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Dissolved oxygen (DO) is one of the main prerequisites to protect amphibian

biological systems and to support powerful administration choices. This

research investigated the applicability of Shannon’s entropy theory and

correlation in obtaining the combination of the optimum inputs, and then

the abstracted input variables were used to develop three novel intelligent

hybrid models, namely, NF-GWO (neuro-fuzzy with grey wolf optimizer), NF-

SC (subtractive clustering), and NF-FCM (fuzzy c-mean), for estimation of DO

concentration. Seven different input combinations of water quality variables,

including water temperature (TE), specific conductivity (SC), turbidity (Tu), and

pH, were used to develop the prediction models at two stations in California.

The performance of proposed models for DO estimation was assessed using

statistical metrics and visual interpretation. The results revealed the better

performance of NF-GWO for all input combinations than other models

where its performance was improved by 24.2–66.2% and 14.9–31.2% in

terms of CC (correlation coefficient) and WI (Willmott index) compared to

standalone NF for different input combinations. Additionally, the MAE (mean

absolute error) and RMSE (root mean absolute error) of the NF model were

reduced using the NF-GWO model by 9.9–46.0% and 8.9–47.5%, respectively.

Therefore, NF-GWO with all water quality variables as input can be considered

the optimal model for predicting DO concentration of the two stations. In

contrast, NF-SC performedworst for most of the input combinations. The violin

plot of NF-GWO-predicted DO was found most similar to the violin plot of

observed data. The dissimilarity with the observed violin was found high for the

NF-FCM model. Therefore, this study promotes the hybrid intelligence models

to predict DO concentration accurately and resolve complex hydro-

environmental problems.
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1 Introduction

The evaluation of water assets and the administration of

water quality and quantity have become a debated issue in

hydroecology with population growth and environmental

changes. Water pollution rather than water availability is often

the main challenge due to its multifaced impact ranging from

biodiversity to public health. Therefore, water-quality

monitoring is one of the most emphasized topics in water

research. Numerous chemical, physical, and biological

parameters determine river water quality. All the water quality

parameters directly or indirectly affect dissolved oxygen (DO)

concentration in water bodies, and thus DO is considered an

integrated water-quality indicator (Ahmed and Shah, 2017;

Hameed et al., 2017). Therefore, precise forecasts of DO are

prerequisites to protect amphibian biological systems and

support powerful administration choices (Wen et al., 2013;

Elkiran et al., 2019; Nourani et al., 2019).

Traditionally, physically based models are used for DO

prediction (Radwan et al., 2003; Wu and Yu, 2021). The

models generally use advection and dispersion theories to

simulate the biological and chemical processes in water for

DO prediction. For example, Radwan et al. (2003) used

Mike11 for modeling DO in river water. Wu and Yu (2021)

used a modified version of the Streeter–Phelps model coupled

with the shallow water equation model to simulate mass

transportation and DO distribution. The studies indicated the

need for a large amount of data and computational time to

predict DO reliability. Radwan et al. (2003) reported that a

simplified conceptual model can provide a similar DO

prediction with much less resources and time. In addition,

statistical models can be used to predict DO with less amount

of data and resources. Pham et al. (2020) developed several

generalized linear models to predict DO. They showed that

statistical models can predict DO with reasonable errors.

However, conceptual models simplify real physical processes

and fail to provide accurate predictions when river water DO

concentration follows a non-linear and complex pattern. The

linear statistical models experience similar drawbacks when DO

is non-linearly related to its controlling factors (Chen and Liu,

2014; Elkiran et al., 2018).

Artificial Intelligence (AI)-based models have been utilized in

recent decades in various hydro-natural investigations (Abba

et al., 2017; Yavari et al., 2018; Maroufpoor et al., 2019b;

Seyedzadeh et al., 2020; Meidute-Kavaliauskiene et al., 2021).

The rapid evolution of AI techniques also helped in accurate DO

simulations to resolve complex hydro-environmental problems.

Artificial neural networks (ANNs) have helped hydrologists in

predicting variations in water quality accurately. The other AI

models also showed promising results in predicting water quality

and DO (Zaher et al., 2015; Elkiran et al., 2018; Nourani et al.,

2018; Pham et al., 2019; Banadkooki et al., 2020; Abba et al., 2021;

Pham et al., 2021a; Pham et al., 2021b). For example, Chen and

Liu (2014) used neuro-fuzzy (NF), back propagation neural

network (BPNN), and multiple linear regression (MLR)

approaches to estimate DO in the reservoir. The outcomes

indicated that the NF model outperformed BPNN. Xiao et al.

(2017) employed BPNN to simulate DO in Beihai, Guangxia

aquaculture, using various inputs. The prediction results showed

the superiority of BPNN against autoregression (AR), curve

fitting (CF), grey model (GM), and SVR models. Elkiran et al.

(2018) employed the combinations of NF, feedforward neural

network (FFNN), andMLR to predict DO atmultiple locations in

India using different input combinations. Their results showed a

slight prediction increment of NF over FFNN. Other recent DO

prediction studies using AI-based models include Antanasijević

et al. (2019), Cao et al. (2019), Liu et al. (2019), Kisi et al. (2020),

and Rahman et al. (2020). The studies revealed AI-based models

as promising tools owing to their capability to handle non-linear

systems.

The literature overview revealed no specific AI-based

models tend to be incomparable to others due to the

anthropogenic nature of complex aquaculture in different

geographical locations. According to Abba et al. (2020),

Hadi et al. (2019), and Yaseen et al. (2020), the estimation

outcomes produced by some computational models were still

grieving from the degree of inadequacy, particularly when a

highly chaotic hydro-environmental system is employed.

Therefore, hydrologists continuously explored better AI

models for DO prediction more efficiently. NF integrates

neural networks and fuzzy systems to join their advantages

for a better solution to complex problems. The capability of

NF to learn data patterns using fuzzy rules has made it highly

adaptable to different kinds of data and thus superior to many

other AI algorithms in solving a wide range of problems from

different fields (Atmaca et al., 2001). However, the major

drawback of NF is that its performance significantly is

susceptible to the selection and optimization of the input

variable’s fuzzy membership function. The state-of-the-art

hybrid AI model displayed promising prediction results

over standalone models in different hydrological studies

(Maroufpoor et al., 2019a; Pham et al., 2019; Maroufpoor

et al., 2020; Mohammadi et al., 2020; Ebtehaj et al., 2021;

Malik et al., 2021; Sammen et al., 2021). Therefore, such

models may be a suitable alternative to standalone models

in DO prediction. The optimizations and chemometric

approaches were introduced in several fields of science and

engineering, for instance Shojaei et al. (2019), Shojaei and

Shojaei, (2019), Pourabadeh et al. (2020), Shojaei et al. (2021),

and Yang et al. (2022).
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In order to overcome the inherent limitations established

by standalone models. This research aims to predict the DO

concentration using three hybrid models, namely, NF-GWO,

NF-SC, and NF-FCM, and compare them with the standalone

NF model. The entropy method was used to evaluate each

input variable’s effect and uncertainty on the models’

performance to select the best prediction model structure.

The entropy theory, developed by Shannon (1948), has been

used in a wide range of studies (Singh, 2013a; Singh, 2013b;

Ellenburg et al., 2018; Maroufpoor et al., 2020). There is no

technical research in which the aforementioned techniques

are used for predicting DO concentration to the best of the

author’s knowledge.

2 Methodology and materials

2.1 Case study and data sets

This research aimed to develop an intelligent hybrid

paradigm for predicting DO concentration in river water

using three hybrid models, NF-GWO (neuro-fuzzy with grey

wolf optimizer), NF-SC (subtractive clustering), and NF-FCM

(fuzzy c-mean). The newly proposed models’ efficacy was

established by comparing their performance with the

standalone neuro-fuzzy (NF) model.

In this study, four water quality parameters, namely,

specific conductance (SC, μS.cm-1), water temperature

(TE,°C), pH of the water, and turbidity (Tu, Formazin

Nephelometric Units: FNU) were used as inputs for the

prediction of DO. Two stations (i.e., Station-A and

Station-B) in California were selected for the case study

(Figure 1). Hourly water quality data at these two stations

for the period 1 January 2019–31 December 2019 were

collected from the United States Geological Survey

(USGS). The descriptive statistics of the data are shown in

Table 1. Furthermore, the entropy theory, based on statistical

measurements introduced by Shannon (1948), was used to

evaluate the significant input variables. Seven different input

combinations of water quality variables, including water

temperature (TE), specific conductivity (SC, turbidity

(Tu), and pH, were used to develop the prediction models

at two stations in California. Finally, data were randomly

divided into two parts: training (70%) and test (30%).

2.2 Input combinations

The entropy theory, based on statistical measurements

introduced by Shannon (1948), was used to evaluate the

significant input variables. In this theory, “information”

indicates the level of stochastic. The entropy is calculated

based on the following steps:

The G matrix is introduced as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
G11 G12 . . . G1N

G21 G22 / G2N

..

. ..
.

1 ..
.

GM1 GM2 / GMN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where N (i = 1, 2, 3 . . . . . . N) and M (j = 1, 2, 3 . . .M) represent

the number of samples in each variable and the number of

variables, respectively. Eq. 2 applied to normalize the G matrix:

FIGURE 1
Location map of the selected stations.
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Oij �
Gij − (Gij)Min(Gij)Max

− (Gij)Min

, (2)

where Oij, (Yij)Max, and (Yij)Min are the normalized, maximum,

and minimum parameters, respectively. The next step is to

calculate the probability of each parameter:

Kij �
(Gij + 0.0001)∑M

i�1
(Gij + 0.0001), (3)

where Kij is the probability of each parameter.

Ej � − 1
ln(M)∑Mi�1Kij ln(Kij), (4)

EWj � 1 − Ej∑N
j�1
(1 − Ej), (5)

where Ej is the information entropy and EW is the entropy

weight (relative importance). A variable with a weight close to

one indicates more importance.

Seven scenarios of inputs were investigated to assess their

influence on DO concentration prediction, as described in

Table 2. The input combinations are termed C1 to C7 in

Table 2. The comparison of model performance for different

input combinations helped find a suitable model based on data

availability. Absolute correlation coefficient and entropy

TABLE 1 Statistical description of data sets at study stations.

Station Variable Mean Maximum Minimum SD CV

A TE (oC) 15.99 23.95 7.80 4.63 3.45

SC (μS/cm) 168.97 375.50 97.25 46.39 3.64

pH 7.58 8.30 7.08 0.17 44.99

Tu (FNU) 20.67 309.25 2.35 32.82 0.63

DO (mg/L) 8.92 11.10 7.30 0.82 10.82

B TE (oC) 16.11 23.33 8.33 4.58 3.52

SC (μS/cm) 2104.22 14700.00 104.50 2774.84 0.76

pH 7.68 8.30 7.20 0.20 39.28

Tu (FNU) 22.74 174.75 4.83 19.73 1.15

DO (mg/L) 9.08 10.85 7.75 0.71 12.86

FNU, formazin nephelometric units, SD, standard deviation, CV, coefficient of variation.

TABLE 2 Selected input combinations for DO prediction at study
stations.

Combination

1 2 3 4 5 6 7

TE TE TE TE TE TE TE

SC SC SC pH SC pH Tu

Tur pH Tu Tu

pH

TE, water temperature; SC, specific conductance; Tu, turbidity

FIGURE 2
Absolute correlation coefficient and entropy weight for the
input variables at Station-A and Station-B.
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weight were used to select the input combinations (Figure 2).

The first combination includes the four variables (TE, SC, pH,

and Tu). Other combinations include fewer inputs to find a

parsimonious model for its easy application in the data

scarcity regions. For Station-A, the highest correlation

coefficient and entropy were found for TE, 0.85 and 0.75,

respectively. The SC showed the second-highest correlation of

0.46, but a low entropy of 0.11. The lowest entropy was

recorded for Tu (0.03), which showed a correlation

coefficient of 0.24. For Station B, the highest correlation

coefficient and entropy were also noticed for TE, 0.88 and

0.72, respectively. The pH showed the second-highest

correlation, 0.54, and the entropy of 0.17. In this study,

data were randomly divided into two parts: training (70%)

and test (30%). It should be noted that outlier data were

removed by statistical methods, and also raw data were

normalized for modeling.

2.3 Applied AI models

2.3.1 Neuro-fuzzy system
The NF model, which combines ANN and fuzzy logic, was

designed by Jang (1993). The most important benefit of fuzzy

logic is that it can give an intermediate answer to zero-one

programming problems. It can be used when there is no

complete understanding of the system’s physical and

fundamental relationships. The NF structure is formed based

on the membership functions of input and output, fuzzy rules,

and the number of membership functions (Tanaka, 1997).

Parameters related to membership functions need to be

selected so that they are most consistent with the

input–output data. Three algorithms, including SC, FCM, and

GWO were used in this research to optimize the rules in the

model training process. The flowchart of the proposed

methodology is shown in Figure 3.

2.3.2 Subtractive clustering
In the NF model, the number of rules to determine the

optimal system increases with the number of membership

functions and parameters of the model. Therefore, it is

necessary to optimize the NF rules to reduce computational

costs. To this end, the subtractive cluster is integrated with the NF

system, where the modeling process consists of two stages. First,

the fuzzy inference system is determined using the subtractive

clustering method. Then, NF is used to adjust the fuzzy inference

system and train it based on input–output data.

In subtractive clustering, each cluster’s center represents

the behavior of a part of the data and represents a rule.

Therefore, to determine the optimal structure, cluster

information is used to determine the number of basic rules

and membership functions. Choosing a small radius increase

the number of rules and make the computations more

complicated. In this study, the effective radius within the

range of zero to one was selected based on the least root mean

square error (RMSE).

2.3.3 Fuzzy C-means clustering
FCM is a clustering technique where each point belongs to a

cluster with a certain degree. Bezdek (1973) introduced this

technique to improve the efficiency of previous clustering

methods. In FCM, a certain number of different clusters

describe the data clustering in multi-dimensional space. The

FCM starts from an initial hypothesis as the centers of the

FIGURE 3
Flowchart of applied models.
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clusters. Usually, this initial hypothesis is incorrect and does not

specify the correct location of the centers. The FCM tries to link

each point to one of the clusters by the level of its

membership. The centers gradually move to their actual

position in the data-set through repeated updating of the

cluster centers and membership levels for clusters. These

updates are based on decreasing the distance between each

point to the center of the clusters. The least RMSE

was the basis for selecting the optimal number of clusters in

the FCM.

FIGURE 4
Diagram of GWO.

TABLE 3 Performance of models in predicting DO concentration in the test phase (Station-A).

Model Metrics C1 C2 C3 C4 C5 C6 C7

NF-GWO MAE 0.250 0.295 0.475 0.315 0.503 0.332 0.407

RMSE 0.320 0.365 0.565 0.391 0.625 0.438 0.508

CC 0.869 0.812 0.590 0.800 0.381 0.791 0.610

WI 0.908 0.894 0.657 0.872 0.594 0.826 0.763

Structure (30,1500) (40,1500) (35,1500) (40,1500) (20,1000) (25,1000) (30,1000)

NF MAE 0.463 0.481 0.443 0.478 0.612 0.448 0.442

RMSE 0.609 0.592 0.590 0.597 0.757 0.566 0.558

CC 0.523 0.508 0.478 0.609 0.149 0.642 0.491

WI 0.692 0.681 0.671 0.663 0.501 0.639 0.664

Structure -- -- -- -- -- -- --

NF-SC MAE 0.637 0.452 0.449 0.477 0.545 0.456 0.596

RMSE 0.808 0.575 0.550 0.565 0.671 0.575 0.770

CC 0.639 0.643 0.501 0.477 -0.046 0.648 -0.074

WI 0.683 0.662 0.653 0.662 0.304 0.667 0.345

Radii 0.4 0.5 0.75 0.7 0.6 0.3 0.5

NF-FCM MAE 0.504 0.348 0.463 0.577 0.521 0.412 0.485

RMSE 0.634 0.441 0.565 0.765 0.695 0.534 0.625

CC 0.563 0.752 0.500 0.411 0.618 0.624 0.365

WI 0.646 0.825 0.658 0.619 0.754 0.789 0.606

Cluster 3 5 3 3 4 3 2
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2.3.4 Grey wolf optimizer
GWO is an evolutionary algorithm introduced by Mirjalili

et al. (2014). This algorithm follows the leadership hierarchy

structure, which consists of an average of 5–12 wolves. The

leadership hierarchy is based on four types of grey wolves,

namely, alpha (α), beta (β), delta (δ), and omega (ω). The

order of the solutions in this algorithm after alpha is

considered β, δ, and ω. Therefore, the major stages of grey

wolf hunting are as follows. The alpha wolf (α) plays the main

role which includes hunting, sleeping, and waking hours. The β is
responsible for performing alpha commands over the pack. On

the other hand, ω is seen as a victim in the group and therefore

follows other wolves and can eat after all of them. Finally, δ
wolves must follow β and α wolves, while they dominate ω
wolves. Figure 4 shows the diagram of GWO.

Grey wolf hunting behavior modeling assumes that alpha,

beta, and delta have sufficient knowledge of prey position.

Therefore, three optimal solutions, including alpha, beta, and

delta are obtained, and the other solutions (wolves) must change

their position based on the optimal solutions.

2.3.5 Proposed hybrid method
The coupled NF and GWO were developed as NF-GWO to

predict the DO concentration. In the NF-GWO model, GWO

optimizes NF parameters for best performance. NF-GWO consists

of five layers. The first layer’s nodes represent the input variables. The

second and third layers represent the membership functions for the

input variables and the fuzzy logic rules, respectively. In the fourth

layer, Takagi-Sugeno-Kang’s model adjusts the performance of the

nodes. Finally, the DO concentration is predicted in the last layer

(output layer). During the training phase, the GWO generates the

initial population of wolves and updates the solutions based on the

DO concentration prediction accuracy. The solutions are

continuously updated unless the algorithm reached the maximum

number of iterations or errors less than the sill value. The parameters

found in the last step are transferred to the structure of the NFmodel.

The initial population and the number of iterations for each

combination were determined through the trial-and-error method.

The initial population and the number of iterations are listed in the

structure row of the results table. Population values ranged from 20 to

40 and iterations from 1,000 to 1,500.

2.4 Performance statistics for the
evaluation of the models

Four statistical metrics named root mean squared error

(RMSE), mean absolute error (MAE) correlation coefficient (CC),

andWillmott Index (WI), were applied to assess the performance of

the applied models in predicting DO. Among the four metrics, two

TABLE 4 Performance of models in predicting DO concentration in the test phase (Station-B).

Model Metrics C1 C2 C3 C4 C5 C6 C7

NF-GWO MAE 0.346 0.352 0.386 0.346 0.414 0.401 0.44

RMSE 0.413 0.416 0.459 0.417 0.475 0.454 0.508

CC 0.563 0.453 0.215 0.497 0.280 0.359 0.387

WI 0.713 0.607 0.438 0.644 0.440 0.486 0.53

Structure (20,1500) (30,1500) (25,1500) (40,1500) (20,1000) (25,1000) (30,1000)

NF MAE 0.407 0.392 0.531 0.471 0.514 0.436 0.440

RMSE 0.490 0.481 0.626 0.557 0.585 0.536 0.506

CC 0.339 0.424 0.303 0.350 0.266 0.371 0.375

WI 0.580 0.641 0.522 0.516 0.455 0.610 0.516

Structure -- -- -- -- -- -- --

NF-SC MAE 0.434 0.332 0.607 0.454 0.383 0.396 0.537

RMSE 0.526 0.419 0.690 0.562 0.479 0.479 0.612

CC 0.464 0.398 0.441 0.354 0.236 0.595 0.288

WI 0.678 0.611 0.540 0.607 0.492 0.740 0.481

Radii 0.7 0.9 0.7 0.6 0.7 0.7 0.8

NF-FCM MAE 0.395 0.411 0.422 0.420 0.430 0.458 0.499

RMSE 0.469 0.521 0.510 0.500 0.487 0.537 0.584

CC 0.465 0.446 0.433 0.409 0.270 0.419 0.103

WI 0.642 0.643 0.653 0.634 0.432 0.629 0.388

Cluster 2 4 3 3 4 3 2
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(MAE andRMSE)were used to evaluate the error in themodels, and

two (CC and WI) were utilized to assess the models’ ability to

simulate the temporal pattern of observed DO. They are defined as:

RMSE �

�������������
1
/n∑N

i�1
(Oi − Pi)2

√√
, (6)

MAE � 1
n
∑n
i�1
|Oi − Pi|, (7)

CC � ∑N
i�1(Oi − �O)(Pi − �P)������������∑N

i�1(Oi − �O)2√ �����������∑N
i�1(Pi − �P)2√ , (8)

WI � 1 − ∑n
i�1(Oi − Pi)2∑n

i�1(∣∣∣∣∣∣∣Pi − Oi

∣∣∣∣∣∣∣ + ∣∣∣∣∣∣∣|Oi − Oi|
∣∣∣∣∣∣∣)2, (9)

where Oi and Pi are observed, and the predicted DO value for ith

observations. �O and �P are the mean of observed and the predicted

DO, and n is data points. Four statistical metrics and visual

inspection using scatter plot, box plot, violin plot, and Taylor

diagram were used to assess the performance of the applied

models. Different statistical metrics and plots provide different

measures of model performance, including error, association,

and distribution. Therefore, they were used in this study for a

complete assessment of model performance.

FIGURE 5
Box-whisker plot showing the relative performance of (A)
NF-GWO; (B) NF; (C) NF-SC; and (D) NF-FCM models in the test
phase at Station-A.

FIGURE 6
Box-whisker plot showing the relative performance of (A)
NF-GWO; (B) NF; (C) NF-SC; and (D) NF-FCM models in the test
phase at Station-B.
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3 Results and discussion

3.1 Assessment of the models

In order to assess the performance of the proposed hybrid

model, its results have been compared with the results of the

standalone NF model. The hybrid models are adopted in order to

adjust the hyper-parameters of the standalone model. In this

study, different optimization algorithms including GWO, SC,

and FCM are used to adjust the parameters of the NF model

where these algorithms examine different regions of the search

space which has several local minima, and then minimize the

range of search to the region that includes the global minima.

Obtained results at Station-A and Station-B are presented in

Tables 3 and 4, respectively. The results at Station-A showed

large variability in model performance for different input

combinations. All the models, except NF-GWO, also showed

different performances in terms of different metrics. For

example, NF for input combination, C7 showed the best

performance based on MAE and RMSE, while it showed the

best performance in terms of CC andWI with input combination

C4. Similar inconsistency was noticed for NF-SC and NF-FCM.

However, NF-GWO performed best in terms of all metrics for

first input combination, C1 (MAE = 0.250 mg/L, RMSE =

0.320 mg/L, CC = 0.869, and WI = 0.908). Comparison model

performance revealed the better performance of NF-GWO for all

input combinations compared to other models. Therefore, NF-

GWO for the input combination of C1 can be considered the best

model for predicting DO at Station-A. Different models showed

the worst performance for different input combinations. For

example, NF-SC performed the worst for C1 while NF-FCM

performed the worst for C5. Overall, NF-SC performed the worst

FIGURE 7
Scatter plot of observed and predicted dissolved oxygen by (A)NF-GWO; (B)NF; (C)NF-SC; and (D)NF-FCMmodels during the testing phase at
Station-A.
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for most of the input combinations and in terms of different

metrics.

The performance of the models at Station-B was found very

similar to that at Station-A (Table 4). Large variability in model

performance for different input combinations was also noticed at

this station. Only NF-GWO showed consistent performance in

terms of all metrics. It also showed better performance compared

to other models for all input combinations. Comparison of model

performance for different input combinations revealed best

performance of NF-GWO for C1 (MAE = 0.346 mg/L,

RMSE = 0.413 mg/L, CC = 0.563, and WI = 0.713) at this

station. Like Station-A, NF-SC showed the worst performance

at this station for most of the input combinations. The

C1 scenario considers all variables (TE, SC, Tu, and pH) as

inputs, while other scenarios omit one to more variables. The

better performance of NF-GWO for C1 indicates all variables are

required to consider for better prediction of DO because the use

of a few water quality parameters may drive to missing the

required information about the effect of these parameters on

dissolved oxygen concentration. Therefore, to obtain more

realistic results and in order to investigate the effect of each

water quality parameter on DO concentration, all possible input

combinations should be considered.

The observed and predicted DO by different models for

different input combinations at Station-A and Station-B are

presented using box–-whisker plots in Figures 5, 6,

respectively. A box with a whisker presents mean

(horizontal line within the box), 25th and 75th percentiles

(lower and upper bound of the box), range without outliers

(spread of the whiskers), and outliers (dots). Therefore, a

comparison of the whisker–boxes provides a model

performance assessment in terms of median, range, and

outliers. The box plot of different models was found

similar to the observed one for different input

combinations. For example, the whisker–box of NF-GWO

for C1 was found more similar to the observed one, while the

FIGURE 8
Scatter plot of observed and predicted dissolved oxygen by (A)NF-GWO; (B)NF; (C)NF-SC; and (D)NF-FCMmodels during the testing phase at
Station-B.
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whisker–box of NF was found more similar to the observed

one for C5. A comparison of whisker–box plots of all models

for all input combinations revealed the best performance of

NF-GWO for C1. The results were found a bit different at

Station-B. The best performance was noticed for NF-FCM

with C4. It was able to replicate the median, interquartile

range, and the range of the data more accurately. However,

the simulated data by NF-FCM for C4 was found a bit right-

skewed compared to observed data. The NF-GWO for C1,

which showed the best performance at Station-A, also

performed well at this station but underestimated the DO

values.

The scatter plots of observed and predicted DO are

presented in Figures 7, 8, respectively. Different plots in

each figure show the performance of a model for different

input combinations. Different colors are used to show the

model performance for different input combinations. The

scatter plots at Station-A (Figure 7) showed better

performance of NF-GWO for C1, NF for C1, NF-SC for

both C1 and C2, and NF-FCM for C2. Overall, most of the

models showed better performance for the input combination

(C1). The performance comparison of the models revealed a

much higher performance of NF-GWO compared to other

models. The NF-GWO for C1 replicated the observed DO

with R2 (determination coefficient) = 0.75. The NF-GWO

predicted DO for C1 was found more aligned to the plots’

diagonal line compared to other models. Though an

underprediction for high values and overprediction for low

values was noticed, the model could still predict most of the

high and low values.

The scatter plots of the models’ predictions at Station-B

(Figure 8) showed more inconsistency than at Station-A. The

NF-GWO performed best for C1, NF for C2, NF-SSC for C6,

and NF-FCM for C1 at this station. All models showed a

lower performance at this station compared to that found at

Station-A. However, NF-GWO for C1 showed the best

performance at this station like Station-A. Though it

underestimated many observed values, it was most aligned

to the scatter plot’s diagonal line compared to other models

for different input combinations.

The capability of the models to reconstruct the distribution

of observed DO was estimated using violin plots. The plots for

the models at Station-A and Station-B are presented in Figures

9, 10, respectively. If the shape of a model’s violin is similar to

the violin of observed DO, the model is considered good. The

violins of different models’ predicted DO showed large

variability in shape and size (Figure 9). None of the models

was able to replicate the shape of the observed violin accurately.

FIGURE 9
Split–violin plot showing the relative performance of (A) NF-GWO; (B) NF; (C) NFSC; and (D) NF-FCM models in replicating probability
distribution of observed data during testing phase at Station-A.
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Overall, the violin of NF-GWO for C1 was most similar to the

violin of the observed data. The dissimilarity with the observed

violin was more for NF-FCM. The dissimilarity between

models’ predicted and observed violins was more at Station-

B (Figure 10) than that noticed at Station-A. In most of the

cases, the models failed to reconstruct the distribution of

observed DO. Overall, NF-GWO for C1 has the best

performance at this station.

Finally, the Taylor diagram was developed to show the

relative accuracy of model predictions. Taylor diagram

graphically compared association, the similarity invariance,

and the mean difference between observed and model output.

Therefore, it is considered a composite way to compare model

performance. Taylor diagrams of the models for Station-A and

Station-B are presented in Figures 11, 12, respectively. The black

dot on the diagram’s x-axis represents observed data, while

different colors present model performance for different input

combinations. A model nearest to the observed point indicates

better performance. The Taylor diagram also showed large

variability in models’ performance for different input

combinations at Station-A (Figure 11). However, all the

models, except NF-FCM, performed best for the first input

combination (C1). The NF-FCM performed best for C6. The

NF-GWO models were nearest to the observation compared to

other models for different input combinations. Overall, the

results identified NF-GWO for C1 as the best model at

Station-A. Inconsistency in model performance was noticed at

Station-B (Figure 12), similar to that noticed using the scatter

plot and the box plot. The NF-GWO showed the best

performance for C1, NF for C2, NF-SC for C6, and NF-FCM

for C1. The performance of the models at Station-B was poor

compared to that found at Station-A. However, the best model

was still NF-GWO for C1 at this station. It showed a correlation

of 0.58 and an RMSE of less than 0.40. The variability of

predicted DO by NF-GWO for C1 was 0.38, which was very

near the observed DO variability (0.44).

3.2 Discussion

The performance of NF-GWO compared to standalone

NF was improved by 24.2–66.2% and 14.9–31.2% in terms of

FIGURE 10
Split–violin plot showing the relative performance of (A) NF-GWO; (B) NF; (C) NF-SC; and (D) NF-FCM models in replicating the probability
distribution of observed data during the testing phase at Station-B.
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CC and WI for different input combinations. The MAE and

RMSE of the NF model were reduced using the NF-GWO

model by 9.9–46.0% and 8.9–47.5%, respectively. A similar

improvement in DO concentration prediction was achieved

using NF-GWOmodels compared to NF-SC and NF-FCM for

most input combinations. However, the improvement was

not consistent in terms of all statistics, as mentioned earlier.

The performance of NF-GWO compared to NF-SC was

improved for all input combinations except for C3 at

Station-A. The improvement in MAE and RMSE was in

the range of 7.7–60.7 and 6.8 to 60.4, respectively.

However, MAE and RMSE were decreased for C3 by 5.7%

and 2.7%. Significant improvement in NF-GWO prediction

compared to NF-FCM was also noticed for all input

combinations, except C3 and C5 at Station-A. The MAE

and RMSE were reduced by 3.4–50.3% and 10.1–49.5%,

while CC and WI were increased by 7.9–94.6% and

4.6–40.8%. The most significant improvement in NF-GWO

performance was for C1. The MAE, RMSE, CC, andWI values

of NF-GWO prediction were improved by 46.0, 47.5, 66.1,

and 31.2% compared to standalone NF, 60.7, 60.3, 35.9, and

32.9% compared to NF-SC, and 50.4, 49.5, 54.4 and 40.5%

compared to NF-FCM at Station-A.

Improvement in DO prediction using NF-GWO was also

noticed compared to other models for most of the input

combinations at Station-B. However, the improvement was

not as great as it was noticed for Station-A. For the best input

combination (C1), the improvement in NF-GWO prediction

compared to NF was 14.9, 15.7, 66.1, and 22.9% in MAE,

RMSE, CC, and WI, respectively. Those values were 20.3,

21.5, 21.3 and -5.2%, respectively for NF-SC, and 12.4, 11.9,

21.1, and 11.1%, respectively, for NF-FCM. Here, it should be

noted that, like Station-A, the biggest improvement in the

NF-GWO model was not for C1 for all input combinations.

FIGURE 11
Taylor diagram of the models used to compare the capability of (A)NF-GWO; (B)NF; (C)NF-SC; and (D)NF-FCMmodels in the testing phase at
Station-A.
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For example, the most significant improvement in NF-GWO

compared to NF in MAE, RMSE, and WI were for C4.

However, the highest improvement in CC was for C1.

Overall, the results revealed that only NF-GWO for

C1 showed consistent DO concentration prediction

improvement in all statistics. It means all the statistical

metrics used in this study showed better performance of

NF-GWO for C1. The NF-GWO also showed improvement

in prediction for almost all input combinations. The best

performance of NF-GWO for C7 was also consistent for both

locations. Therefore, the results presented in this study

revealed the ability of the GWO to enhance the

performance of the standalone NF model and this agrees

with results obtained by Ewees and Elaziz (2018) and

(Dehghani et al., 2019). In addition, the results of the

proposed model undoubtedly establish the efficacy of the

NF-GWO model in predicting DO concentration.

NF integrates neural networks and fuzzy systems to join

their advantages for a better solution to complex problems.

The capability of NF to learn data patterns using fuzzy rules

has made it highly adaptable to different kinds of data, and

thus, superior to many other AI algorithms in solving a wide

range of problems from different fields (Atmaca et al., 2001).

However, the major drawback of NF is that its performance

significantly is susceptible to the selection and optimization

of the input variable’s fuzzy membership function. In this

study, it was solved by integrating NF with optimization

algorithms. Therefore, the performance of NF-GWO was

found better than the other version of NFs (Sremac et al.,

2019). The major challenge in selecting and adjusting NF

FIGURE 12
Taylor diagram of the models used to compare the capability of (A)NF-GWO; (B)NF; (C)NF-SC; and (D)NF-FCMmodels in the testing phase at
Station-B
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hyperparameters is finding the global optimum solution

(Negi et al., 2021).

Among varieties of optimization algorithms developed so

far, the GWO, a metaheuristics optimization technique

developed based on wolf behavior for preying, has shown

its capability in solving complex optimization problems. This

population-based or trajectory-based algorithm can search

for a solution over a large complex space, thus less susceptible

to being trapped in local minima. The recent review of GWO

by Negi et al. (2021) showed the capability of GWO in

optimizing a wide variety of engineering problems. The

optimization of NF intern parameters using GWO has

made the NF-GWO highly capable of predicting DO

concentration.

It should be noted that an AI algorithm’s performance depends

on the problem to be solved and the kinds of input data used as

predictors. Similarly, a particular optimization algorithm is always

not the best for the optimization of an AI model hyperparameters.

Different optimization algorithms can perform differently in the

optimization of an AI algorithm in solving different problems. In

this study, optimization of NF parameters using GWO made it

highly capable in DO prediction. However, it does not guarantee

that the NF-GWO model performs well in predicting other

hydrological variables or the prevision of DO in other regions.

Therefore, it is always suggested to compare different AI and

optimization algorithms’ performance to find the best empirical

model for selecting the best model.

The sensitivity analysis of different input variables was

conducted through the evaluation of best models’ (NF-

GWO) performance for different input combinations. First,

the performance for C1 with the three input models (C2 to C4)

was analyzed. The model performance for C2 to C4 was reduced

due to the drop of an input variable. The highest drop in

prediction accuracy was for C3 when the pH was dropped from

the input combination. The MAE and RMSE of C3 were 90 and

76.6% higher, and CC and WI were 32.1 and 27.6% lower than

C1 at Station-A. A similar result was also obtained at Station-B.

The increase in prediction error was the highest for

C3 compared to the other three-input models. This could be

attributed to that the pH has a valuable impact on DO

concentration and the absence of pH in C3 caused a large

drop in model prediction accuracy. Therefore, pH can be

considered the most sensitive input after TE in predicting

DO concentration. The analysis of two input NF-GWO

models’ performance (C5 to C7) with the NF-GWO model

for C1 showed the highest decrease in model performance for

C5 at both stations. The results indicate that the reduction of

prediction accuracy was due to the absence of Tur as input. This

indicates Tur is the third most crucial variable for the prediction

of DO concentration. Overall and according to the sensitivity of

DO prediction accuracy to different input variables, it can be

said that the TE has the highest influence on DO, followed by

the pH, Tur, and SC variables, respectively.

4 Conclusion

The present study assessed the ability of hybrid NF models in

predicting DO concentration at two stations located in California.

Different combinations of water quality parameters including

temperature, specific conductivity, turbidity, and pH parameters

were formulated and used as input to these models. Entropy and

the correlation coefficient were used to evaluate these parameters

in order to obtain the optimum input combination. The result

showed that the best-input combinations are four input variables,

namely, TE, SC, Tu, and pH. Among the four models developed in

this study, only the NF-GWO showed consistent performance for

all input combinations at both stations in terms of all metrics. The

NF-GWO attained the highest performance (MAE = 0.256 mg/L,

RMSE = 0.320 mg/L, CC = 0.869, and WI = 0.908) at Station-A

and (MAE = 0.346 mg/L, RMSE = 0.413 mg/L, CC = 0.563, and

WI = 0.713) at Station B. Also, the performance of NF-GWO

compared to standalone NF was improved by 24.2–66.2% and

14.9–31.2% in terms of CC and WI for different input

combinations and the MAE and RMSE of the NF model were

reduced using the NF-GWO model by 9.9–46.0% and 8.9–47.5%,

respectively, for Station-A, while for Station B, the improvement in

NF-GWO prediction compared to NF was 14.9, 15.7, 66.1, and

22.9% in MAE, RMSE, CC, and WI, respectively. The sensitivity

analysis of input parameters revealed that water temperature

followed by pH and specific conductivity is the most important

for DO concentration prediction in the study area. Using direct

methods to measure DO concentration is costly and time-

consuming. The hybrid AI models can be used for reliable

estimation of DO concentration in such a situation. Finally,

although the developed hybrid AI models in this study achieve

high performance, there are still some limitations due to practical

factors. The most important one is the data used, where the data of

only 1 year was used in the study. Therefore, the capability of the

suggested model should be evaluated using long-term data. In

addition, other metaheuristics optimization algorithms can be

used for the optimization of the NF model to evaluate their

relative performance in improving prediction accuracy.
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