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Abstract: A growing fatigue crack in metallic materials and structures exhibits multifractal features
that inherit signatures of the crack growth rate behavior of the material. This study exploits the
recently established multifractal fatigue crack growth model to quantify the characteristic fatigue
crack growth rate response of the AISI 410 martensitic stainless steel using an L-shaped bell crank
structure. The objective is to demonstrate that the fatigue crack growth rate response of the material
could be established by quantifying the fractality of the growing crack. The fractal approach avoids
the need of the crack geometry factor when calculating the crack tip driving force. The fractal analysis
of the crack image employs the box-counting algorithm to determine the fractal dimension along the
edge of the crack length. The analysis is confined to the power law crack growth rate stage (Paris
crack growth regime). Results show that the fatigue crack growth path in the bell crank structure is
dictated by the Mode I (opening) component of the crack loading. The distribution of fractal-based
fatigue crack growth rate data is within the 99% confidence limit of the median crack growth response
by the Paris equation. Thus, the model could be employed for prediction of the fatigue crack growth
response of engineering structures where the crack geometry factor is not readily available.

Keywords: fractal analysis; fractal dimension; fatigue crack growth; crack tip driving force; Paris
crack growth rate

1. Introduction

Load-bearing and complex geometry structures such as aircraft wing spars, thick-
walled chemical-processing vessels, and offshore platform and jacket structures are de-
signed based on damage-tolerant design philosophy. The design employs fracture me-
chanics and test data to ensure that structural cracks nucleating during the operation will
not propagate before they are detected by periodic inspections. The fracture-mechanics
equation describing the crack tip stress field (K-field) is expressed in terms of the far-field
stress and relies on the crack geometry factor. Closed-form equations for the far-field stress
and the crack geometry factor have been established for standard fracture test coupons
and relatively simple structures [1–3]. The unavailability of the crack geometry factor
for complex structures and loading renders the use of the fracture mechanics equation
impractical. In this respect, the finite element (FE) method for continuum domain is ex-
tended (to XFEM) to address the numerical singularity associated with the crack tip stress
field [4]. The virtual crack closure technique (VCCT) has also been implemented to address
the crack growth in interfaces of laminated composites and adhesives [5–12]. A relatively
new approach employing fractal analysis to quantify the fatigue crack growth rates of
single-phase metallic material has been developed by the authors [13]. Application of the
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analysis method to the general structures that lack the crack geometry factor for fatigue
crack growth analysis is deliberated in this paper. Inaccurate assessment of the fatigue
crack and crack growth rates could jeopardize the safety and integrity of the structures.

Fatigue crack growth response of metallic structures has been quantified by several
approaches. At the material coupon level, fracture-mechanics tests using standard specimen
geometry and test setup provide crack growth data as a function of the applied fatigue
loading. The phenomenological fatigue crack growth rates, da

dN , within the range that
exhibit the power-law response (Stage 2), could be expressed as functions of the stress
intensity factor range, ∆K, as [14]:

da
dN

= C[∆K ]n (1)

where
∆K = ∆σ

√
πa Y

( a
W

)
(2)

The crack tip driving force, ∆K, assumes the value of ∆KI or ∆KI I under the Mode I
(opening) or Mode II (shearing) crack tip loading, respectively. The term ∆σ is the remotely
applied stress range, a is the crack length, and Y

( a
W
)

is the crack geometry factor of the
test specimen. The coefficient C and exponent n are curve-fitting parameters. Variations of
Equations (1) and (2) to account for the mean stress effect have been established [15–25].
These models could also represent the threshold crack growth rate (Stage 1) and the fast
fracture regime (Stage 3). However, the unavailability of the crack geometry factor for
calculating the stress intensity factor range ∆K of Equation (2) for numerous structural
members poses the greatest challenge in establishing the crack growth rate response of the
material. In this respect, several numerical approaches employing the FE method have been
examined in quantifying ∆K of a structural crack. FE modeling inaccuracies resulting from
ill-defined loading conditions, specifically in multiple crack systems, have been discussed
and documented [26]. For a stationary crack, the contour integral (CI) method specifies the
crack front and the virtual crack extension direction to determine the fracture parameters
including the J-integral, stress intensity factor, T-stress, and the crack propagation direc-
tion [27]. The method has been employed to establish K-solutions for a crack in pressure
vessels [28]. The virtual crack closure technique (VCCT) calculates the energy release rates
based on results from continuum FE analysis to predict the fracture event [29,30]. The
technique is commonly employed to establish strain energy release rates in delamination
problems [7,8]. The extended FE method (XFEM) improves the approximation of the local
displacement field by adding an enrichment function to the standard shape function [4].
The method has been used in numerous problems including multiple crack systems [31,32],
elastic-plastic fracture [33], and stress intensity calculations [34,35].

A crack in a continuum is created through the breaking of the bonds between atoms in
the atomic structure under the imposed stress field. In a growing fatigue crack, a tortuous
topology of various degrees is exhibited in the wake of the crack. The different observed
morphology of the crack surface and along the edge is manifested by the different intensity
of the crack tip stress field. Studies have demonstrated that the crack edges along the crack
length could be described as a fractal continuum exhibiting multifractal characteristics at
the mesoscale [36–43]. The crack paths are self-affine and exhibit an intrinsically anomalous
roughness [44]. The characteristic fractality of the continuum is quantified in terms of the
fractal dimension. It quantifies the effect of the crack tip stress field The characteristic fractal
dimension, dF, along the edge of a fatigue crack has been correlated with the increasing
stress intensity factor range (∆K) as the crack grows. A linear relationship between ∆K
and dF has been established by authors through a series of fatigue crack growth tests on
compact tension (C(T)) specimen geometry [13]. Consequently, the crack tip driving force
could be determined by analyzing the signature fractal features of the propagating fatigue
crack. This eliminates the dependence on the crack geometry factor, Y

( a
W
)
, of Equation (2)
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and extends Equation (1) to determine the fatigue crack growth rate of a cracked structure
with relatively complex geometry.

The development of the multifractal fatigue crack growth rate model based on mea-
sured data using standard compact tension C(T) specimen geometry is deliberated in the
authors’ previous work [13]. The fractal dimensions of the fatigue crack are correlated
with the crack tip driving force for the C(T) specimen with the known crack geometry
factor. The applicability of the model to predict the fatigue crack growth rate response of a
crack in a general structure where the crack geometry factor is unavailable has yet to be
demonstrated. This paper examines the multifractal fatigue crack growth model developed
earlier for an engineering structure with complex geometry and/or crack loading where
the crack geometry factor is unavailable. The objective is to demonstrate that the resulting
fatigue crack growth rate, being a material property, is comparable with those determined
using the standard test specimen geometry. The case study uses a bell crank geometry with
a fatigue crack experiencing a general plane stress field. Once a comparative crack growth
rate response is established, the validated multifractal-based model could be employed in
predicting the fatigue crack growth behavior in structures with complex geometry.

2. Multifractal Fatigue Crack Growth Model

A propagating fatigue crack in a metallic material leaves an intrinsic fracture surface
morphology corresponding to the magnitude of the crack tip driving force. The crack is
multifractal along the edges; thus, the quantitative description requires a range of fractal
dimensions. The multifractal features are also influenced by the local microstructural
features along the crack path, such as the impurity particle inclusion, type of grain and
its orientation, and grain boundary. The observed multifractal nature of a fatigue crack
and its postulated one-to-one dependency with the crack tip driving force is central to the
multifractal fatigue crack growth model. Although it has not been reported, if a fatigue
crack is monofractal, then it is described by a single fractal dimension at any stage of the
crack growth. In this case, the (multi)fractal fatigue crack growth model, as examined
in this work, is not applicable for the material because the relationship between fractal
dimension and crack tip driving force is unavailable.

The fatigue crack growth rate behavior of metallic materials is quantified in terms of
the crack growth rate da

dN vs. the stress intensity factor range ∆K. While the growth rate is
extracted from the incremental slope of the crack growth curve (a vs. N), the corresponding
∆K is calculated using Equation (2) with the respective crack geometry factor of the test
specimen used. In the absence of the crack geometry factor, fractal analysis of the fatigue
crack offers an alternative approach. The fractal dimension of the crack corresponding to
the position of the crack tip is correlated to the crack tip driving force ∆K. The resulting
multifractal crack tip driving force is expressed in the normalized form as [13]:

∆K
KIC

=
∆Kth
KIC

+ CFdFF (3)

where ∆Kth is the threshold stress intensity factor range and KIC is the fracture toughness
of the material. The term dFF is the fractional fractal dimension at the crack tip defined as
dFF = dF − dE, dF is the characteristic fractal dimension, and dE is the Euclidean dimension
(dE = 1.0 for a linear crack). The coefficient of fractality, CF, is a material parameter
determined through curve-fitting procedures on measured data.

Equations (1) and (3) are combined to yield the multifractal fatigue crack growth rate
model as:

da
dN

= C [∆Kth + CF(dF − dE)KIC]
n (4)

It is worth noting that this model is applicable for describing the phenomenological
fatigue crack growth behavior in the power-law crack growth rate regime. In addition, in
its current form, the model is calibrated for the predominantly Mode I crack loading.
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3. Materials and Experimental Methods

The material employed in this study is an AISI 410 martensitic stainless steel in the
as-received condition with hardness, HV = 268. The chemical composition (in wt.%) is:
0.15C, 0.35Si, 0.495Mn, 0.027P, 0.002S, 12.40Cr, 0.08Mo, the balance being Fe. The material
exhibits randomly oriented plates and needle-like microstructure as shown in Figure 1. The
mechanical and fatigue fracture properties of the steel are listed in Table 1.
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Figure 1. Needle-like microstructure of the AISI 410 martensitic steel.

Table 1. Mechanical and fatigue fracture properties of AISI 410 martensitic steel.

Property E (GPa) σY (MPa) σUTS (MPa) ν KIC (MPa
√

m) ∆Kth (MPa
√

m)

Value 200 620 657 0.30 55.0 15.2 (min.)

The reference fatigue crack growth rate behavior of the material has been established
using compact tension C(T) specimen geometry [13]. The threshold stress intensity factor
range ∆Kth is listed in Table 1. The Stage 2 fatigue crack growth rate regime spans within
the range of 4× 10−5 < da

dN < 5× 10−4 mm/cycle, while the corresponding stress intensity
factor range varies from 18 to 40 MPa

√
m, respectively. Within this regime, the median

fatigue crack growth rate is represented by the Paris equation, Equation (1), as:

da
dN

= 6.53× 10−9 (∆KI)
3.04 mm/cycle (5)

The unit of ∆KI is in MPa
√

m.
The complex geometry structure employed in this study is represented by an L-shaped

bell crank design, as illustrated in Figure 2a. The thickness of the bell crank plate structure
is 20 mm. The sharp notch is designed to facilitate the formation of an initial crack of length
30.0 mm (measured from the load line) during the precracking procedure. The presence of a
straight-through hole ahead of the initial crack tip is designed to simulate the development
of a mixed-mode crack tip loading as the crack grows. In addition, the complex stress field
would also dictate the crack path under the fatigue loading.
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Figure 2. Testing of the bell crank structure. (a) Geometry and dimensions (in mm) of the L-shaped
bell crank structure. Thickness is 20 mm. (b) Experimental setup of the fatigue crack growth test of
the bell crank structure.

Fatigue crack growth test of the bell crank structure is performed under load-controlled
mode in the Shimadzu 100 kN servo-hydraulic dynamic testing machine with the setup
as shown in Figure 2b. The applied fatigue loading consists of (∆P = 5.40 kN, R = 0.1)
with the loading frequency of 10 Hz. The test is paused momentarily, and the crack tip
location is identified at 17 selected load cycle intervals. Simultaneously, the crack tip image
is recorded at 50X magnification using a travelling microscope. At the end of the fatigue
test, the bell crank structure is unloaded and removed from the machine. The image of the
crack is taken using an Olympus BX51M digital microscopic camera at 100X magnification
with a resolution of 1090 pixel/mm. The resulting composite image of the crack is shown in
Figure 3a. The growing length of the crack, a is measured from the load line and following
the curved path of the growing crack, as illustrated in the Figure 3b. The test is terminated
when the growing fatigue crack is in proximity with the edge of the structure such that the
crack tip stress field is affected by the traction-free edge.

The crack image is processed to quantify the fractality of the fatigue crack using the
procedures developed earlier and described in adequate details elsewhere [13]. The OTSU
greyscale thresholding algorithm is used to differentiate the crack from its background [45].
The resulting bimodal distribution of the greyscale values of the crack image is shown
in Figure 4. The observed two well-separated peaks, the left representing pixel densities
of the crack while the right is of the material, ensure the existence of the desired contrast
between the crack edge and the background pixels. Based on this distribution, the thresh-
old grayscale value is taken at 90. Image partitioning scheme with optimized scanning
parameters of the window size, ∆max = 0.117 mm and increment, Ψmin = 0.939 mm are
employed to establish the local variation in the fractal dimension. The box-counting al-
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gorithm, based on the Minkowski-Bouligand method is then employed to determine the
piecewise fractality [46,47]. In this method, a square grid of size, ε is superimposed on
the binary image of the crack. The grid having side length overlapping the crack edge are
counted as NB. The process is repeated with smaller grid until the grid spacing approaches
the digitization resolution. The fractal dimension, dF is defined as the (negative) slope of
the log2 NB vs. log2 ε curve, as illustrated in Figure 5. Once the fractal dimension value at
the respective crack length is obtained, the corresponding crack tip driving force and the
fatigue crack growth rate can be calculated using Equations (3) and (4), respectively.

This paper shall demonstrate that the predicted fatigue crack growth rate of the
material based on the fractality of the crack (Equation (4)) is comparable to that obtained
by the classical Paris equation (Equation (1)). Thus, the multifractal fatigue crack growth
model could be used for the general structures, without requiring the crack geometry factor
when calculating the crack tip driving force.
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4. Results and Discussion

The measured and analyzed data of the L-shaped bell crank structure are presented
and discussed in terms of the measured fatigue crack growth behavior, evolution of the
fractal dimension, and the predicted fatigue crack growth rate response of the material.

4.1. Fatigue Crack Growth Behavior

The torturous crack growth path in the L-shaped bell crank structure is shown in
Figure 3a. The crack deviates away from the direction perpendicular to the applied load
line, forming a curved path. The crack path deviation occurs at early loading stage and
indicates that the crack tip is driven by a mix-mode loading of Mode I (opening) and Mode
II (shearing). The crack path curves downward in response to the higher stress magnitude
in favor of the crack growth in the lower part of the asymmetrical bell crank. The measured
fatigue crack growth curves of the bell crank structure and of a standard compact tension
specimen [13] are shown in Figure 6. Although the test condition is identical (∆P = 5.4 kN,
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R = 0.1, f = 10 Hz), a one-to-one comparison of these curves is inappropriate. This is due
to the different crack tip loading conditions and geometry of the structures, therefore a
different crack geometry factor, which results in different crack tip driving force. However,
the evolution of the crack length (a − a0) shows a similar exponentially increasing trend
with the accumulated load cycles N. In addition, the incremental fatigue crack growth rate
could be computed based on the local slope of the curve, as recommended in ASTM E647
standard [48]. The higher initial slope of the curve for the bell crank structure suggests
that the starting crack tip driving force is higher, likely due primarily to longer initial
crack length compared to the C(T) specimen. While acknowledging the intrinsic scatter
of the fatigue data, the rough measured curved crack path is attributed to the observed
torturous crack morphology under the operating mix-mode loading of the crack tip in the
bell crank structure.
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Figure 6. Fatigue crack growth curves of AISI 410 stainless steel measured using compact tension
(C(T)) specimen and L-shaped bell crank structure.

4.2. Fractal Dimensions of the Fatigue Crack

The variation of the computed local fractal dimensions along the edge length of
the crack is shown in Figure 7. The scatter of the fractal data is typical for measured
fatigue life data. Fractal dimension value of 1.0 represents the Euclidean crack. Results
show that the crack starts with a relatively smooth morphology, (dF ≈ 1.0) and gradually
grows and exhibits a rough morphology as quantified by the fractal dimension of up to
1.18. In addition, the fractal dimension increases nonlinearly and in the same manner
as the crack length with the applied fatigue cycles (refer to Figure 6). The continuously
increasing driving force at the crack tip results in increasing roughness of the fracture
surface morphology and along the crack edges. The nonlinearity of the resulting fractal
dimensions with the crack growth is an intrinsic characteristic and likely attributed to the
microstructural features including the grain size, grain orientation, and distribution of
second phase particles. The observed similar nonlinear trend of increasing crack length
and fractal dimension with the applied fatigue cycles suggests that the multifractality of
the crack is indicative of the operating crack tip driving force. This suggests that the fractal
dimension is an appropriate parameter to describe the fatigue crack growth response of
the materials and structures. Once dF is quantified for a given crack length, a the crack
tip driving force, ∆K could be determined from Equation (3) without requiring the crack
geometry factor. The corresponding fatigue crack growth rate, da

dN could be established
based on the crack growth curve of the structure as shown in Figure 6.
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4.3. Multifractal Fatigue Crack Growth Rate

Fatigue crack growth rate data from the test performed on compact tension C(T)
specimen of the case study material are shown as hollow-circle symbols in Figure 8. The
regression (solid) line represents the least-squared fit of all data points in the Paris crack
growth regime, as expressed by Equation (5). In addition, the data are normally distributed
in the log-log scale plot with the 99% confidence band as shown by the pair of dashed lines.
The fatigue crack growth response of the material, established by considering the fractality
of the growing crack in the L-shaped bell crank structure, is superimposed on the plot, as
shown by the solid square symbols. For each data point, the fatigue crack growth rate is
computed from the local slope of the (a− a0) vs. N curve for the bell crank structure (see
Figure 6) at the specific crack length, while ∆K is computed by the multifractal Equation
(3) using the fractal dimension value of the crack tip region (see Figure 7). The results
demonstrate that the multifractal fatigue crack growth rate data based on the bell crank
structure distribute fairly around the median growth rate behavior of the material obtained
using the standard C(T) specimen geometry. Thus, the effect of crack geometry on the crack
tip driving force is intrinsic in the fractal features of the crack. Such an effect is quantified
in terms of the fractal dimension. Although the fatigue crack in the bell crank structure
grows under the mixed-mode tension and shear loading, it could be inferred that the crack
grows predominantly under the Mode I crack tip loading.

Comparable multifractal fatigue crack growth rate response of the material da
dN − ∆K

is demonstrated for test data using the bell crank structure and the standard C(T) specimen.
It follows that the multifractal crack growth model, as represented by Equation (3) for the
crack tip driving force and Equation (4) for the crack growth rate within the Paris regime,
could be used when assessing the growth rate behavior of the crack in structures with
complex geometry where the crack geometry factor is not easily available.



Fractal Fract. 2022, 6, 635 10 of 12Fractal Fract. 2022, 6, x FOR PEER REVIEW 10 of 12 
 

 

 

Figure 8. Comparison of fatigue crack growth rate data determined using the multifractal crack 

growth model with that obtained using the Paris crack growth equation. Grey-colored symbols 

represent data outside the Paris crack growth regime. 

5. Conclusions 

This study has demonstrated that the fractal features of a growing fatigue crack in a 

metallic structure of complex geometry inherit signatures of the crack growth rate behav-

ior of the material. The observed nonlinear variation of the fractal dimension of the fatigue 

crack in the AISI 410 martensitic steel structure is due to the increasing crack tip driving 

force as the crack grows. This results in greater variations and thus higher fractal dimen-

sion values of the fractal features of the crack. Within the Paris crack growth regime, the 

multifractal fatigue crack growth rate determined using the L-shaped bell crank structure 

is comparable with that established using the standard compact tension specimen. Thus, 

the multifractal fatigue crack growth model, represented by Equations (3) and (4), could 

be used to establish the fatigue crack growth rate of the crack in an engineering structure 

where the crack geometry factor is not readily available. 

Author Contributions: Conceptualization, M.H.H. and M.N.T.; data curation, M.H.H.; formal anal-

ysis, M.H.H., S.S.R.K., M.F.A.-H. and M.N.T.; funding acquisition, M.N.T.; investigation, M.H.H. 

and M.N.T.; methodology, M.H.H. and M.N.T.; project administration, S.S.R.K., M.F.A.-H. and 

M.N.T.; resources, S.S.R.K. and M.N.T.; software, M.H.H.; supervision, M.F.A.-H. and M.N.T.; val-

idation, M.H.H., S.S.R.K., M.F.A.-H. and M.N.T.; visualization, M.H.H., S.S.R.K. and M.N.T.; writ-

ing—original draft, M.H.H. and M.N.T.; writing—review and editing, S.S.R.K. and M.F.A.-H. All 

authors have read and agreed to the published version of the manuscript. 

Funding: This research is funded by the Universiti Teknologi Malaysia under the Transdisciplinary 

Research Grant No. TDR 13.1(06G09). 

Data Availability Statement: Data is contained within the article. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Tada, H.; Paris, P.; Irwin, G. The Analysis of Cracks Handbook; ASME Press: New York, NY, USA, 2000; Volume 2, p. 1. 

2. Rooke, D.P.; Cartwright, D.J. Compendium of Stress Intensity Factors; H.M.S.O.: London, UK, 1976; p. 330. 

3. Sherry, A.H.; France, C.; Goldthorpe, M. Compendium of T-stress solutions for two and three dimensional cracked geometries. 

Fatigue Fract. Eng. Mater. Struct. 1995, 18, 141–155. 

Figure 8. Comparison of fatigue crack growth rate data determined using the multifractal crack
growth model with that obtained using the Paris crack growth equation. Grey-colored symbols
represent data outside the Paris crack growth regime.

5. Conclusions

This study has demonstrated that the fractal features of a growing fatigue crack
in a metallic structure of complex geometry inherit signatures of the crack growth rate
behavior of the material. The observed nonlinear variation of the fractal dimension of
the fatigue crack in the AISI 410 martensitic steel structure is due to the increasing crack
tip driving force as the crack grows. This results in greater variations and thus higher
fractal dimension values of the fractal features of the crack. Within the Paris crack growth
regime, the multifractal fatigue crack growth rate determined using the L-shaped bell crank
structure is comparable with that established using the standard compact tension specimen.
Thus, the multifractal fatigue crack growth model, represented by Equations (3) and (4),
could be used to establish the fatigue crack growth rate of the crack in an engineering
structure where the crack geometry factor is not readily available.
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