution to robotic performance by executing basic to sophisticated tasks.
Several studies [3–7] have highlighted sensory approaches to improve gripping. Some
studies have looked at how tactile and vision sensors may develop robotic technology by
extracting internal (tactile sensor) and external (vision sensor) object features. According
to these studies, a robot must be able to perceive and interpret its environment through
sensory capabilities. Other investigations found the sensory technique unsatisfactory if
the grippers are poorly constructed. Designing grippers helps improve robotic grasping’s
sensory approach. Design of grippers, including rigid parallel-jaw finger and multi-finger
grippers [8] and soft grippers [9–11], has been addressed extensively. Many researchers
have employed different materials to construct rigid and soft grippers to support the idea
that sensory information and gripper design work together [12,13]. Sensory and gripper
design approaches have been studied for a range of difficulties.

The learning approach includes computer vision or cognitive learning, which is nec-
essary for robots to operate intelligently in human environments and tackle whatever
circumstances that may arise. Thus, robots are taught to work with people and help them
with a wide range of everyday tasks [14]. When these two machine learning techniques are
combined, a new field called “deep RL” is created, which is a subset of machine learning.
In deep RL, the power of deep learning can be used to solve the reinforcement learning (RL)
problem due to the limitations of Q-tables, which can be less efficient in robotics because of
the huge number of states. Thus, the deep RL framework employs deep neural networks
to map the states (perceptual input) into action values (Q-value or Q-function). RL then
takes that action value and performs the corresponding action. This action is evaluated
through a loss function via backpropagation to update the weights in the networks using
the particular optimizer. When this is used for robotic manipulation, the robot looks at
the environment through sensors (such as cameras and touch sensors) and tries to take
the best action based on a policy that has already been predefined. One of the learning
strategies that has recently been used in robotics is the deep RL framework, in which an
agent interacts with the environment to learn the optimal policy via trial and error.

Robotic manipulation can be performed in different circumstances for different pur-
poses that have been addressed in different studies [15]. For example, deep RL approaches
have been used to assist robots in performing sophisticated robotic manipulation tasks in
various applications, such as deformable object manipulation [16], heavy object manip-
ulation [17], and pick-to-place tasks [18–20]. Even though several studies have focused
on the learning approach (e.g., deep RL) to solve robotic manipulation problems, it still
requires further studies, as stated in [21]. This review paper focuses on reviewing and
analyzing deep RL-based robotics manipulation challenges in a cluttered environment.
This is in contrast to other reviews, which discuss the current state of deep RL-based robotic
manipulation in different areas, such as robotic manipulation [22], robotic grasping [21],
pick-and-place operations [23], production systems [24], and bin picking approaches [25].
Object manipulation in cluttered environments continues to be a major unaddressed chal-
lenge, despite the enthusiasm of the scientific community and its practical importance. In
this review paper, the learning approach-based robotic manipulation in dense clutter is
chosen as the domain of study review that requires more investigation.

This review paper aims to draw attention to the variety of object manipulation issues
that these approaches were applied to and propose potential directions for further study.
This paper discusses problems with robotic manipulation in environments with dense
clutter from a cognitive point of view. It also discusses recent published works and
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cutting-edge approaches to solving these problems, as well as open problems that must be
solved in order to overcome manipulation challenges in cluttered environments. The main
contribution of this review paper is to explore appropriate cutting-edge learning algorithms
and how they can be used in addressing robotic manipulation challenges in a cluttered
environment. This will help researchers deal with important research questions about robot
performance and make important recommendations for researchers and practitioners in
the future. We believe that researchers in the field of robotics will find this review to be a
useful tool.

This review paper starts by giving a brief background on the domain of learning-based
robotics and pointing out the important review articles in this domain. An explanation
of the terminology aspects of RL is described in Section 2. Then, in Section 3, the review
protocol methodology used in this review paper is explained. Section 4 presents the
numerical analysis of the final set of articles, including the number of final sets of articles
per database and the numerical analysis of the final sets of articles with the related tasks. We
examine and discuss in depth three categories of related studies that concentrate on object
manipulation in clutter in Section 5. The challenges of the current studies are then addressed
in Section 6 as a direction for the future. Section 7 then proposes a recommendation that
might be considered to enhance the existing methods in robotics. The paper then concludes
by outlining the main concepts that are covered in this review paper.

2. Essential Reinforcement Learning Terminologies

Current research has shown how deep reinforcement learning helps a robot perform a
certain robotic manipulation. Thus, there is some terminology that needs to be defined in the
reinforcement learning framework. Multiple references have discussed these terms [26,27],
which are fundamental to comprehending reinforcement learning for any researcher in
this field and are considered important to be understood before reading any research
publication. However, in this part, we attempted to simplify these terms so that they can
be clearly understood, as listed in Table 1.

Table 1. Essential reinforcement learning terminologies.

Terms Definition

• Reinforcement learning (RL) A branch of machine learning concerned with how agents should operate in an environment to maximize a
notion of cumulative future reward.

• Markov decision
process (MDP)

MDPs give a general framework for sequential decision making, and the dynamics of an MDP are defined
by a probability distribution. An MDP serves as the conceptual framework for RL because it allows the RL
interaction process to be expressed in probabilistic terms.

• Q-table A basic table in which the maximum expected future rewards for each state of action are computed.

• Q-value The expected return from a given state under a specific policy.

• Q function Once given a state-action pair, a Q function will generate Q values using either state-value functions or
state-action value functions.

• Value of Action The expected rewards E[Rt] received when an action [At = a] is taken is called the value of action.

• Policy π A policy is a manner of describing an agent’s behavior by mapping its current state to a probability
distribution over actions π(s|a) .

• Optimal policy π* Is one which as good as or better than every other policy. The value function for the optimal policy thus has
the greatest value possible in every state.

• The deterministic and
stochastic policies

The deterministic and stochastic policies are the two most common types of policies observed in the RL domain.

• A deterministic policy is one that assigns a single action to each state. The action chosen in state s by
the policy (π) is represented by π(s), e.g., π(s) = a. It means the agent can choose the same action in
several states, and some actions may not be available in any state.

• A stochastic policy is a policy in which multiple actions with a non-zero probability can be chosen.
For each state, π defines a separate action distribution, e.g., π(s|a).
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Table 1. Cont.

Terms Definition

• Exploitation versus
Exploration

• Exploration permits the agent to have a better knowledge of each action in the long run. The agent can
make better decisions in the future by enhancing the accuracy of the estimated action values.

• Exploitation, on the other hand, takes advantage of the agent’s current estimated values. To maximize
its rewards, it selects greedy actions. However, it is possible that by being greedy with estimated values,
it will not achieve the best results.

• Epsilon-Greedy Action During exploitation, Epsilon-Greedy picks the action that maximizes the current value estimation, while
during exploration, Epsilon-Greedy chooses a uniform action at random. So, the action with the highest value
is called a “greedy action,” and the other actions are called “non-greedy actions.”

• Discount Factor γ The discount factor basically expresses how important rewards in the far future are to reinforcement learning
agents in comparison to rewards in the near future, 0 ≤ γ ≤ 1.

• When γ is set to zero, the agent is seen to be short-sighted since the agent is mainly concerned with the
immediate reward.

• When γ is close to one, the agent is considered farsighted since future rewards are weighted more
heavily than immediate rewards.

• Model-Based and
Model-Free

• In model-based approaches, the RL-agent either has access to the model (environment) and therefore
knows the probability distribution across states that the RL-agent ends up in, or the RL-agent attempts
to develop a model (often an approximation).

• In model-free approaches, no model is provided, and RL-agent does not attempt to figure out how it
works directly. The data is simply acquired, and then the best policy is developed. Therefore, value and
policy iterations are prominent examples of model-based algorithms that estimate the value function
with the help of the transition and reward functions (of the provided MDPs).

3. The Review Protocol Methodology

The review search was conducted on three distinct digital datasets. The articles were
chosen on the basis of an index that supports both simple and complex search queries.
They have been published in a number of journals and conference papers on the topic of
learning-based object manipulation amid dense clutter. In this review, we considered the
engineering and computer science disciplines as the most important criteria in learning-
based robotic manipulation. Review searches were carried out on the following three
digital databases: (1) IEEE Xplore (IEEE), (2) ScienceDirect (SciDir), and (3) Web of Science
(WoS). Thus, the research selection process entailed a comprehensive search for relevant
articles that was divided into two parts:

• Duplicated and irrelevant papers were eliminated by scanning the article titles and abstracts.
• The full contents of the articles that were filtered out in the first part were then read,

and the articles were classified into taxonomic groups.

In terms of search queries, the advanced search settings on all the search engines
excluded book chapters and other documents, but they included journal articles and con-
ference papers written in English. In addition, full-text articles and conferences published
between 2016 and 2022 were considered for review. For the purpose of searching all of the
databases that were specified, the following keywords were utilized: (“Manipulation” OR
“Grasp” OR “Grasping” OR “Pick” OR “Robotic”) AND (“Reinforcement Learning” OR
“Self-Supervised Learning”).

Current research themes revealed by the most recent literature are highlighted and
discussed in this study, with a focus on the most significant challenges. Using well-known
digital database sources where the majority of robotics journals are indexed, we intended to
review hundreds of papers over the last seven years. For the benefit of future researchers,
we wanted to provide a comprehensive overview of prior research as well as an impression
of existing challenges. These three databases were selected because they include the vast
majority of relevant literature on learning-based robotic manipulation. All significant
journals in this field are indexed in one of the three aforementioned databases. In addition,
practically every journal mentioned in these three databases is also indexed in Scopus. We
covered articles from the last seven years, between 2016 and 2022. This period is regarded
as the most productive time for intensive study of this review subject, and a rise in research
occurred at this time.
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4. Numerical Analysis of Final Set of Articles

We believe that by giving a numerical analysis of the final collection of papers, re-
searchers can have a better understanding of the importance of the grasping in clutter
challenges discussed in this critical review study. As mentioned in the critical review
process section, three databases were chosen on which our research query was performed.
The number of articles retrieved from each source varies, as seen in the pie chart in Figure 1.
The IEEE database accounts for almost more than half of the final set of articles, followed by
WoS, which takes up roughly a quarter. Such an aspect of the study could help researchers
in selecting where to submit their works because the most relevant articles in this field are
indexed in IEEE and WoS.
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Figure 1. Number of final sets of articles per database engine.

Figure 2 shows that object removal tasks account for more than half of all articles,
followed by object retrieval, singulation tasks, and assembly and rearrangement tasks.
Accordingly, the majority of studies concentrated on executing grasp to clear objects off a
tabletop. It indicates that many approaches have been used in training robots to do so. This
type of task seems simple, yet it remains a challenge. In terms of learning policy, the other
taxonomy tasks appear to be more sophisticated when compared to the objects removal
task, which may be the critical stage of robot learning. It would be interesting to answer
the question, “Why are half of the articles concentrating on objects removal tasks?” If we
dive further into the studies, it can be seen that the clearing object task does not merely
involve a single-grasp action strategy. Instead, various techniques have been attempted
to address challenges in various cluttered scenarios by developing reliable and efficient
learning approaches. In the next section, we thoroughly examine and evaluate the related
studies in each taxonomic category of the final set of articles.
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5. Critical Review

Recently, many researchers have incorporated deep reinforcement learning (RL) in
effective robotic grasping, particularly in cluttered environments. Significant progress
has been reported in this field; however, deeper understanding of the problem and more
investigation on new learning policy are needed to further improve the grasp success prob-
abilities. The succeeding discussions critically examine the related papers in this domain
and emphasize the existing issues of object manipulation in a cluttered environment.

Many studies have been investigated through a review of the literature and an exami-
nation of various elements, such as the intended applications, the methodologies used, the
difficulties experienced by researchers, and the recommendations adopted to overcome the
challenges. Grasping in cluttered environments has been widely investigated because of
the papers’ various contributions in the last seven years. In this review, the papers in the
literature about object manipulation in cluttered environments are put into three groups.
As illustrated in Figure 3, there are three types of tasks: (1) object removal tasks; (2) object
retrieval and singulation tasks; and (3) assembly and rearrangement tasks.
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5.1. The Removal of Objects TASK

The process of teaching a robot to grasp and remove objects from its workplace
in a crowded environment is known as object removal. In order to conduct a series of
actions on its surroundings and objects, the robot must be able to perceive and detect
them. In scenarios where objects are physically close together, the robot’s gripper must
find a place for its fingers to perform the grasping action. For instance, engaging with
scenarios including densely cluttered objects seems to be a challenging grasping task in
robotic manipulation. In such scenarios, the robot arms must use a skillful learning strategy
to successfully complete a grasping operation. Researchers have focused on two situations:
objects that are placed in random clutter (Figure 4a) and objects that are placed in well-
arranged clutter (Figure 4b). Both scenarios have been carefully examined, and they are
even regarded as the most difficult tasks, needing a variety of learning strategies.
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In order to make it easier to remove objects from cluttered environments, sole-grasping
policies, suction-based grasping, multifunctional gripper-based grasping, and two-action
synergy have all been employed, as illustrated in Figure 5. These four strategies and their
associated works are thoroughly discussed.
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The problem of sole-grasping policy, for example, has been extensively addressed,
either by offering dataset-based object detection or by enhancing the learning framework.
However, in certain situations, using sole grasping may not be effective. Instead, suction
grasping has shown promise as a way to improve the performance of robotic manipulation,
and a number of publications have been published to solve problems that grippers might
have. Another strategy is to combine a parallel-jaw and suction mechanism into a single
gripper that can assist in addressing issues that the sole-grasp and suction-grasp policies
are unable to address. The three mechanisms mentioned above can perform robotic manip-
ulation tasks efficiently in certain scenarios, but they are less accurate in others. Learning
to grasp by coordinating two actions, such as “push-to-grasp” or “shift-to-grasp,” can be
helpful in situations where the objects are well-arranged. Each mechanism aims to resolve
a specific issue related to the challenge of a cluttered environment as it learns to manipulate
objects in clutter via the use of supervised learning approaches. Despite extensive study on
the topic, the task of removing objects is still challenging.

5.1.1. Sole-Grasping Policy

The sole-grasping policy is an approach for training a robot to only use the grasp action
to grasp objects when no other actions (e.g., pushing, shifting, and poking) are involved.
Although many studies have concentrated on learning to grasp a single object or multiple
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objects, some of these studies have focused on overcoming the difficulty of grasping in clutter,
where objects seem to be stuck on one another in a pile. In this case, the robot must be able to
effectively perceive and interpret the objects and environment to clean the objects from its
workspace. For example, Pajarinen and Kyrki [28] proposed a partially observable Markov
decision process (POMDP) to avoid heuristic greedy manipulation; however, it is inadequate
for unknown multi-object manipulation in cluttered scenarios. Their approach achieves
global reward-based optimization despite temporal uncertainty and incomplete data. Their
POMDP approach may automatically adjust object-specific action success probabilities and
occlusion-dependent observations and actions. Emerging POMDP solutions can handle huge
state and observation spaces, but not action spaces. Because geometric constraints and robot
mechanics are not addressed, this strategy is overly optimistic.

In [29], an Accept Synthetic Objects as Real (ASOR)-based data augmentation strategy
was presented to enable the generation of training data from demonstrations gathered
in clutter-free situations, which is effective for manipulation in cluttered surroundings.
By encoding the characteristics of attention, two network topologies—implicit attention
(ASOR-IA) and explicit attention (ASOR-EA)—are used to create spatial attention on a
target object and its corresponding motor component. Two network models and data
augmentation are utilized to train robot controllers in an end-to-end manner that can be
performed in the densely cluttered environment. However, this study is restricted to the
training data since it learns from demonstration.

The interest in robots with warehouse automation abilities has significantly increased
in recent years due to the fact that robots are often successful at handling a variety of objects.
To address that, several studies have trained deep RL algorithms with RGB-D data, which
is being utilized to enhance robotic vision-based grasping in cluttered environments. For
example, RGB-D data from multi-view-based data-driven learning has been proposed by
Zeng et al. [30] to address bin picking. They trained Q-leaning on the fully convolutional
network (FCN). In their approach, they segmented and labeled several views of the scene,
and then fitted the pre-scanned 3D object models to the segmentation to create a 6D target
object. The aim of their approach is to minimize the manual effort in generating data and
enhance the accuracy of object detection using bounding-box theory. In [31], “Grasping
in the Wild,” which allows 6D grasping of unknown objects based on gathering grasping
demonstrations by individuals in a variety of situations, was addressed. Q-learning was
utilized to learn the optimal Q-function on the basis of minimizing the temporal difference
errors between the present Q-value and the goal.

In addition, robotic grasping in clutter has been addressed [32] on the basis of the deep
RL context by training Q-learning on DenseNet, which is a fully connected layer and a
pretrained model on ImageNet. Instead, the same author proposed a color matching-based
approach [33] that consisted of two parts. The first part was a semantic segmentation
module, which was used to segment the color image and generate a mask of the intended
target object in order to identify the target object. The action was performed in the second
part, using the Q-learning framework that evaluated the action’s performance.

In [34], dense object nets, valuable visual object representations that can be learned
only by robot self-supervision, were introduced. The purpose of their study was to develop
an approach for robotic manipulation in clutter that is built on learning pixel-level data
correlations, for object-centricity, multi-object distinct descriptors, and learning dense
descriptors. Due to the large number of object classes, each could not be divided into
independent areas of descriptor space; hence, only a thick descriptor was supplied. Their
approach also needs a human user to specify graspable points in the scene. Similarly, Song
et al. [35] used depth image data to create a real-time deep convolutional encoder–decoder
neural network (NN) for robotic grasping in clutter. The U-grasping fully convolutional
neural network (UG-Net) can estimate grip quality and posture pixel-by-pixel using depth
images. The network inputs the RGB-D camera’s depth image and outputs each pixel’s
grab quality, location, and gripper width. Inaccurate z-axis coordinate predictions and
overestimated gripper breadth caused failed grasps. The grasping issue in clutter was
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addressed by Chen et al. [36]; this issue is challenging for robot vision systems owing to
partial object occlusion because a vision system could be less efficient in object detection.
Chen et al. employed RL and RGB-D cameras to obtain graspable points. The modular
pipeline was compensated by an object detector, perspective optimizer, and grip planner
using binary segmentation masks and high-level instructions. For image training, they
created a large-scale multi-view real-embodied dataset (RED) as a data-driven simulator.
Even though a portable active grasping tool was used to optimize views for successful
grasping in clutter, modal segmentation is better than the binary segmentation mask.

Numerous studies have mostly used RGB images without depth data. Using the
ability of humans to manipulate target objects, a single set of RGB data has been leveraged
with generative adversarial networks (GANs) [37] to predict the hand robot’s position and
shape while conducting grasping on multiple objects. Despite GANs’ versatility, training
was unstable and needed hyperparameter adjustment. Furthermore, the grasp point in
relation to the desired action and state of an object has not been considered. An RL-based
grasp pose detection dataset was created by Kalashnikov et al. [38] by employing RGB data
for training high-accuracy control policies for picking objects in cluttered environments.

In contrast, reference [39] addressed the challenge of sim-to-real fidelity gaps and the
high sample complexity of on-policy RL algorithms. Initially, RL was adopted to train a
robotic arm with a multi-finger gripper to obtain the optimal policy during grasping object
tasks in clutter via simulation. Their method worked in the context of the pixel space of
the input (e.g., a single-depth image). A depth-image-based mapping from pixel space to
Cartesian space increased grasping likelihood in cluttered scenes. However, the dependence
on external planners to develop alternative grasps and the grasping input representation
in ANNs prevented the implementation of deep learning for multi-finger gripper-based
grasping. The first issue is that when a robot is in operation, it may come into contact with
a large variety of objects, each of which may need a different configuration of a multi-finger
gripper. Therefore, learning to grasp an object necessitates representations that are capable
of effectively handling both the geometry of the object and the grip configuration, which are
necessary to assess the success of the grasp in terms of the data and computation associated.
The second issue is caused by the increased search complexity that is necessary to arrange
multi-finger grasps in comparison to that which is needed for the parallel-jaw grasp.

Many studies have attempted to solve the problem of grasping objects in dense clutter
due to the growing demand to learn 6 degrees of freedom (DoF) grasping [40,41]. An end-to-
end network that efficiently distributes 6-DoF parallel-jaw grasps from a scene’s depth data
has also been proposed [42] by proposing the 6-DoF grasps to be projected into a 4-DoF grasp
representation, which is composed of 3-DoF grasp rotation and grasp width. Moreover, the
challenge of 6-DoF grasping has been addressed by the utilization of geometrically consistent
space and undistorted depth images [43]. Even though it was able to execute grasping
effectively in the chaotic environment, it was occasionally unable to grasp the objects that
were aligned with the edge of the box. Thus, as the environment becomes more complex, it
becomes more difficult to grasp multiple targets in a cluttered or even dense environment.

Planar manipulation based on 4-DoF has proven to be effective in enhancing bin-
picking tasks. Planar grasping, on the other hand, limits the robotic arm’s movement
(e.g., up-down), which restricts its reachable positions, especially when the robotic arm
is involved in performing bin picking. This problem was handled by Berscheid et al. [44]
by keeping the component of planar grasping that is learned and adding a model-based
controller to calculate the other two degrees of freedom (2 DoFs) to learn 6-DoF grasping.
They employed a model-based controller to change the grasping primitives’ orientation
during real-world training. Replacing a learned model with a model-based lateral con-
troller trained on analytical measures could improve their method. In [45], the challenge of
grasping in a confined environment (such as walls, bins, and shelves) was addressed (as
it was in [44]), but the grasp pose’s reachability required a lot of consideration to prevent
it colliding into structures. To address this issue, a study [45] proposed the CARP tech-
nique, which is “a collision-aware reachability predictor.” CARP could learn to assess the
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possibility of a collision-free grasp position, which would significantly improve grasping
in challenging situations with a parallel-jaw gripper. In a similar way, robots in a dense
environment must be able to pick up any object. In a number of current methods to grasp
objects from dense environments, parallel-jaw grippers are used. However, these grippers
are unable to carry out a range of robotic grasping tasks. Corsaro et al. [46] proposed that
enhancing the grasp success probability of various kinds of grasps can be achieved by
training multi-finger grippers based on a data-driven technique using a point cloud that
was generated from the depth sensors.

The generative attention learning (GenerAL) approach was proposed for 6-DoF grasping
by leveraging deep RL to directly output the final position and configuration of the fingers [47].
Although the challenge of high-DOF grasping has been addressed by extending the pixel-
attentive multi-finger grasping algorithm [39] to a complete generic framework that can be
applied to robotic hands with arbitrary degrees of freedom, there are certain failure situations
in clutter situations due to the highly dense cluster where there is no space for the robot to put
its fingers. The GenerAL approach has not been concentrated on establishing object-specific
grasping, and it requires a simulation setup and, in most situations, an extensive parameter
search to operate sufficiently. To overcome the challenge of increasing computational time that
existed in [47], the generative deep dexterous grasping in clutter (DDGC) has been proposed
to generate a set of collision-free multi-finger grasps in cluttered scenes [48]. However,
high-quality grasps produced by DDGC do not always give a successful grasp in reality. To
address the challenge of discontinuous sampling of grasp candidates and lengthy computation
times, generative grasping (GG)-CNN [49] was proposed to extract pixel-by-pixel the grasp
quality from a depth image. Meanwhile, the optimal grasp was predicted by considering
the position, angle, and grasping width. However, (GG)-CNN failed to grasp objects due to
inaccurate visual information, as the depth camera could not adequately identify the objects
in a high-clutter environment. In addition, (GG)-CNN failed to execute grasping on a black or
transparent object in the middle of a cluttered environment.

In summary, object grasping in cluttered environments using the sole-grasping policy
has been reported in several studies. Some of the studies addressed the problems of
generating high-DoF grasp poses by using multi-finger grippers to estimate the diversity
of grasping points. Other studies have attempted to overcome the issue of the grasping
of objects in a cluttered environment by including parallel-jaw grippers, which do not
require as much space to function in cluttered spaces as multi-finger grippers. A few
more studies have focused on creating efficient datasets to improve the grasp of robots in
cluttered environments. Datasets may be used to perform either 2-DoF or 6-DoF grasping
in cluttered environments, and the scheme can be executed with parallel-jaw or multi-finger
grippers. Table 2 summarizes the relevant works in this domain, including the applied
methodology, the purposes, and each method’s drawbacks.

Table 2. Summary of the relevant papers on the sole-grasping policy.

Methodology Drawbacks Gripper Ref.

• Deep Q-learning. • Instance segmentation problem in computer vision.
• Template matching cannot perfectly deal with

self-occlusion and mutual occlusion between objects.
• Batch-training might not be ideal for predictions

dealing with heavy clutters.

Parallel-jaw
finger

[30]

• QT-Opt, an off-policy training method, was
proposed on the basis of the continuous action
extension of Q-learning.

• Learning often requires several robots and devices to
compute the vast amount of needed data.

• In instances where a target object change rapidly
(including in the logistics sector), ANN-based
grasping methods must be retrained, which is an
inefficient approach.

• High cost of real-world setup with many robots, and
high amount of time is required to gain expertise.

Parallel-jaw
finger

[38]
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Table 2. Cont.

Methodology Drawbacks Gripper Ref.

• The concept of self-supervised learning was
applied. The Dense-Object Net, which used
ResNet architecture to learn dense visual
representations of objects from RGB-D data for
robotic grasping in cluttered environments, was
introduced.

• Only demonstrated a dense descriptor for three
different classes of objects, but a larger object class
number would hinder the segregation of each class
into different parts of the descriptor space.

• Required a human user to define graspable points in
the scene rather than autonomously executing the
goal-conditioned grasping.

Parallel-jaw
finger

[34]

• The pixelwise prediction of multi-class instance
masks was incorporated into the mask R-CNN
for both visible and occluded region mask
segmentation [40].

• The combined learning of instance and semantic
segmentation was proposed for visible and
occluded areas in their next study [50,51]. As a
type of pixelwise classification, the semantic
segmentation used FCIS architecture to predict
position-sensitive masks. For multi-class instance
masks, the instance segmentation used the
modified mask R-CNN.

• Only considered the shapes or geometries of objects,
but numerous other factors, such as material
characteristics and mass, were neglected; the
vision-only technique entailed an open loop and
lacked information about object interactions;
resilience was difficult to ensure.

• Required a dataset containing all of the objects’
potential occlusion states and their associated labels
and masks; the amount of effort necessary to
accomplish this task increases exponentially as the
number of objects increases.

Suction grasp
multifunctional

gripper

[40]

• An RL framework was trained on the proposed NN
whilst interacting with objects via active learning.

• Occasionally failed to grasp objects aligned with the
boxed edge.

Parallel-jaw
finger

[43]

• The basis of the pixel-attentive policy gradient
approach, which took a single depth image and
gradually zoomed into a particular portion of the
image to estimate the optimal grasp.

• Two main issues preventing deep learning from
being used for multi-finger gripper-based grasping:

• dependency on external planners to produce
alternative grasps due to the wide range of object
types and the high dimensionality of multi-finger
gripper configurations.

• the grasping input representations in ANNs increase the
search complexity when arranging multi-finger grasps
compared with the scheme for parallel-jaw grasp.

Multi-finger
gripper

[39]

• A real-time, deep convolutional encoder–decoder
NN was proposed for open loop robotic grasping
by using only the depth image information.

• By using a depth image, UG-Net predicted the
quality and posture of a grasping in
pixel-by-pixel manner.

• Failed grasps due to the inaccurate z-axis coordinate
prediction in the grasp position and an overestimated
gripper width that would come in contact with the
other parts of the object.

Parallel-jaw
finger

(dual-arm
robot)

[35]

• The notion of human demonstration and
action-view representations were leveraged by
rendering or simulating future states with respect
to numerous potential actions. By assessing these
states using a learnt value function (e.g.,
Q-value), an end-to-end 6-DoF closed loop
grasping model with RL was demonstrated.

• Basic view-based rendering was used as a
forward-prediction approach; whilst this approach
may mimic possible motions and passive
observations, it ignored contact mechanics, which
was critical for in-contact manipulation.

Parallel-jaw
finger

[31]

• An RL framework and 3D vision architectures were
proposed to obtain feasible gripping viewpoints by
using hand-mounted RGB-D cameras.

• On the basis of their framework architecture, an
object detector, a perspective optimizer, and a grasp
planner were used to build the modular pipeline.

• Binary segmentation masks and high-level
instructions can be easily comprehended by humans,
and they served as interfaces between modules.

• Modal segmentation appears to be more successful
than the binary segmentation mask employed in this
experiment.

Parallel-jaw
finger

[36]

• ASOR was proposed for the data augmentation
approach, allowing for the creation of training
data that are suitable for training manipulation in
cluttered environments by using demonstrations
collected in clutter-free conditions.

• Two ASOR-based network topologies (e.g.,
ASOR-IA and ASOR-EA) were constructed, each
with its own function.

• More complicated manipulation tasks involving
numerous objects were included in the immediate
extensions.; task-dependent representations must be
learnt from limited training data.

Parallel-jaw
finger

[29]
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Table 2. Cont.

Methodology Drawbacks Gripper Ref.

• GANs used a single RGB image to predict the
hand’s shape and position for gripping
multiple objects.

• Unstable training required a careful tuning of the
hyperparameters.

• Not well developed for body pose estimation.
• Grasp point was not selected on the basis of the

desired action and the state of the object, which can
affect the next iteration.

Multi-finger
(Human

hand)

[37]

• An SRL was proposed based on the
disentanglement of a raw input image.

• Evaluated only on a virtual platform; difficulties arise
in translating models learnt from simulated images
into real-world photos, referred to as “reality gap”.

Parallel-jaw
finger

[52]

• An approach that used a learnt grasp sampler was
proposed to predict the full 6D grasp pose and
account for any undetectable parts due to
occlusions in the clutter by learning to
differentiate between successful grasps and grasps
that collide with the environment. Segmented
point clouds were used in this scheme.

• Did not assess if the hand mesh was colliding, e.g.,
whether a grasp was in a collision; instead, another
trained network was used to predict the
potential collisions.

Parallel-jaw
finger

[41]

• The GenerAL approach was proposed for 6-DoF
grasping by leveraging deep RL to directly
output the final position and configuration of
the fingers.

• Certain failure situations in clutter situations due to
the highly dense cluster where there is no space for
the robot to put its fingers.

• Did not concentrate on establishing
object-specific grasping.

• Required a simulation setup, and in most situations,
an extensive parameter search to operate sufficiently.

• Limited to known object models and was
computationally expensive, requiring tens of seconds
to minutes to accomplish.

Test on a
range of

parallel-jaw
and

multi-finger
robot hands.

[47]

• GG-CNN was proposed to extract pixel-by-pixel
the grasp quality from a depth image. Meanwhile,
the optimal grasp was predicted by considering
the position, angle and grasping width.

• Failed to grasp objects due to inaccurate visual
information, as the depth camera cannot adequately
identify the objects in a high-clutter environment.

• Failed to execute grasping on a black or transparent
object in the middle of a clutter.

• Inaccurate grasp width estimation, which occurred
frequently on big and small objects, resulting in
gripper collision (e.g., the issue is related to the
predicted grasp on a curved surface that may cause
the object to slide out of the gripper in some cases;
collisions with nearby objects are the most prevalent
failure mode when objects are densely packed
together in the clutter).

Parallel-jaw
finger

[49]

• An end-to-end network (Contact-GraspNet) was
proposed to produce the distribution of 6-DoF
parallel-jaw grasps efficiently and automatically
from a scene’s depth data in cluttered scenes whilst
avoiding collisions by projecting the 6-DoF into a
4-Dof grasp representation, which was composed
of 3-DoF grasp rotation and grasp width.

• Unable to grasp thick objects because of the fixed
grasp width.

• Grasp predictions were less reliable because of the
discontinuous selection boundary.

• Low confidence in estimating the contact poses of small
objects because of their small effect on the total loss.

Parallel-jaw
finger

[53]

• The CARP was proposed to learn to estimate the
probabilities of a collision-free grasp position,
thus substantially enhancing the grasping of
objects in challenging situations.

• Deep NNs were fully trained in simulation by
self-supervision.

• Robot handshapes were not considered in the
learning, thus limiting the robot’s adaptability to
diverse robot hands.

• Tested using a parallel-jaw gripper, which is less
complicated in terms of kinematics restriction than
the multi-finger gripper; however, in a crowded
environment, parallel-jaw grippers are incapable of
completing a variety of grasps.

Parallel-jaw
finger

[45]

• Generative DDGC was proposed to generate a
set of collision-free multi-finger grasps in
cluttered scenes.

• High-quality grasps produced by DDGC do not
always give a successful grasp in reality.

Multi-finger [48]

5.1.2. Suction-Based Grasping

Suction grasping is another mechanism strategy has been involved in performing
object manipulation in dense clutter. In certain circumstances, such as when a finger-
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gripper struggles to grasp an object in a cluttered environment, a mechanism that relies on
suction-based grasping is thought to be an effective alternative. Industrial and warehouse
demand fulfilment employs suction grasping for pick-and-place tasks. As seen in the
“Amazon Picking Challenge [54]”, suction can reach into narrow areas and pick up objects
with a single point of contact. However, suction-based grasping has attracted less study
compared to parallel-jaw and multi-finger grasping. This is because suction grasping
requires dexterous grasping, which necessitates intelligent visual observation to accurately
predict the grasp point of the target objects to avoid grasp failure when they come into
contact with an object’s edge or a non-vertical surface. Moreover, suction grasping is limited
to certain types of objects, which means it cannot be used for other types. This section
reviews the papers that are associated with suction-based grasping in clutter. Instead of
learning to use a finger-gripper, the focus is on suction as a solution.

Mitash et al. [55] proposed implementing point cloud segmentation, which yields a
more reliable grasp point than semantic segmentation. Their purpose was to improve the
probability of grasp success rate for suction grasp utilizing the dataset of Zeng et al. [30].
On the other hand, their approach takes a long time to finish a multi-trial since it performs
grasping tasks with a single arm. Thus, training dual-arm robots to work cooperatively
can avoid the time-consuming part, thus eliminating the challenge of the single-arm
limitation. Kitagawa et al. [56] devised a multi-stage learning technique for selective dual-
arm grasping that uses CNN-based semantic segmentation to predict grasping points.
Automatic annotation allowed the network to predict grasping points in the first stage.
For both single-arm and dual-arm gripping movements, the robot could discover novel
grabbing positions and eliminate ineffective ones as it acquired experience. They focused
on grasp point prediction and implemented CNN-based automatic grasp point annotation
learning. Their annotation process, on the other hand, was performed by hand, which
made it less reliable than the other methods.

In [57], suction grasp was proposed as an alternative solution to manipulate objects
in a cluttered environment to alleviate some of the failure situations that may be caused
by the pushing behavior as a consequence of synergizing the push and grasp operations.
Their framework entailed deep RL (e.g., training Q-learning with ResNet and the U-net
structure). However, their framework was validated using CoppeliaSim (V-REP) simulation.
Moreover, suction grasp points were predicted randomly, which makes it hard for their
framework to predict exact grasp points in dense clutter. Han et al. proposed an approach
that is an object-agnostic approach for detecting suction grasp affordance [58]. In their
approach, the graspable object area is predicted using a suction grasp point affordance
network (SGPA-Net), whereas graspable points are predicted using a fast-region estimation
network. However, the two networks were trained with mixed loss functions, which
yielded disappointing results. There is also a flaw in their approach, which is associated
with the vacuum suction pad. For example, it was unpredictable when it came into contact
with an object’s edge or a non-vertical surface. In another study [59], RL with dense object
descriptors was proposed for performing grasping tasks in a cluttered area.

5.1.3. Multifunctional Gripper-Based Grasping

Another mechanism that has attracted the attention of several recent research studies
is the training of RL to coordinate the execution of grip and suction grasp. The implication
is that the robotic arm is outfitted with a gripper that can perform both finger-gripping and
suction-cup functions. This multifunctional gripper design enables exploiting the power of
the finger-gripper in executing grasping in clutter to overcome the suction-cup restriction,
and vice versa, in one gripper. For example, the study [60] has proposed learning the robotic
manipulation of objects (e.g., pick-and-place objects) by predicting both grip and suction
affordance using a multifunctional gripper. In their approach, the suction affordance was
predicted using a fully convolutional residual network for each multi-view RGB-D image.
A category-agnostic affordance prediction technique was used to choose and execute one
of the four potential grasping primitive behaviors. However, planar grasps have also been
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executed within their learning approach, which might face difficulty due to arm movement
restrictions.

The difficulty of grasping tiny and light objects has not yet been thoroughly studied in
bin-picking scenarios. In this situation, pre-grasp actions are required since spatial grasping
cannot be avoided in a densely structured clutter. An object can be spatially grasped in
clutter by wrapping a continuum manipulator around it and squeezing it. Alternatively, the
manipulator could perform push or shift actions to explore the environment for easy grasp-
ing, which is called a pre-grasping operation. For instance, the DQN has been proposed
to coordinate the grip and suction gripper-based dexterous actions using the affordance
map [61]. Their approach was aimed at assisting the robotic hand to actively explore the
environment until the optimal affordance map is obtained. This study [61] was adapted
from their previous works [62,63]. However, they implemented tactile sensing in [61] as
a way to enhance the grasping performance and improve grasp efficiency; in addition,
more experimental tests were provided. Although their proposed approach significantly
enhanced the robotic manipulation in clutter, an inefficient push was performed [61], which
could not make a change to the robot workspace because their approach needs more train-
ing time to acquire the optimal learning policy. In addition, the suction grasp failed in some
situations where the suction graspable point was detected on the edge of the object, which
led to object slippage.

Another study proposed the idea of “see to act,” which implies that a robot learns
to perceive and then transfers that knowledge to learn to act [64]. The affordance model
was utilized to generate the affordance in a pixel manner. Thus, each pixel has a predicted
affordance value, which represents the complete effectiveness of the related actions at the
3D location. Based on the maximum affordance value, the robot then performs robotic
grasping either using a finger gripper or suction cup. Furthermore, planar grasping was
implemented, which could fail in some situations where the objects are aligned with the
wall or in dense clutter since their approach was tested with less challenging clutter.

5.1.4. Synergy of Two Primitive Actions

Fundamental movements involved in prehensile (e.g., grasping) or non-prehensile
(e.g., pushing, shifting, and poking) activities are known as primitive actions. The policy
learning of making prehensile and non-prehensile movements work cooperatively is the
way to perform the robotic task of detaching the object arrangement in clutter. For example,
the push action can be synergized with the grasp action to work as a complementary part
to achieve the robotic task in clutter. Several studies have dedicated this learning policy to
addressing the challenges of learning robots to detach the objects arranged in clutter.

The synergizing of two actions is formulated as a Markov decision process. The
agent (e.g., robot) chooses and performs an action in accordance with a policy π(st) in
any given state st at time t, then moves to a new state st+1 and gets an immediate cor-
responding reward Rat(st, st+1). Finding the optimal policy π∗ ( π∗ : S→ A ) based on
maximizing the expected total of future rewards, provided by Rt = ∑T

i=t γi−t Rai, that is,
the discounted sum across an infinite horizon of future returns from time t to ∞, is the
objective of our robotic reinforcement learning issue. The most common existing strategy of
synergizing the two actions (Ψ) is to predict the grasp point and push direction on separate
neural networks (∅), and then select the max Q-value of either to grasp (g) or to push
(p) be executed at the 3D location generated from a pixel (ρx) as express in the following
equation [65]:argmax

at+1

(Q(st, at+1)) = argmax
(Ψ,ρx)

(
∅p(st),∅g(st)

)
.

The study in [66] addresses the challenge of grasping objects once they are close to each
other, where there is no space for gripper fingers to perform grasping. The notion of their
approach is to predict the grasp point and push direction using separate fully convolutional
networks (FCNs). Then, the highest Q-value is selected, and the corresponding action is
performed using Q-learning. Another study [66] proposed a rule-based method to synergize
push and grasp actions that leverages deep RL. However, rule-based approaches are less
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effective because the robot may keep pushing once the push actions are performed without
making any changes to the robot’s workspace, which affects the robot’s performance.

The majority of the environments mentioned in the literature review have a loose set
of restrictions regarding object configuration and available pushing actions, as opposed to
the settings in constrained environments (shelves or corners of bins), where only a small
number of pushing actions are permitted. It is interesting how many studies have tried
to tackle this problem. Another strategy for enhancing object grasping amid clutter is
shifting objects [67], which involves putting a finger on top of the target object to increase
grasp probabilities. The approach in [67] leverages applying thresholds to synergize the
shift and grasp actions (e.g., ψg is a threshold probability, choosing between the grasping
and shifting effort, and ρs is a threshold between the shift attempt and the assumption of
an empty bin). Although ψg may be regarded as a high-level parameter to indicate the
system’s cautiousness against grasp attempts and its ability to increase the chance of a
successful grasp, the resilience to missing depth information is a crucial component for
improving the robotic bin grasping process, as the depth availability of stereo cameras is
restricted by shadows or reflecting surfaces. When an object is near the totebox’s edge
or even at its corner, the grasping of this object is challenging. Moreover, when objects
are piled together, there may be no grasps for the robot to choose from. To deal with
these situations, the study [68] combined the grasping and pushing actions by using a
deep RL approach. They advocated combining the enhancements to the grasp’s quality
Qg with an obtaining strategy to achieve a pushing action to ensure that the push will
enhance the grasp availability. A twofold experience replay is also proposed to enhance the
search for totebox borders. The standard strategy depicted by at = argmax

[
Qp(st), Qg(st)

]
is enhanced by utilizing the notion of thresholds for grasp τg and push τp to achieve a
compromise between efficiency and robustness.

Yang et al. [69] proposed training the Q-Learning algorithm with an Attention Deep
Network, and the paper referred to this as deep reinforcement learning due to the combi-
nation of a deep learning model (Attention Deep Network) and reinforcement learning
(Q-learning). In their work, they used two parallel-trained network branches with the same
structure for pushing and grabbing. It is almost identical in principle to [65]’s strategy
learning approach (which was retrained and tested from scratch by us [70]). There is,
however, no significant difference, except they added Attention Network after DenseNet to
improve the network model’s performance by adding a channel attention mechanism to
weight the DenseNet feature channels. Due to their reliance on the max-value to synergize
push and grasp, excessive pushing of objects (out of view) during testing is also a typical
cause of failure, as grasping Q-values remain low. For instance, the robot pushes when it
should grasp, and vice versa.

In [71], their method involves mapping visual observations to two action-value tables
in a Q-learning framework utilizing fully convolutional action-value functions (FCAVFs).
These two value tables deduce the usefulness of pushing and grasping actions, with the
highest value corresponding to the ideal position and orientation for the end effector. To
facilitate grasping, they introduced an active pushing mechanism based on a novel metric
called Dispersion Degree, which measures the degree to which objects are spread out in
their environment. They used two FCAVFs for each grasp and push to be trained in a
parallel manner. This means that the grasping and pushing Q-values are individually
generated to be later selected for each action desired to be performed. The behavior of
the push action, however, acts to detach the objects’ arrangement by pushing the entire
pile. Even though their approach can separate the objects from each other, it takes several
iterations to complete the task, just as in [68,69]. This challenge of push behavior remains
unsolved in their approach. The drawback of their approach, which could cause difficulty
during grasping tasks, is the coordinating mechanism based on Dispersion Degree, which
was used in their work. This mechanism works once the objects are well-organized and very
close to each other, because they have calculated the dispersion degree of cluttered objects
as a whole pile, such as the objects’ arrangement in the Figure 4b. In addition, once the robot
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performs a pushing action and the objects remain close to each other, their mechanisms
will definitely execute the push even though the grasp can be performed instead.

Alternatively, a depth-by-poking method was proposed to estimate depth from the
RGB-D images by using labels from the physical interactions between the robot and its
surroundings [72]. Their network calculates the z-plane that a robot’s end-effector would
reach if it attempted to grasp or poke the precise pixel in the input image. Then, the deep
FCN converts the RGB or noisy depth images into correct depth maps. In [70], the multi-
view and change observation-based approach (MV-COBA) was proposed to synergize the
push and grasp actions using deep Q-learning.

Notably, the suction grasp requires a more precise and robust grasp point, which
necessitates additional data gathering. Furthermore, in situations where the object is
partially covered by other items, a feasible grasp pose might not be available, leading to
grasp failure. In addition, the surface of the suction material and the surface of the object
can induce inefficient poking. A multifunctional gripper (i.e., the use of suction and fingers
at the same time) would have been much more effective in such scenarios. Synergizing non-
prehensile and prehensile actions (e.g., push-to-grasp, shift-to-grasp, and poke-to-grasp)
was found to be effective in completing object removal tasks in cluttered environments,
particularly in situations where objects are tightly arranged [73]. Even though the reviewed
papers presented sophisticated techniques to address the different challenges, this domain
still needs further investigation.

Recently, a multi-fingered push-grasping policy was proposed using deep Q-learning
that creates enough space for the fingers to wrap around an object to perform a stable
power grasp using a single primitive action [74]. A target-oriented robotic push-grasping
system was proposed that is able to actively discover and pick up the impurities in dense
environments with the synergies between pushing and grasping actions. In their study,
Target-Centric Dispersion Degree (TCDD) was introduced to perform an active pushing
mechanism where the targets are isolated from the surrounding objects [75]. A Deep
D-learning-based pushing–grasping collaboration was presented. In their study, they
employed two cameras to observe the robot’s workspace from dual viewpoints. Then,
they trained the Q-learning on two FCNs, where each FCN received RGB-D data from
both cameras [76]. Push-to-See was introduced to learn Non-Prehensile Manipulation for
Enhancing Instance Segmentation via Deep Q-Learning [77].

In summary, there are some difficulties that arise as a result of combining two actions.
From the literature, in object removal tasks, the pushing action is executed alongside the
grasping action by using the explore probability via the max prediction. The pushing and
grasping actions were synergized to support two parallel FCNs mutually for grasping,
where the second is used for the push. As a result, this strategy of synergizing fails in certain
cases because the robot proceeded to push the entire pile of objects, causing the items to be
pushed out of the robot’s workspace. In addition, it performs a push movement when it is
not necessary, resulting in a series of grasping and pushing actions due to the estimating
of the grasp point and push direction on the separated FCN. Another challenge dealing
with the pushing behavior is that the push action could be less efficient when it is used in
random clutters, where many objects will tend to be pushed out of the workspace. The
reason for this issue is that the best action for the robot to take is determined by maximizing
the probability of a heatmap. Then, the robot will identify all of the clutter and presumes
push action as the best action. As a consequence, it necessitates extensive training iterations,
which is time consuming, in addition to more robust training to overcome the challenge of
active affordance prediction.

Synergizing non-prehensile and prehensile actions (e.g., push-to-grasp, shift-to-grasp,
and poke-to-grasp) was found to be effective in completing object removal tasks in cluttered
environments, particularly in situations where objects are tightly arranged. Even though
the reviewed papers have presented sophisticated techniques to address the different
challenges, this domain still needs further investigation. Table 3 summarizes the related
research materials and their item-based comparisons.
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Table 3. Important related studies involving the synergy of two actions based on object manipulation
in cluttered environments.

Ref. Challenge Method Weakness Gripper Mechanism Success
Rate

[65]

Grasping of
objects placed in
well-organized

shapes

Deep Q-learning

• Failure in certain cases because the robot
proceeded to push the entire pile of objects,
causing the items to be pushed out of the
robot’s workspace.

• Performing a push movement when it was
not necessary, resulting in a series of
grasping and pushing actions.

Parallel-jaw
finger

Push-to-
grasp 80.3%

[67]

Grasping of
objects aligned

with the bin wall
or boundaries

Deep Q-learning

• Low robustness associated with the lack of
depth information from the stereo cameras
(due to shadows or reflecting surfaces).

• Less effective when the robot dealt with
deformable and fragile objects.

• Only handled a low-level degree of clutter
because the robot focused on grasping of
objects aligned with the bin wall or
boundaries.

• Success rate was poor because the test
situations varied considerably (e.g., from
77% to 100%).

Parallel-jaw
finger Shift-to-grasp 91.7%

[62]
[63]
[61]

Grasping of
objects placed
among highly

random cluttered
objects

DQN

• The DQN produced ineffective pushing
actions that did not affect the operation
scene; this weakness was due to insufficient
training cases, although such issues can be
handled automatically by adding more
training cases.

• Failure was caused by inappropriate
selection of grasp point (e.g., at the
object’s edge).

• Necessitates extensive training iterations,
which is time consuming, in addition to
more robust training to overcome the
challenge of active affordance prediction.

Multifunctional
gripper

Push-to-
grasp 77%

[71]

Grasping of
objects in

well-organized
shapes

Deep Q-learning

• Pushing tactic with sparse rewards lacked
relevance for enhancing the grasping objective.

• The test scenarios in the randomly
cluttered challenge did not indicate the
level of clutter, which contradicted their
method’s performance in the arranged
object challenge.

Parallel-jaw
finger

Push-to-
grasp 83.1%

[72]
Grasping of

objects in
cluttered bins

Deep Q-learning

• Suction grasp required a more precise and
robust grasp point, which necessitated
more data.

• Suction grasp failed when the object was
partially covered by other items, implying
that the grasp pose was lacking, and thus
caused a failure in grasping.

• In the context of existing data, data were
sparsely labeled as merely a single pixel;
data collection was limited.

Suction cup Poke-to-
grasp N/A

[66]

Grasping of
objects in

well-organized
shapes

The twin delayed
deep

deterministic
policy gradient

• Push movements were performed
unnecessarily, resulting in a series of
grasping and pushing actions.

Parallel-jaw
finger

Push-to-
grasp 73.5%
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Table 3. Cont.

Ref. Challenge Method Weakness Gripper Mechanism Success
Rate

[69]

Grasping of
objects placed
randomly in

clutters

Attention DQN

• Push movements were performed
unnecessarily, resulting in a series of
grasping and pushing actions.

• The DQN produced ineffective pushing
actions that did not affect the operation
scene.

• Their test scenarios in the randomly
cluttered challenge did not indicate the
level of clutter (e.g., maximum number of
objects is only 20), and the push
performance was not evaluated with the
arranged object challenge.

Parallel-jaw
finger

Push-to-
grasp 73.5%

[68]

Grasping of
objects aligned

with the bin wall
or boundaries

Deep Q-learning

• Their test scenarios in the randomly
cluttered challenge did not indicate the
level of clutter, and the push performance
was not evaluated with the arranged object
challenge.

• Push movements were performed
unnecessarily, resulting in a series of
grasping and pushing actions.

Parallel-jaw
finger

Push-to-
grasp 74.6%

[78]

Grasping of
objects in

well-organised
shapes

A
duelling-DDQN

• Push movements were performed
unnecessarily, resulting in a series of
grasping and pushing actions due to the
standard strategy denoted by the (s) =
max[Qp,Qg].

• Even if the environment changes
throughout the execution process, the max
Q-value could occasionally fail to
determine the correct action to be executed.

Parallel-jaw
finger

Push-to-
grasp 94%

5.2. Assembly and Rearrangement Task

The assembly task entails the process of assembling several objects in a variety of
different shapes (e.g., building a tower or toy block shapes). While the arrangement task is
similar to the assembly task in principle, it is focused on the arranging of objects in a basic
way (e.g., sorting objects based on color, sorting objects in a line manner). Assembly and
rearrangement are robotic tasks that use grasping to complete a specified task in a clutter
challenge (e.g., stacking objects on top of one another to create a tower or reassembling the
shape of kit toys). The assembly and rearrangement tasks are examined and analyzed in
this section to give a clear analysis of the approaches that have been used to address these
kinds of tasks.

5.2.1. Assembly Task

The Amazon robotic picking challenge has made significant progress in picking objects
from a cluttered scene to achieve assembly tasks, but object placement remains a challenge.
Prior studies have neglected to address the placement challenge in addition to the grasping
challenge. This section discusses the studies that have been devoted to the actions of grasp-
ing and placing objects into assembly tasks. Overall, learning algorithms and detecting
object models remain challenging tasks and thus need further investigation.

In [79], an approach was proposed to tackle a difficult class of pick–place and re-
grasping issues, in which the precise geometry of the objects to be grasped was uncertain.
The motivation of their work is to learn robot grasping and the placing of objects with no
prior geometric knowledge of the target object. The researchers utilized a variant of Sarsa
and collected n-episodes of experience rather than executing a single stochastic gradient
descent step after each event, which is comparable to normal DQN. The system in their
scheme learnt 6-DoF pick-and-place actions via simulation, and their findings were applied
to real-world cluttered scenes. However, the robot’s capability to generalize unknown
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object classes and learn new geographical locations was limited. The authors also defined
the problem of “reach actions” in their perspective, and the set of target positions that could
be reached using the actions was sampled at each time step. Their approach could train
each class independently. However, as only two types of object classes (e.g., mugs and
bottles) were considered, their findings do not appear to be generalizable to most object
classes. Furthermore, as their work considered “distracting” information created by other
objects near the target object, their approach performed poorly when training on a single
scenario and evaluated in a cluttered environment. The issue of distracting information
from neighboring objects can be alleviated by employing the segmentation method.

In another work [50], the researchers proposed a method based on the combined
learning of instance and semantic segmentation for robotic pick-and-place with high
occlusions in a cluttered environment. Learning the occluded region segmentation with
CNN-based pixelwise score regression and learning the combined instance and semantic
segmentation, such as visible and occluded regions, are two of their main contributions.
This segmentation could be used for a variety of pick-and-place tasks, such as identifying
fully visible objects for random picking and picking up obscured target objects. The instance
and the image-level reasoning of mask prediction were combined on several segmentation
tasks in their work, an action that was lacking in prior studies that only aimed to learn
instance segmentation. Berscheid et al. [80] trained a robot to pick and place objects via self-
supervised learning without considering an object model. They combined robot learning
of primitives estimated by FCNs and one-shot imitation learning (IL). They defined the
place reward as a contrastive loss between real-world measurements and task-specific noise
distribution to execute the “precise pick-and-place without object model.” They provided a
method for effectively handling the Cartesian product of both grasping and placing action
spaces

[
Ag, Ap

]
.

Su et al. [81] proposed an active manipulation of two cooperative robotic arms to
address the issue of object occlusions amid the clutter. Initially, semantic labels were
generated with affordance prediction based on brand-name and active manipulation (e.g.,
two cooperative arms and grippers). A vacuum gripper was used to pick a target object
based on the affordance prediction at the object or brand-name level. The brand name was
then utilized to estimate the grasping, and a two-finger gripper was employed to place the
target object on the shelf. Although the abundance of virtual data and their dynamically
annotated labels could ensure scalability to a large number of products in real-world
shops, many of the automatically produced brand names may be too tiny or occluded
to be acceptable for model training convergence. The proposed virtual datasets should
be incorporated in future studies to improve performance. Training sets with numerous
labeled objects may be constructed in cluttered environments, and this approach can also
improve the affordance and grasp predictions.

Object manipulation necessitates planning in a continuous space, which is not achiev-
able in existing hierarchical POMDPs. Further dividing the task is much more challenging.
Small POMDPs that depend on the subsets of the entire state and action spaces are also
ineffective. Furthermore, not all actions can be implemented whilst manipulating objects.
Only effective motion planning allows the actions to be executed. Online POMDP planning
searches for a belief tree with multiple action branches, and it uses a wide action space for
object manipulation. Motion planning must be performed multiple times because the feasi-
bility of each action branch needs to be assessed. A hierarchical POMDP planning process
was proposed in [82] for an object-fetching task that employed a robot arm. A hierarchical
belief tree search technique can be used to ensure efficient online planning. This scheme
suggests that many fewer belief nodes can be produced by utilizing abstract POMDPs to
create part of the tree, and motion planning can be invoked fewer times by determining
the action feasibility using the abstract POMDP’s observation function. In [82], an abstract
POMDP was constructed manually using domain knowledge, and the performance was
affected by how the information was extracted. In the future, as a further expansion of this
work, automatic extraction of abstract POMDPs may be considered.



Sensors 2022, 22, 7938 20 of 37

It is currently difficult to handle long-horizon challenges by RL algorithms, and
time seems to be wasted studying negative cycles and task progression that can be swiftly
reversed. Learning multistep robotic tasks in the real world is extremely difficult. The ability
to perceive the immediate physical impacts of an action on the overall progress in handling
an object should be prioritized. For example, a schedule of a positive task framework was
proposed in [83]. It incorporated common-sense constraints in a way that could significantly
enhance both learning and final task efficiencies. The approach architecture in [80] was
substantially identical to that in [65] in terms of the notion of combining grasping and
pushing, but the researchers in [80] also expanded the topic to include the place action
for the stacking objects task. However, the RL approach in [80] required a significant
number of time-exploring behaviours, which was somewhat inefficient. In reference [84],
the authors attempted to solve the problem of stacking multiple blocks into a tower by
using an increasing number of blocks. They proposed a basic curriculum method in which
the number of blocks increases when the agent learns a goal task with fewer blocks. The
curriculum was supplemented by the attention-based graph neural network (GNN), which
provided the necessary inductive bias for transferring knowledge between tasks with
varying numbers of objects. They also used the attention-based GNN to train a policy and
subsequently address the problems of curriculum learning in multi-object manipulation
tasks. They proposed a basic but successful RL-based approach for stacking blocks, with
few assumptions regarding the task structure or the environment. Furthermore, object-
centric representations were used in their robotic manipulation method, starting from the
pick-and-place action for the stacking block task (a task-specific data gathering process)
and extending to undetectable objects with substantial shape variations. Although their
method was based on the GNN to represent the relationships between objects in a scene,
this method frequently relied on a pre-set number of objects.

5.2.2. Rearrangement Task

The task of rearranging multiple objects is no less important than stacking objects,
such as towers. For instance, an iterative local search (ILS) entailing heuristics and an ε-
greedy scheme was implemented for non-prehensile rearrangement in [85,86]. The authors
claimed that ILS was equipped with strong heuristics and an ε- greedy rollout policy
for successfully solving various tasks for tabletop rearrangement, including task sorting.
Both [85,86] employed the Monte Carlo tree search (MCTS) equipped with a task-specific
heuristic function. A similar work has been reported in [87]. However, the addressed
sorting problem in [87] differs from that in [85,86] in two crucial ways. Firstly, in [85,86],
specific target locations for each class are supplied as the input for the sorting objective,
which eases the task of detecting the misplaced objects and their target locations. In [87],
the target destinations are not pre-defined; instead, the planner determines acceptable
places to create a sorted state on its own. Secondly, the manipulators used in [85,86] can
move the pusher in and out of the pushing plane at any position, while the motion of the
pusher used in [87] is restricted to the pushing plane, forcing it to navigate around objects
and obstacles.

5.3. Object Retrieval and Singulation Task

Currently, retrieving the target object from its surroundings in a cluttered environment
is a challenge. Moreover, the object singulation task is no less challenging than the object
retrieval task. Both are considered to be the same challenge as they work in an integrated
manner. In this part, we review the research studies that focused on addressing these
problems by proposing several approaches.

5.3.1. Object Retrieval Task

One type of cognition task is known as an object retrieval task, and it entails finding
and grasping a particular object from its environment. Over the past five years, researchers
have dug deep into the problem of retrieving an object from a cluttered environment or
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finding an unseen and obscured object amidst a cluttered pile. All these studies are focused
on one singular goal: determining how to find an object, whether it is visible or not, in a
cluttered environment. Several tasks that require the robot to interact with a specific target
have benefited from robotic manipulation systems that incorporate vision-based learning
algorithms. What if the piles cover the intended target? It is still difficult to find the target
and isolate it from its surroundings.

Using deep RL, an autonomous method was employed in [88] to find unseen objects
within the clutter. Four RL agents were used to train a CNN using the tabular RL technique.
Semantically segmenting the target object allowed the RL agent to learn how to distinguish
it from its surroundings. However, their method was constrained by the number of objects
that had to be detached in order to retrieve the target, making it less reliable and simple in
situations where objects are densely cluttered. It also required more training repetitions
(about 20,000 iterations). Chen et al. [89] tried to grasp an object when the object was in
three different conditions: fully visible, slightly occluded, and completely occluded. In
order to implement such scenarios, they proposed a value-based deep RL that makes use of
mask R-CNN to train the grasping policy. The method was trained using a pair of DQNs,
one for pushing and one for grasping. In their approach, the synergy problem between
pushing and grasping to remove an object from crowded surroundings was solved with
the help of the mask R-CNN algorithm, which is used to detect and mask the target objects.

Additionally, Novkovic et al. [90] proposed an interactive perception method for
object recognition in clutter based on an RL-based control algorithm and a color detector.
Proximal policy optimization (PPO) was used in [90] to predict how an agent will act in
the future based on both what it knows from its past experiences and what it knows about
its current state. The authors used a robotic arm with an RGB-D camera attached to its
wrist to observe it from different angles to ease the grasping of an occluded object. For
RL-based object tracking, the scene state was encoded using a discretized truncated signed
distance field (TSDF) volumetric representation. Since it might be difficult and intuitive to
distinguish between actions that are desirable or undesirable, supervised approaches are
often irrelevant for this task. Yang et al. [91] proposed deep Q-learning to grasp invisible
objects, which involves two stages. One is to check the visibility of the target objects.
For example, if the target object can be seen, the robot will move to the second stage by
performing either a push or a grasp. If not, the robot will first explore the target object
by continuing to push until the target object is found, and then the robot will go through
the coordination of grasp–push actions to grasp it. In contrast to Yang et al. [91], another
study [92] proposed a graph-based deep reinforcement learning model to effectively explore
invisible objects and enhance cooperative grasping and pushing task performance.

The work in [90] discretized representation to encode observation history, affecting
next iteration assumptions due to the requirement to “forget” volumes where objects
moved. Moreover, some end-effector positions are kinematically impossible in real life,
and test scenarios had less clutter. Similarly, the pushing reward function in [91] was
constructed manually; it may need several tuning trials and lack adaptability. Furthermore,
the authors in works [90–92] assumed prior knowledge and relied on a target object with a
specified color to be retrieved. In contrast, Fujita et al. [93] accepted the target object as an
image instead of a segmentation module [91,92]. A deep RL system based on active vision
has been used to retrieve in dense clutter. The QT-Opt algorithm [38] was adopted with
hindsight experience replay (HER) [94] for the goal-conditioned situation. In [95], deep
RL was used to train an agent to make continuous push actions that help the gripper clear
away clutter or push the target object out of the clutter for retrieval when it is hidden by
a pile of unknown objects. However, due to a number of failure factors, the agent could
not always fully uncover the target object or enhance grasping. For example, the agent
could have repeated executing the same action over and over again without changing the
environment, or it could have moved close to the target object without interacting with the
objects that occluded the target object.
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Another study [96] developed a framework for robot learning, which is called “Learning-
guided Monte Carlo tree search for Object Retrieval.” In order for a deep neural network
(DNN) to comprehend the complicated interactions between a robot arm and a complex
scene with many objects, Monte Carlo tree search (MCTS) is initially used. This allows
the DNN to partly clone the behavior of MCTS. The trained DNN is then incorporated
into MCTS to direct its search process. Additionally, the study in [97] has proposed a
framework for learning to train a scene exploration strategy that is efficient at finding
hidden objects with little interaction. To begin with, scene grammar was described as
organized clutter. Then, using deep RL, a graph neural network (GNN) was trained as a
based Scene Generation agent to manipulate this Scene Grammar and produce a variety of
stable scenes, each including several hidden objects. Deep RL was used to teach a scene
exploration agent how to find hidden objects in these kinds of crowded scenes.

The X-ray mechanical search approach was developed by Danielczuk et al. [98]. It
divides the process into “perceiving” and “searching” for the optimal grasp. The RGB-D
data was sent into a network to be used in the perception phase. The bounding box of the
target object and the augmented depth image were utilized by the network to estimate the
occupancy distribution and increase the grasp success rate for occluded objects. During
the perception stage, a set of segmentation masks were also constructed. In the searching
stage, the X-ray mechanical search strategy recognized the mask on the target object and
prepared a grasp on that mask. Deng et al. provided a description of an alternative
method to retrieve a target object based on the question-and-answer (QA) policy using
the manipulation question-answering (MQA) method, in which the robot would employ
manipulation actions to change the environment in order to answer a question. Deng
et al. [99] have a QA module and a manipulation module in their framework. In the
QA module, the visual question-answering task is used. In the manipulation module, a
DQN model was also used so that the robot could use manipulation to interact with its
environment. They explored a situation in which a robot might manipulate objects inside a
bin until they received the answer. Different sorts of questions in the dataset are reasonable
from a research perspective, and the MQA system’s performance should be enhanced.

A goal-conditioned hierarchical RL formulation with a high sample efficiency was
given in [100] to train a push-to-grasp technique for grasping a specific object in clutter.
In [101], the main objective was to use quasi-static push and overhand grasp movements to
extract a target object from a densely packed environment. The visual foresight tree (VFT)
method was presented to identify the shortest sequence of actions. The method combined
a deep interactive prediction network (DIPN) for estimating the push action outcomes, and
the Monte Carlo tree search (MCTS) for selection of the best action. However, the time
required by VFT is long due to the large MCTS tree that must be computed. Moreover, it
assumes prior knowledge and relies on a target object with a specific color. These studies
concentrated on object retrieval task rather than the objects removal task. They assume
prior knowledge and rely on a target object with a specific color.

Applying a mask of the target object to the grasping map is necessary to extend these
techniques to goal-oriented tasks; this is the same as the idea behind the approach in [91].
However, the approach in [91] chooses the actions for grasping the undetected object
using a classifier, which significantly relies on the accuracy of depth data. This concept
could provide an explanation for why their policies regularly fail to decide when to grasp.
Additionally, the task took a long time to complete for the VFT restrictions in [101] because
of the enormous MCTS tree that needed to be computed. It would also be interesting to
construct a network for directly analyzing the reward for the distribution strategy, which is
useful in determining the cost of implementation, even if MCTS can now be performed
with only one thread. Their approach is limited to one color and cannot be used to retrieve
an object of a different color without first being trained on that color.

Furthermore, if there are two blue objects in the scene, would their technique be able
to collect both of them, or would it just be sufficient to retrieve one and begin a new trial?
A hybrid planner based on a learning heuristic was employed by Bejjani et al. [102] to
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address the issue of occlusion for lateral access to shelves. They demonstrated how to use a
data-driven approach to build closed-loop systems that are aware of occlusions. The hybrid
planner was used to look at different states that came from a learning distribution across the
target object’s location. Even though their technique could find different objects, they used
the Alvar (AR) tag tracking library to recognize object positions and clutter. As seen in their
demonstration video, their approach only works with AR-tagged target objects, and the tag
must cover all of the object’s faces. The question is, “Will the AR-tag work if it is attached
to one face that is not visible to the camera?” Moreover, object retrieval from a confined
environment has been addressed using the DQN-based Obstacle Rearrangement (DORE)
algorithm as proposed in [103], and the success rates were checked using intermediate
performance tests (IPTs). In the event of a failure, the algorithm employs a transfer learning
technique. The features of actions were used to construct two networks: a single DQN
and a sequentially separated DQN. Table 3 highlights the most important studies that
attempted to address the problem of retrieving objects in a cluttered environment.

In conclusion, the retrieval object task has been the focus of a significant amount of
research yet continues to be challenging. Even though the retrieval object task has been
extensively researched, some difficulties will need to be resolved in order to enhance the
retrieval object pipeline in the future. Table 4 highlights the most important studies that
attempted to address the problem of retrieving objects in a cluttered environment.

Table 4. Important articles on finding an object in a cluttered environment.

Ref Method Weakness Gripper Mechanism Success Rate

[89]

• Mask-RCNN was used to detect
the target object, and then
Q-learning was trained on two
FCNs by using DenseNet (a
pre-trained model) in parallel, in
which the first learning estimated
the push action direction, whereas
the second learning determined
the possible grasp point; this
approach executed grasping and
pushing based on the max-value
generated by the depth
heightmap’s heatmap

• Assumed prior knowledge and
relied on a predefined target object.

• The testing scenarios were
concentrated on a single object type,
which cannot be applied to other
objects; unfamiliar objects required
further training before they can be
acknowledged.

• Max-value-based action selection,
making a push movement when it
was not required, resulting in a
sequence of grasping and
pushing actions.

Parallel-jaw
finger

Push-to-
grasp N/A

[90]

• Volumetric representation of a
scene state by using TSDF and
detections

• RL’s agent in PPO was used to
coordinate the learning of
grasping or pushing

• Discretized representation to encode
observation history, thus affecting
the next iteration assumption given
the need to ‘forget’ the volume
where the objects had moved.

• Assumed prior knowledge and
relied on a target object with a
specific color (e.g., red cube); besides
the red color, the model must be
retrained.

• In the actual world, some
end-effector positions are
kinematically impossible to achieve.

• Their test scenarios had a lower
level of clutter.

Parallel-jaw
finger

Push-to-
grasp 97.3%

[91]

• A target-oriented method was
proposed based on DQN and
divided into two sections:
exploration (finding the target
object in the clutter, whether
visible or not) and coordination
(choosing the right action, such as
pushing or grasping).

• Assumed prior knowledge and
relied on a target object with a
specific color.

• The entire pushing reward function
was built manually; may need
numerous tuning iterations and
lacks adaptability to new scenarios.

Parallel-jaw
finger

Push-to-
grasp 86.0%
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Table 4. Cont.

Ref Method Weakness Gripper Mechanism Success Rate

[100] • Deep Q-learning

• Assumed prior knowledge and
relied on a target object with a
specific color.

• Deep Q-learning is model-free and
does not make predictions about
future states.

Parallel-jaw
finger

Push-to-
grasp 83.1%

[101]

• Quasi-static push and overhand
grasp movements were used to
extract a target object from a densely
packed environment. The presented
VFT method identified the shortest
sequence of actions by using DIPN
to estimate the push action
outcomes. MCTS was used to
predict and choose the best action.

• The time required by VFT was long
due to the large MCTS tree that must
be computed.

• Assumed prior knowledge and
relied on a target object with a
specific color.

Parallel-jaw
finger

Push-to-
grasp 98.5%

[103]
• The DQN-based Obstacle

Rearrangement (DORE) algorithm

• Their approach was limited to
retrieving the target object using
identical grids space-based
performing rearrangement objects,
which cannot be applied to instances
that were not modeled by regularly
spaced identical grids.

• It was unable to cope with the
challenge of multiple objects in an
environment where invisible space
exists because of objects being
occluded.

• Once the number of obstacles
multiplied, their success rate
dropped dramatically.

Parallel-jaw
finger Pick-to-place 74~95%

5.3.2. Singulation Task

A singulation object is a task that involves isolating an object from its crowded sur-
roundings such that the robot may quickly reach the target. The receding horizon planner
(RHP) was proposed in [104] to retrieve the target object via pushing manipulation in a
clutter situation. The authors of the work explored how to identify a suitable function-based
heuristic for planning and estimating the cost-to-go from the horizon to the target. The
DQN method was trained on a dynamic neural network to decide the executable actions.
They also proposed a RL policy in the form of an RHP to choose a random pushing action
with a chance of the policy querying the RHP for the movement. Addressing the challenge
of reaching the target in the clutter is difficult, as it requires rapid planning and reliable
performance in the manipulation task. To enhance the pushing behavior, the study in [105]
proposed the combination of image-based learning systems with look-ahead planning.
The authors intended to use object geometries to improve the efficiency of manipulation
movements. However, this approach generally necessitates knowledge of the position and
shape of obstacles. In reference [106], the work’s contributions were built on the research
on heuristic learning for RHP in a discrete action space [104] and learning transferable
manipulation skills through abstract state representation [105]. The researchers of the
work extended the contributions to gain manipulation actions in a continuous action space,
reducing by threefold the number of required pushing movements to solve a manipulation
problem compared with a discrete action space. In [105], two heuristic learning approaches
were used in discrete and continuous action spaces. The researchers advocated modifica-
tions to the existing IL and RL methods as a means of improving the learning algorithm’s
stability in sparse-reward environments with nonlinear and non-continuous dynamics.

Furthermore, despite the complexity of a scene, no mutual support nor occlusion
exists between them [107]. The approaches in [96,97,99] have different degrees of success;
nevertheless, due to the high-dimensional and under-actuated issues and the uncertainty of
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real-world physics, the complex scenarios involved in this problem remain challenging for
autonomous systems. To mitigate these issues, approaches utilizing randomized planning
have been proposed. Papallas et al. [108] proposed human guidance to solve the issue of
reaching through a clutter. The approach required human inputs to be fed before planning.
It also used a sampling-based planning approach as opposed to the trajectory optimization
approach. However, trajectory optimization is more appropriate for online replanning as
it entails warm starting the optimization with the trajectory from the previous iteration.
In [109], Papallas et al. subsequently proposed the use of trajectory optimization with
human input. Their techniques are only concentrated on isolating the target object from its
surroundings. However, they do not consider the surrounding objects while attempting
to reach the target object. In this instance, the value function is learned from predefined
features, which limits the framework’s applicability to certain single-shaped objects, as
described in [96,98–100]. In addition, those methods presupposed a predefined collection
of geometric descriptions of real-world objects and used Cartesian coordinates to express
the state. In simulated and real tests, these methods are limited to singulating, separating,
organizing, and sorting large-scale clutters. Randomized planning is one of the most
recent techniques of clutter manipulation. However, the issue remains challenging because
planning timeframes are still in the tens of seconds or minutes, and success rates are low
for difficult situations.

Grasping of objects in a cluttered environment is challenging because the target object
might be laid closely with the surrounding clutter, resulting in a lack of collision-free grasp
affordances. A failed grasp occurs when the target object is either touched or occluded by
other items in the scene. The robot is unable to execute collision-free grasping due to the
object’s closeness to the box borders or other items. When an object is pushed, it is also
isolated, allowing the manipulator’s fingers to be positioned. In [110], the problem of object
singulation in a cluttered environment was addressed to help grasping. The authors of
the work proposed lateral pushing movements to separate the object from its surrounding
clutter, a scheme comprising previously undetectable objects by using the fewest number
of achievable pushes. They leveraged RL to determine the optimal push policies based on
in-depth observations of the scene. The action value function could be estimated using a
deep neural network (Q-function). Although a high singulation success rate was obtained
in the simulation, the singulation is inappropriate in real-world settings because of the slow
convergence of the network. In addition, the approach has limitations in terms of barrier
height assumptions. Split DQN [111] can offer a solution to this problem by demonstrating
faster convergence to the optimal policy and offering a generalization to the additional
scenes. Although [111] only employed a single policy (max-value between the Q-values
of the discrete directions), it could determine several policies, namely, basic policies and
a high-level policy. Both [110,111] focus on teaching a robot to isolate objects from its
surroundings by using a push action, but the method’s performance with more primitive
actions, such as pick-and-place action, has not been evaluated. Training the robot in even
more difficult circumstances, such as scenes where the target object is blocked by other
items from the top, remains a problem. Both methods may be extended by determining
whether continuous actions can produce optimum policies for this sort of complex situation.

In contrast to the work in [110,111] that utilized discrete actions to isolate the target
object, the work in [112] used continuous actions to provide the agent with additional
options for pushing. The work proposed a modular RL technique to entirely isolate the
target object from its surroundings by using continuous actions. The heightmaps of the
scene and the mask of the target were utilized to create the visual state representations.
An autoencoder (AE) was used to reduce the dimensionality of each observation state.
Then, the AE’s latent vectors were sent for high-level policy, which then determined which
primitive policy to use. As a result, a high-level policy was used for selecting amongst
several pushing primitives that had been trained individually. With the action primitives
and feature selection, prior knowledge could be efficiently incorporated into learning, thus
boosting sample efficiency. However, even though the approach is efficient at isolating a
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target object in a crowded environment, it is only intended to isolate the object without
grasping it. This aspect should be examined in the future, coupled with the grasp action,
to not only isolate but also pick up objects in cluttered environments. In addition, for
future work, this technique may be useful in the assessment of the policy for non-convex
geometry objects.

The current approaches are limited because they either model systems with a fixed
number of objects or use image-based representations whose outputs are not interpretable
and quickly accumulate errors. In reference [113], a GNN-based framework was proposed
for effect prediction and parameter estimation of push actions by modeling object relations
based on contacts or articulations. However, as reported, this method relied on a predefined
number of objects. Furthermore, it only considered simple scenes, such as falling blocks,
and did not involve applied actions for robotic manipulation tasks. The framework is
generic and might benefit from intelligent exploration strategies in order to be generalized
to a changing number of objects. In addition, the learning of unsupervised representations
for objects via interactions is a powerful tool for the visual grounding of objects. In another
work, Won et al. [114] proposed a method to produce nonlinear pushing movements for
object singulation based on an off-the-shelf machine learning algorithm and a conventional
semantic segmentation process. Whilst dexterous grasping for various shapes of objects
was not considered, they focused on mitigating the clutter near the target object.

6. Challenges and Future Directions

In the last six years, robotic grasping has been extensively investigated, and several
approaches have been dedicated to addressing many challenges in a cluttered environment.
Although grasping of objects amid cluttering is a trivial task for humans, it is challenging
for robots. This section highlights a few more challenges and the potential future direc-
tions. The discussions are expected to help researchers who are interested in working
in this domain.

6.1. The Challenge of Sole-Grasping Policy

Recent studies that focused on multi-finger grasps (e.g., [37,39,47]) primarily employed
planned precision grasping for known objects. These types of approaches require complete
knowledge of the object’s position, mass, material, and shape to achieve a final grasp.
As a result, reliance upon that particular modeling renders grasping planning prone
to inaccuracy with unknown objects in real-world situations. Furthermore, a mapping
between the hand attitude and the local geometry of graspable objects may be learned by
evaluating the poses of successful grasps over a large dataset. As proposed in [115], the
geometric approach to multi-finger grasping takes shape complementarity between the
robot hand and the target into account. However, grasping in crowded settings with a
multi-finger gripper is inefficient, particularly when dealing with tiny objects or retrieving
a target object from the clutter, since the multi-finger hands may struggle to find enough
space for their fingers to move freely in the workspace. In comparison, other studies
have concentrated on robotic grasping of unknown objects adopting parallel-jaw grippers
(e.g., [30,36,41,43]). These studies use a noisy and partially occluded point cloud as input
and generate pose estimations for feasible grasps as output. However, template matching
cannot perfectly deal with self-occlusion and mutual occlusion between objects. Moreover,
batch-training might not be ideal for predictions dealing with heavy clutters. As stated
in [116,117], multi-finger grasps remain more problematic than parallel-jaw grasps.

Multifunctional gripper-based grasping is a valuable ability for grasping in a clut-
tered environment whilst keeping an affordance-based grasp position detection. This
mechanism has been trained with self-supervised learning and deep RL in several studies
(e.g., [61]). The majority of them attempted to efficiently accomplish the cleaning objects
task. Even though they were able to effectively grasp the object, certain challenges must be
overcome for the mechanism to be generalized in other scenarios. Suction grasping, for
example, recorded failures when the grasp point was estimated on the edge of the object,
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causing the object to slide before it was placed [61]. It was also found to be less efficient
when dealing with deformable objects because of poor shape prediction [58]. To ensure
learning convergence, deep learning models still require a large volume of labeled data.
Researchers must seek ways to learn and estimate object affordances with fewer manually
annotated samples.

The existing state-of-the-art GCN-based techniques mostly focus on the gripper end-
effector. In [118], a GCN-based method was proposed to predict object affordances for
grippers and suction end-effectors in bin-picking situations. To overcome the existing
generalization and scalability constraints, the grasping approach was extended to 6-DoF
in a more flexible manner. Specifically, the proposed suction approach fully used the 3D
environment, and grasps were predicted and executed with 6-DoF pose estimation of
objects. In contrast, the grasp affordance with the gripper approach was predicted using
vertical grasps and discrete angles. As a result, the computational cost was proportional to
the selected number of discrete angles, making the solution difficult to scale. Additionally,
the use of CNNs can substantially enhance grasping accuracy; however, the annotation
of the grasping point is costly (e.g., [60]). Contrary to conventional image classification
algorithms (e.g., CNNs), the weighted ensemble neural network [119] can effectively
overcome the difficulty of uneven placement and illumination across an image, which
can affect the grasp point estimation during learning. D’Avella et al. [120] created a
collaborative robotic system that combined a conventional two-finger gripper with a
low-cost custom universal jamming gripper (UJG). However, it is expected to be more
efficient if the same concept can be trained using self-supervised learning (deep-LR). In
the future, combining perception algorithms with UJGs might be useful in industrial
applications such as bin picking. In conclusion, the difficulties associated with removing
objects that use the sole-grasping mechanism continue to be a source of concern and
demand additional investigation.

6.2. The Challenge of Synergizing Two Actions

Synergizing two actions is another mechanism for addressing the challenges that
sole-grasping and multifunctional grasping policies cannot handle. The difficulty in a
situation involving well-organized objects is that there is no space for the robot’s gripper’s
fingers to execute the grasp. To overcome this challenge, previous studies have focused on
synergizing push and grasp using the max-value strategy (e.g., [62,65]), which is trained on
2NNs, one for each action. The issue continues as a result of an inefficient push: (1) favoring
push over grasp, which results in the entire pile being pushed out of the workplace; (2) the
robot might conduct several pushes to detach the objects from their arrangement; and (3) the
robot performs a push when the grasp action should be performed instead. Furthermore,
because of push behavior and the workspace size, synergizing grasp and push would show
limited performance when it is applied in random crammed clutter scenarios. The reason
is that the max-value strategy clearly prioritizes pushing over grasping. As a consequence,
the robot continues to randomly push amid a cluster of objects, thereby pushing them out
of the robot’s workspace. Additionally, many iterations will be conducted to complete the
task; in some cases, the robot may fail to complete the task successfully because of the many
items being pushed out of the workspace.

To prevent pushing the entire pile, certain studies advocated shifting objects [67] (e.g.,
putting the gripper’s finger on top of the object and then performing a shifting) rather than
pushing them. Alternatively, rule-based approaches (e.g., [66,69,71]) have been proposed
to address the problem of avoiding excessive push, but they still rely on the max-value
policy. The problem still exists since pushing and grasping rely on the max-value, which is
learned using independent NNs. A variety of approaches could be considered in order to
address this issue. The first recommendation is to use the explore-to-coordinate concept,
which involves segmenting objects and masking the target that has to be grasped or pushed
during the explore stage. Then, as in [91,100], evaluating the situation in order to coordinate
a grasp or push action could be another alternative. The policy (e.g., [91,100]) was used
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to retrieve the target object, but it could also be applicable for clearing objects instead of
retrieving them. Furthermore, rather than utilizing a parallel-jaw gripper to push or grasp,
a multifunctional gripper (combining a parallel-jaw and suction as in [61]) may improve
the effectiveness of the learning grasp in a cluttered environment. For instance, pushing or
shifting the item may be accomplished with a parallel-jaw finger, while grasping could be
accomplished by coordinating the parallel-jaw finger and suction mechanism. This strategy
is expected to minimize grasp failure because the multifunctional gripper may push and
grasp simultaneously by coordinating the finger and suction mechanism.

6.3. The Challenge of Assembly and Rearrangement of Objects

In a block-stacking task, humans know that grabbing at empty air would never catch
an object, but a deep RL algorithm may take some time to figure this out. For example, [83]
completed the task of having a long horizon (e.g., stacking objects on top of one another like
a tower); however, it is highly demanding in terms of data and requires several iterations
to be more efficient in implementing such a task. As a result, it should leverage reactivity
and failure recovery to compensate for the loss of precision caused by the policies trained
in simulation and in the real world. Learning the long-horizon tasks remains a challenge
because current studies (e.g., [83,84]) have focused on limited learning tasks that may
not be generalizable in another scenario with a diverse set of objects. Thus, learning the
long-horizon tasks for lifelong learning, in which the technique can gather a large number
of instances autonomously, could be a future path to be addressed.

One of the challenges is that learning of robotic manipulation tasks using RL with
sparse rewards is presently unfeasible due to the enormous amount of training data
needed. For example, many practical block-stacking tasks involve the manipulation of
multiple objects, and the difficulty of such tasks increases as the number of objects increases.
Although learning from a curriculum of increasingly difficult long-horizon tasks appears
to be a natural solution, it does not work in many situations [84]. As pointed out by [121],
such approaches include only simple situations, such as falling blocks, and do not contain
behaviours relevant to robotic manipulation tasks. Currently, the curriculum is being
produced manually and is based on the premise that smaller groupings of objects have
easier learning and control capabilities than larger groups of objects. However, more
complicated and effective curricula may exist along axes of variation other than object
cardinality, and identifying these curricula would be an exciting area of future study.
Learning the long-horizon tasks is not less difficult than learning the task of rearranging
multiple objects (e.g., [85–87]). Calculation time is quadratic in terms of the number of
objects in such methods, which is problematic. The development of computationally
efficient algorithms is required to ensure the large-scale viability of these approaches in
situations involving a large number of objects. It is also recommended to include visual
and other sensory observational investigations.

6.4. The Challenge of Object Retrieval and Singulation Task

The object singulation task is a method of separating items from their surroundings
so that they can be later retrieved. Singulation is considered to be the pre-movement that
can be performed by a robot before retrieving the target objects. Due to the fact that the
singulation task and the retrieval task share the same challenge, we focus on the retrieval
task in this section. Thus, the method that has been suggested to complete the task differs,
making the retrieval task challenges parallel to the singulation task challenge.

Multiple studies emphasizing the segmentation performance-based retrieval of a target
object in cluttered environments have been published recently. The focus is on retrieving
objects of a certain color that have previously been known. This type of approach can
cause a variety of issues. For example, in [90,91,95,98], to be able to grasp the target, the
target object should have a specific color; otherwise, it will fail to find the target. The
question “are their approaches capable of grasping the target object that is not contained
in the priory specified colored-target objects?” remains unanswered. In a scenario with
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two target objects of the same color, another problem is “will their approach retrieve both
or will it suffice to grasp one and start a new test?” Other studies have also proposed to
incorporate barcodes or quick response codes (e.g., [102]), which are affixed to the object
to be detected. This was restricted to tags on the target object, which must cover all of the
object’s faces. The concern is “will the VAR-tag work if it is attached to one face and that
face is not visible to the camera?” This remains a difficult domain, since their approaches
assume prior knowledge and rely on a predefined target object either using color or tag-free
(e.g., QR code and barcode). It is recommended to be thoroughly studied to resolve these
constraints. Lastly, the exploitation of embodiment is a technique for leveraging language-
based grasping learning. This applied strategy also allows for the smooth integration of
language learning with RL, as presented in [99], by allowing the varied tasks (e.g., object
retrieval task or clearing object task) to be executed. In embodied language learning in
a dynamic world, deep RL neural architectures offer a potential research path for the
processing of many modalities. We refer the interested reader to the latest survey in [122]
for additional information in this domain.

6.5. The Challenge of Grasping Deformable, Transparent, Black and Shiny Objects

Detecting deformable, transparent, black, or shiny objects amid clutter remains diffi-
cult, and it has not been studied as much as the other types of objects. Imagine a cluttered
scenario consisting of mixed transparent, deformable, shiny, and black objects. A possible
concern is “can the robotic vision detect these objects as it has been with the other types of
objects?” Transparent objects are a frequent sight in everyday life, but they have unique
visual characteristics that make accurate depth estimations with ordinary 3D sensors ex-
tremely difficult. The work of [123], for example, is a recent effort that emphasizes this
difficulty. They introduced the ClearGrasp concept and used deep learning with syn-
thetic training data to infer the correct 3D geometry of transparent objects from a single
RGB-D image. However, their technique posed a serious problem; that is, they used a
pre-trained model that is not always effective in all circumstances, resulting in point cloud
noise that can impact the prediction grasp point. As a potential future path, incorporating
vision-guided exploration with RL-based action model training (e.g., [38]) might be a viable
strategy in situations where data efficiency is the learning constraint. Alternatively, several
works have concentrated on deformable objects [124] or rigid and soft objects that are
randomly piled together [125]. In [125], even though the method was only tested on a
few types of deformable objects, it could be extended to incorporate an RL framework
in the future, which we believe can enhance grasping in a cluttered environment for the
removal or retrieval object tasks. Regarding shiny or black objects, the issue of “is there
a method that can grasp these types of objects once they are placed together in cluttered
scenarios?” remains unresolved. This area requires further research as a potential direction
for academics.

7. Recommendations

Some recommendations for future research direction are discussed in this section. We
believe it would be valuable for academics to further explore this domain by using the
information provided in this survey.

Firstly, it is recommended to achieve comparable object detection and posture esti-
mation quality by simply using simulated data. This approach could reduce the need for
access to a robotic setup for adapting the learning method to real-world situations. For
instance, it would be interesting to expand the training procedure to allow the semantic
segmentation of scenes as implemented in [30,55], which may lead to a more robust posture
estimate when considering the model as described in [126]. Additionally, as demonstrated
in [127], it would be noteworthy to include a learnable function that incorporates object
and contact physics into the prediction model of [31].

In general, view-based rendering is insightful for a variety of activities requiring ego-
centric visual states and action spaces. More research is needed to determine the benefits of
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view-based rendering in other applications (for example, navigation or placement [128]).
In terms of convergence, deep learning models still require voluminous labeled data.
Researchers must seek ways to learn and estimate object affordances with fewer examples
that have been manually annotated. Even though existing state-of-the-art GCN-based
techniques focus on the gripper end-effector, a comparison of [118] with other methods in
a bin-picking situation would be beneficial. Consequently, the grasping approach needs to
be extended more flexibly to 6-DoF configurations to overcome the existing generalization
and scalability constraints. Moreover, Q-PointNet was proposed by Wang and Lin [129]
to detect a partial object in cluttered space. The RGB image is used as the input of the
mask R-CNN to generate a mask from the target object. The depth image and mask images
are combined to form a partial point cloud. The partial point cloud is then fed into the
PointNet feature extractor. This sort of deep learning model is advantageous and can be
used in tandem with the RL framework to enable the robot to either clear or retrieve objects.
Secondly, PointNet++ [130], another deep learning structure, could be used instead of
PointNet because it outperforms PointNet and is more resistant to point cloud noise.

Secondly, certain failure instances occurred in [47] as a result of the high-level clutter,
which reduced the likelihood of the robot putting its fingers. To bridge this gap, it is
recommended to combine tactile-enabled BH-282 Barrett hand-based object handling with
Multi-Fingered Adaptive Tactile Grasping (e.g., [131]). Alternatively, GenerAL [47] could
be well trained to learn the graspable point and pre-grasp finger joint angles, increasing the
probability of efficiently grasping. As a consequence, GenerAL may be able to determine
which object should be grasped next in a cluttered environment. It is advocated to utilize
GenerAL for the aim of grasping a specific object with semantic segmentation methods
(e.g., [132]). Another suggestion is to use a separate network for collision detection, as
described in [41], to speed up the learning of the avoidance collisions in [48]. Another
issue that requires attention is the fact that the high-quality grasps, produced by [48],
may not always transfer into efficient grasp prediction in the actual world. For example,
instead of directly calculating the quality metric, a critic network can be used to assess
multi-finger grasps. As a consideration, the generative grasping convolutional neural
network (GG-CNN) [133] seems to be a promising candidate for improving grasping in the
presence of clutter. In addition, the work in [49] could be enhanced to incorporate an active
perception component, enabling the robot to choose informative perspectives; this strategy
can more considerably reduce uncertainty in grasp estimations. Moreover, integrating
more sensors (for example, a touch action [134]) and enabling the robot to do additional
primitive actions (for example, pushing [65]) are other effective strategies to enhance the
resilience of a closed-loop robotic grasping system.

Lastly, according to recent computer vision applications, large manually labeled
datasets have remarkable segmentation performance, which necessitates a time-consuming
procedure of manually labeling data for new settings. Several robot functions, including
grasping, tracking, and object sorting, require visual segmentation of unknown objects.
Different works have addressed this challenge, using methods that can be used to alleviate
the challenge of finding object in clutters. For example, the transfer learning technique [135]
has been implemented by fine-tuning an existing DeepMask instance segmentation network
(binary masks). Moreover, a single-stage one-shot shape-based instance segmentation
method [136] has been proposed to create the target object’s modal segmentation mask in a
depth image of a scene by simply using the target object’s binary shape mask. Even though
such approaches entail a particular challenge in the new environment, they can enhance
segmentation performance. Instead of looking for a single target object, as in a mechanical
search, training on multi-class and multi-object labels can provide a more effective approach
for the segmenting situations in grasping. Recently, unsupervised learning methods, such
as those presented in [137], have played a significant role in this domain because they offer
a direct way of modeling the dynamics of a robot’s interactions from unlabeled 3D point
clouds and images. In the future, it will be possible to train structured dynamics models
across a wider range of applications by learning to directly infer depth maps from visual
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observations in a self-supervised manner. The integration of both the inverse and forward
dynamics models in the planning is also a potential path for future research.

8. Conclusions

Sensing and interpreting the surroundings are fundamental skills for the robot to
possess, and assist the robot in performing object grasping in a cluttered environment.
Several studies have been devoted to overcoming the difficulties of grasping in clutter,
where various tasks have been achieved using alternative perspectives based on deep
reinforcement learning. In our review, we divided the task domains into four categories.
Some efforts have emphasized achieving the object removal task by picking up all the
objects from the robot’s workspace. Others entailed solving the problem of retrieval and
singulation of objects from a pile. Several efforts, on the other hand, have been made to
execute assembly tasks by rearranging objects in clutter. This review article contributes es-
sential insights about the challenges, future directions, and recommendations by discussing
relevant studies on performing grasping tasks amid cluttered environments. According
to the key findings, grasping objects in cluttered surroundings remains a challenging task
that requires additional investigation to increase grasping performance. We expect that this
review paper will help academics to discover knowledge gaps that need to be addressed in
the future.
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