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Abstract: Alumina nanoparticles (Al2O3) are one of the essential metal oxides and have a wide range
of applications and unique physio-chemical features. Most notably, alumina has been shown to
have thermal properties such as high thermal conductivity and a convective heat transfer coefficient.
Therefore, this study is conducted to integrate the adsorption of Al2O3 in mineral oil-based Maxwell
fluid. The ambitious goal of this study is to intensify the mechanical and thermal properties of
a Maxwell fluid under heat flux boundary conditions. The novelty of the research is increased by
introducing fractional derivatives to the Maxwell model. There are various distinct types of fractional
derivative definitions, with the Caputo fractional derivative being one of the most predominantly ap-
plied. Therefore, the fractoinal-order derivatives are evaluated using the fractional Caputo derivative,
and the integer-order derivatives are evaluated using the Crank–Nicolson method. The obtained
results are graphically displayed to demonstrate how all governing parameters, such as nanoparticle
volume fraction, relaxation time, fractional derivative, magnetic field, thermal radiation, and viscous
dissipation, have a significant impact on fluid flow and temperature distribution.

Keywords: Maxwell fluid; fractional derivative; nanofluid; Crank–Nicolson method

1. Introduction

Nanotechnology has been a well-known subject of study since the last century. There
have been numerous groundbreaking developments in the field of nanotechnology since
Nobel laureate Richard P. Feynman introduced the term in their well-known 1959 lecture
“There’s Plenty of Room at the Bottom” [1]. Nanotechnology can generate a wide variety of
new materials and devices with applications in nanomedicine, nanoelectronics, biomateri-
als, energy production, and consumer products. A decade ago, nanoparticles were studied
because of their size-dependent physical and chemical properties. Now they have entered
a period of commercial exploration [2]. In 1993, when industries and science needed bet-
ter thermal capacities in fluids used daily for multiple jobs, Masuda et al. [3] proposed
using ultra-fine particles in ordinary fluids. Later, Choi and Eastman [4] introduced the
groundbreaking concept of nanofluid, which involves incorporating metallic nanoparticles
with an average size of 100 nm into traditional fluids to improve thermal conductivity;
this concept has modernized the worlds of engineering and industry. A nanofluid is
an effective and practical approach to enhance heat transfer in a thermal system. How-
ever, research has shown that heat transfer efficiency varies between nanoparticles. Islam
et al. [5] discussed the natural convection flow and heat transfer of Cu–water nanofluid
into a square enclosure with the dominance of periodic magnetic effects. They observed
that the heat transfer rate rises by 18.71% for Cu–water nanofluid with 1% nanoparticle
volume. Wakif et al. [6] numerically investigated Couette flow with heat transfer for a
Cu–water nanofluid in the presence of a magnetic field and thermal radiation with variable
thermo-physical properties. Their results showed that heat transfer rates could enhance by
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increasing the nanoparticle volume fraction and the value of the radiation parameter. Xia
et al. [7] discussed the dynamics of an unsteady reactive flow of a viscous nanomaterial
subjected to Ohmic heating, heat source, and viscous dissipation. Their findings indicate
that the temperature increases for the Eckert number, whereas the magnetic parameter
shows the opposite pattern. Precisely, nanoparticle type, shape, and size have proven to
play an important role [8–10].

Alumina (Al2O3), often known as aluminum oxide, is an amphoteric oxide found
in nature in the minerals corundum and gibbsite. Alumina nanoparticles offer several
desirable qualities, including high thermal conductivity, thermal stability, oxidation, high
strength and stiffness, mechanical strength, high adsorption capacity, and electrical insu-
lation. Most importantly, it is a low-cost, non-toxic, and pretty abrasive nanoparticle [11].
Haridas et al. [12] have experimentally evaluated the performance of Al2O3 and SiO2 in de-
ionized water-based nanofluids for their ability to influence heat transfer phenomena
in small channels. They found an increase of ≈41% in the average heat transfer coefficient
for the 0.02 Vol.% of Al2O3 at Re = 342, In contrast, the corresponding enhancement for SiO2
nanoparticles was limited to 6% in the lower Reynolds number range. Animasaun [13] used
a modified version of the buoyancy-induced model to study the flow of 47 nm alumina–
water nanofluid along a horizontal paraboloid of revolution under the effects of Lorentz
force, non-linear radiation, and chemical reaction. He concluded that the heat capacity and
other features of 47 nm alumina–water nanofluid considerably create more heat energy
at large values of volume fraction, which accounts for the overshoot in temperature and
velocity curves. Kabeel and Abdelgaied [14] have numerically explored the impact of
Al2O3–water concentration on sharp-edge orifice flow characteristics in cavitation and
non-cavitation turbulent flow regimes. According to their findings, when the nanofluid
concentration increases from 0.0% to 2%, the turbulent kinetic energy and turbulent in-
tensity increase by 160% and 74%, respectively, in the separation zone downstream of
the orifice. Hawwash et al. [15] looked into the effectiveness of employing alumina nanoflu-
ids as a working fluid for solar water heaters. Sheikholeslami and Ebrahimpour [16] used
Al2O3/water together with multi-way twisted tape for thermal improvement of a linear
Fresnel solar system. Bahari et al. [17] presented research on the synthesis of Al2O3 to
SiO2/water hybrid nanofluid and effects of anionic (SDS), cationic (CTAB), and nonionic
(PVP) surfactants toward dispersion and stability. They concluded that SDS could positively
affect the dispersion and stability of the nanofluids, and the best ratio of Al2O3:SiO2 was
at 30:70. Moreover, the electrical conductivity increased with temperature, and nanofluid
containing CTAB and SDS had a higher increment in conductivity. Recently, Ho et al. [18]
investigated the cooling efficiency and entropy generation of Al2O3–water flow and heat
transfer in a circular tube with wall conduction effects. They stated that the irreversibility
of a system could reduce using nanofluid.

In the late nineteenth and early twentieth centuries, it had recognized that the stress
in a fluid could have a nonlinear or temporal dependency on the rate of deformation or both;
we now refer to such materials as non-Newtonian fluids [19]. Non–Newtonian fluids are
usually considered more suitable and sufficient in industrial processes due to their diverse
range of uses, including exotic lubricants, polymer fluid extrusion, colloidal and suspension
solutions, slurry fuels, and more. Unlike Newtonian fluids, it is not easy to imagine
a single mathematical model that encompasses all of the properties of non-Newtonian fluids.
Therefore, several mathematical models for non-Newtonian fluids have been proposed.
The Maxwell fluid model, which can predict stress relaxation, has received much attention
among these models. In 1867, James Clerk Maxwell proposed the concept of Maxwell fluid,
and a few years later, James G. Oldroyd popularized the idea [20,21]. Researchers have
drawn to the Maxwell fluid model because of its simplicity. Megahed [22] has theoretically
analyzed the steady flow of Maxwell fluid along a permeable stretching sheet subject to
convective boundary conditions. The consequences of the inclined magnetohydrodynamic
flow of a Maxwell fluid through a penetrable stretched plate had discussed by Shafiq and
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Khalique [23]. Specifically, the heat generation and absorption effects are investigated
in the heat transfer phenomenon using Lie group methods.

Fractional calculus is not a new concept; its history is nearly identical to classical calcu-
lus. However, it has become more popular in the constitutive modeling of non-Newtonian
fluids over the last two decades. The fundamental reason for this development is that
a fractional model could express the complex properties of viscoelastic material simply
and elegantly. For example, many materials have an algebraic decay during the relaxation
process, which cannot be adequately characterized by the exponential relaxation moduli of
conventional ordinary models [24]. However, experiments indicate that fractional models
can accurately capture and link these behaviors [25,26]. According to Heymans [27], com-
plex module expressions can result in fractional derivative constitutive models that can
numerically integrate the overall loading history. Liu et al. [28] introduced a unique con-
stitution equation comprising relaxation time parameters and distributed-order fractional
operators to analyze flow and heat transfer of an incompressible Maxwell fluid over a mov-
ing plate. Yang et al. [29] explored heat transfer characteristics of a double-fraction Maxwell
fluid flow subject to slip boundary conditions. Their findings showed that the fractional
Maxwell fluid has a higher viscosity against fractional parameters and that the oscilla-
tion phenomenon would gradually decrease as slip parameters grow. Razzaq et al. [30]
addressed the heat transfer of fractional Maxwell fluid in a circular cylinder using Laplace
and Hankel transformations. Hanif [31] studied two-dimensional boundary layer flow
and heat transfer of fractional Maxwell fluid with constant heating. Asjad et al. [32] in-
vestigated the effects of clay nanoparticles on an unsteady natural convection flow of
Maxwell nanofluids over an infinite vertical surface. They found that oil-based nanofluid
had minimal velocity compared to water-based nanofluid. Saqib et al. [33] discussed the
heat-transfer properties of a Maxwell fluid in the presence of a magnetic field using the
fractional Cattaneo–Friedrich Model. Bayones et al. [34] studied the peristaltic flow of
fractional Maxwell fluid in a circular cylinder tube in the presence of a magnetic filed.

In this research, the physical model is based on fractional Maxwell fluid flow with
accompanying heat transport over a horizontal plate with significant physical assumptions.
This research is motivated by improved cooling processes caused by the interaction of
Al2O3 nanoparticles in mineral oil. The applied magnetic field and viscous dissipation
contribute to the novelty of the fractional fluid model. Moreover, there are a few instances
where exact analytic solutions to the Navier–Stokes equations can be found. Therefore,
the inspiring goal of this research is to introduce the Crank–Nicolson-based L1 algorithm to
solve the fractional Maxwell fluid flow model. There are various distinct types of fractional
derivative definitions, with the Riemann–Liouville fractional derivative and the Caputo
fractional derivative being two of the most prominent in applications. Therefore, the Caputo
fractional derivative has been used to integrate the fractional-order derivatives, whereas
integer-order derivatives are evaluated using the Crank–Nicolson finite difference method.

2. Mathematical Formulation

This section is devoted to the detailed mathematical modeling of the fractional
Maxwell nanofluid. In this regard, the following definitions will be helpful.

Definition 1. Let Γ(·) denote the Gamma function defined by the integral (see for instance Pod-
lubny [35])

Γ(η) =
∫
R

e−ψψη−1dψ, ∀η ∈ C such that <(η) > 0. (1)

Definition 2. Let n ∈ N and α ∈ C with <(α) > 0 such that n− 1 < α < n. Then for a function
f in Cn(R), the Caputo fractional derivative of order α is given by:

∂α f (t)
∂tα

= ∂α
t f (t) :=

1
Γ(n− α)

∫ t

0
(t− τ)n−α−1 ∂n

∂tn f (τ)dτ, (2)
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where Γ(·) is the gamma function; refer to the book [35] for detailed analysis of fractional derivatives.

2.1. Flow Configuration and Governing Equations

Assume that the Maxwell nanofluid is in the space above an infinite plate parallel to
the xz-plane and is confined by two parallel sidewalls perpendicular to the plate. A pressure
gradient is applied to the fluid along the x-axis at time t > 0, which initiates the mainstream
flow. As a result, flow velocity takes the following form

V =
(
u(y, z, t), 0, 0

)
, (3)

along with the extra stress tensor

T = T (y, z, t), (4)

in the absence of a cross flow. The graphical representation of the flow model is presented
in Figure 1.

𝑧𝑚𝑎𝑥

𝑦𝑚𝑎𝑥

𝑧 = 0

𝑥

𝑧

y

𝑝

𝑉

Figure 1. Graphical representation of the flow model.

If a fluid with the density ρ is moving with the velocity V, then the continuity equation is
defined as [31]

∂ρ

∂t
+∇ ·

(
ρV
)
= 0. (5)

For an incompressible fluid, Equation (5) reduces to the following form

∇ ·V = 0. (6)

It is simple to verify that the velocity field of the form (3) automatically meets the in-
compressibility condition. The non-relativistic momentum transport in any continuum is
predicted by Cauchy momentum equation, defined by [36]:

ρ

(
∂V
∂t

+ V · ∇V
)
= −∇P +∇ · T , (7)

where P is the pressure. The extra stress tensor T is represented by the following relation-
ship [34]:

T + λα

(
∂α

t T + V · ∇T −
(
∇V

)
T − T

(
∇V

)†
)
= µA. (8)
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Here A = ∇V +
(
∇V

)† is the first Rivlin–Erickson tensor, µ is the dynamic viscosity
of Maxwell fluid, λ is the relaxation time parameter, and the subscript † is the transpose of
a matrix. In the presence of magnetic field B = B0 + B1, Equation (7) can be modified as

ρ

(
∂V
∂t

+ V · ∇V
)
= −∇P +∇ · T + J × B. (9)

Ohm’s law describes the current density J as [37]

J = σEr, (10)

where σ is the electrical conductivity of the fluid and Er is the electric field experienced
by the fluid. Applying the Lorentz transformation to the fluid traveling at velocity V
concerning the external magnetic field gives us

Er = E + V × B. (11)

The electric field vector E = 0 because no applied or polarization voltage is imposed
on the flow field. Further, the magnetic Reynolds number is considered to be too small
for the induced magnetic field B1 to be negligible, and therefore the current density J is
reduced to

J = σ
(
V × B

)
, (12)

and the cross product
(
V × B

)
can be obtained as

(
V × B

)
=

∣∣∣∣∣∣∣
i j k
u 0 0

0 B0 0

∣∣∣∣∣∣∣ =
(
0, 0, B0u

)
. (13)

With Equations (12) and (13),
(

J × B
)

is given as

(
J × B

)
=

∣∣∣∣∣∣∣
i j k
0 0 B0u

0 B0 0

∣∣∣∣∣∣∣ =
(
− B2

0u, 0, 0
)
. (14)

In reference with the velocity field (3), extra stress tensor (4) and Lorentz force (14),
the momentum Equation (9) reduces to the following form

ρn f
∂u
∂t

= −∂P
∂x

+
∂τxy

∂y
+

∂τxz

∂z
− B2

0u, (15)

where τxy and τxz are nonzero components of T . Introducing Equation (3) into the extra
stress tensor relation (8) gives us(

1 + λα
1∂α

t

)
τxy = µ

∂u
∂y

,
(

1 + λα
1∂α

t

)
τxz = µ

∂u
∂z

. (16)

Now, operating the differential operator
(

1 + λα
1∂α

t

)
to Equation (15) and utilizing

Equation (16) results in

ρ

(
1 + λα

1∂α
t

)
∂u
∂t

= −
(

1 + λα
1∂α

t

)
∂P
∂x

+ µ

(
∂2u
∂y2 +

∂2u
∂z2

)
− B2

0σ

(
1 + λα

1∂α
t

)
u. (17)
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The applied pressure in the x-direction is

∂P
∂x

= p0H(t), (18)

with the Heaviside function

H(t) =


1, t > 0,

0, t < 0.

(19)

Next, the internal (heat) energy balance law can be stated in terms of T as [31]

ρCp

(
∂T
∂t

+ V · ∇T
)
= k∇T + T : ∇V. (20)

Here k is the thermal conductivity and Cp is the specific heat at constant pressure.
In the presence of thermal radiation and Ohmic heating, the energy Equation (20) can be
modified as

ρCp

(
∂T
∂t

+ V · ∇T
)
= k∇T − ∂qr

∂y
+

1
σ

J · J + T : ∇V. (21)

Using the Roseland approximation, the radiative heat flux qr in Equation (21) is
expressed as

qr = −
4σb
3kb

∂T4

∂y
. (22)

Let us consider that the temperature difference T − T∞ within the flow domain to
be small enough that T4 can be reasonably expanded about T∞ using the Taylor series
as follows:

T4 u T4
∞ + 4T3

∞(T − T∞) + 6T2
∞(T − T∞)2 + . . . (23)

The higher-order terms are ignored because the temperature gradient is believed to be
small enough, resulting in

T4 u T4
∞ + 4T3

∞(T − T∞). (24)

In Equation (22), the simplified version of T4 is employed and differentiated w.r.t
y, yielding

∂qr

∂y
= −16σbT3

∞
3kb

∂T2

∂y2 . (25)

Invoking Equations (3), (12) and (25) for the energy Equation (21) leads us to

ρCp
∂T
∂t

= k
(

∂2T
∂y2 +

∂2T
∂z2

)
+

∂2T
∂y2 + B2

0σu2 + τxy
∂u
∂y

+ τxz
∂u
∂z

. (26)

Furthermore, the governing equation for a nanofluid flow can be obtained by replacing
the properties of a regular fluid with the corresponding properties of a nanofluid. Hence
Equations (17) and (26) can be revised as

ρn f

(
1 + λα

1∂α
t

)
∂u
∂t

= −
(

1 + λα
1∂α

t

)
∂P
∂x

+ µn f

(
∂2u
∂y2 ++

∂2u
∂z2

)
− B2

0σn f

(
1 + λα

1∂α
t

)
u. (27)

(ρCp)n f
∂T
∂t

= kn f

(
∂2T
∂y2 +

∂2T
∂z2

)
+

∂2T
∂y2 + B2

0σn f u2 + τxy
∂u
∂y

+ τxz
∂u
∂z

. (28)

The mathematical expressions for nanofluid properties, µn f , ρn f , σn f , (ρCp)n f , and kn f
are presented in Table 1, and thermo-physical properties of mineral oil and Al2O3 are
provided in Table 2.
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Initially, the fluid is at rest. Therefore, the zero initial conditions are considered:

u(y, z, t) = 0 =
∂u(y, z, t)

∂t
, T(y, z, t), t ≤ 0, (y, z) ∈ [0, ∞)× [0, zmax]. (29)

We impose a no-slip velocity condition along the plate and the walls so that:
u(0, z, t) = 0, kn f

∂T(0, z, t)
∂y

= −qw, t > 0, z ∈ [0, zmax],

u(y, 0, t) = 0 = u(y, zmax, t), t > 0, y ∈ [0, ∞),

T(y, 0, t) = T∞ = T(y, zmax, t), t > 0, y ∈ [0, ∞).

(30)

The natural far field conditions are:

u(y, z, t)→ 0, T(y, z, t)→ T∞ as y→ ∞. (31)

Table 1. Mathematical expression of nanofluid properties [5].

Properties Mathematical Expressions

Viscosity µn f = µ f (1− ϕ)−2.5

Density ρn f = (1− ϕ)ρ f + ϕρs

Heat capacitance (ρCp)n f = (1− ϕ)(ρCp) f + ϕ(ρCp)s

Thermal conductivity
kn f

k f
=

(ks + 2k f ) + 2ϕ(ks − k f )

(ks + 2k f )− ϕ(ks − k f )

Electrical conductivity
σn f

σf
=

(σs + 2σf ) + 2ϕ(σs − σf )

(σs + 2σf )− ϕ(σs − σf )

Table 2. Thermo-physical properties of mineral oil and nanoparticles [38,39].

Materials Mineral Oil Al2O3

ρ (kg/m3) 861 3970
k (W/mK) 0.157 40
Cp (J/kgK) 1860 765

σ (S/m) ≈0.3310−9 35 × 106

µ (Pa.s) 0.01335 –

2.2. Non-Dimensional Modeling

Non-dimensional representation is imperative to highlight the physics of the stated
problem. Therefore, the following non-dimensional parameters are introduced:

y∗ =
y

zmax
, z∗ =

z
zmax

, t∗ =
ν f t

z2
max

, u∗ =
uzmax

ν f
,

T∗ =
T − T∞

qwzmax/k f
, λ∗ =

λν f

z2
max

, τ∗xy =
z2

maxτxy

µ f ν f
, τ∗xz =

z2
maxτxz

µ f ν f
.

(32)

Using the set of non-dimensional parameters (32) in Equations (27)–(31), we arrived at

φ1

(
1 + λα ∂α

∂tα

)
∂u
∂t

= p
(
H(t) + λα t−α

Γ(1− α)

)
+ φ2

(
∂2u
∂y2 +

∂2u
∂z2

)
− φ3M

(
1 + λα ∂α

∂tα

)
u, (33)

Prφ4
∂T
∂t

=

(
φ5 + Rd

)
∂2T
∂y2 + φ5

∂2T
∂z2 + φ3Mu2 + E

{
τxy

∂u
∂y

+ τxz
∂u
∂z

}
, (34)
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subject to the initial and boundary conditions

u(y, z, t) = 0 =
∂u(y, z, t)

∂t
, T(y, z, t) = 0, t < 0, (y, z) ∈ [0, ∞)× [0, zmax],

u(0, z, t) = 0, φ4
∂T(0, z, t)

∂y
= −1, t > 0, z ∈ [0, zmax],

u(y, 0, t) = 0 = u(y, zmax, t), T(y, 0, t) = 0 = T(y, zmax, t), t > 0, y ∈ [0, ∞),

u(y, z, t)→ 0, T(y, z, t)→ 0 as y→ ∞.

(35)

Provided that

φ1 = (1− ϕ) + ϕρs/ρ f , φ2 =
(
1− ϕ

)−2.5, φ3 =
σn f

σf
, φ4 = (1− ϕ) + ϕ

(
ρCp

)
s/
(
ρCp

)
f ,

φ5 =
kn f

k f
, p =

p0z3
max

ν2
f

, M =
σf B2

0zmax

µ f
, Rd =

16σb
3kbk f

, E =
µ f ν2

f

qwz3
maz

, Pr =
µ f Cp f

k f
.

(36)

3. Numerical Scheme

The aim of this section is to devise a scheme for approximating Equations (33)–(35)
over a finite time interval.

Define tk = kh̄, k = 0, 1, · · · , n, yi = ip, i = 1, 2, · · · , r, zj = jq, j = 1, 2, · · · , s, where
h̄ = tf/n, is the time step, p = ymax/r, and q = zmax/s are the mesh size in (y, z) direction.
The integer-order derivatives are approximated using the Crank–Nicolson finite difference
method as follows:

∂u
∂t
∣∣
tk
=

uk
i,j − uk−1

i,j

h̄
,

∂T
∂t
∣∣
tk
=

Tk
i,j − Tk−1

i,j

h̄
. (37)

∂2u
∂y2

∣∣
tk
=

uk
i−1,j − 2uk

i,j + uk
i+1,j + uk−1

i−1,j − 2uk−1
i,j + uk−1

i+1,j

2p2 . (38)

∂2u
∂z2

∣∣
tk
=

uk
i,j−1 − 2uk

i,j + uk
i,j+1 + uk−1

i,j−1 − 2uk−1
i,j + uk−1

i,j+1

2q2 . (39)

∂2T
∂y2

∣∣
tk
=

Tk
i−1,j − 2Tk

i,j + Tk
i+1,j + Tk−1

i−1,j − 2Tk−1
i,j + Tk−1

i+1,j

2p2 . (40)

∂2T
∂z2

∣∣
tk
=

Tk
i,j−1 − 2Tk

i,j + Tk
i,j+1 + Tk−1

i,j−1 − 2Tk−1
i,j + Tk−1

i,j+1

2q2 . (41)

The L1 algorithm of Caputo fractional derivative (2) is given as

∂α f (tk)

∂tα
=

h̄−α

Γ(2− α)
∑k−1

m=0 bm
[

f (tk−m − f (tk−m−1)
]
,

=
h̄−α

Γ(2− α)

[
b0 f (tk)− bk−1 f (t0)−∑k−1

m=1(bm−1 − bm) f (tk−m)
]
,

(42)

where bm = (m + 1)1−α − m1−α,m = 0, 1, 2, · · · , n. Now, the fractional derivatives in
Equation (33) can be approximated using the L1 algorithm (42) as follows:

∂αu
∂tα

∣∣
tk
=

h̄−α

Γ(2− α)

[
u(tk)−

k−1

∑
m=1

amu(tk−m)

]
, (43)

∂α+1u
∂tα+1

∣∣
tk
=

h̄−α−1

Γ(2− α)

[
u(tk)−u(tk−1)−

k−1

∑
m=1

am
(u(tk−m)−u(tk−m−1)

)]
, (44)
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where am = (bm−1 − bm).

φ1

h̄

(
1 +

λα h̄−α

Γ(2− α)

)[
uk

i,j − uk−1
i,j

]
=

φ1 p0

2

[
H(tk) +H(tk+1) + λα

t−α
k + t−α

k+1
Γ(1− α)

]

+
φ2

2p2

[
uk

i−1,j − 2uk
i,j + uk

i+1,j + uk−1
i−1,j

−2uk−1
i,j + uk−1

i+1,j

]
+

φ2

2q2

[
uk

i,j−1 − 2uk
i,j

+uk
i,j+1 + uk−1

i,j−1 − 2uk−1
i,j + uk−1

i,j+1

]

−
(

φ3M + φ3Mλα h̄−α

Γ(2− α)

)[
uk

i,j + uk−1
i,j

]

+φ3Mλα h̄−α

Γ(2− α)
∑k−1

m=1 bm

[
uk−m

i,j + uk−m−1
i,j

]

+φ1λα h̄−(α+1)

Γ(2− α)
∑k−1

m=1 bm

[
uk−m

i,j − uk−m−1
i,j

]
.

(45)

φ3Pr
h̄

[
Tk

i,j − Tk−1
i,j

]
=

(
φ4 + Rd

)
2p2

[
Tk

i−1,j − 2Tk
i,j + Tk

i+1,j + Tk−1
i,j+1 − 2Tk−1

i,j + Tk−1
i,j

]

+
φ4

2q2

[
Tk

i,j−1 − 2Tk
i,j + Tk

i,j+1 + Tk−1
i,j−1 − 2Tk−1

i,j + Tk−1
i,j+1

]

+
φ3M

4

(
uk

i,j + uk−1
i,j

)2

+
E
4p

(
τk

xy + τk−1
xy

)[
uk

i+1,j − uk
i,j + uk−1

i+1,j

−uk−1
i,j

]
+
E
8q

(
τk

xz + τk−1
xz

)[
uk

i,j+1 − uk
i,j−1 + uk−1

i,j+1 − uk−1
i,j−1

]
.

(46)

u0
i,j = 0 = T0

i,j, uk
0,j = uk

i,0 = uk
i,s = uk

r,j = 0,

Tk
−1,j + Tk−1

−1,j = 4p+ Tk
1,j + Tk−1

1,j , Tk
i,0 = Tk

i,s = Tk
r,j = 0.

(47)

4. Results and Discussion

Using the framework of an unsteady two-dimensional fluid flow, the purpose of this
section is to help the reader understand the explanation of the graphical illustrations of
Maxwell nanofluid flow over a horizontal plate. The theoretical aspects of nanoparticles,
magnetic fields, thermal radiation, viscous dissipation, and Joule heating concerning fluid
flow and heat transfer are also discussed in this section. Figures 2–13 are presented to
investigate the impact of regulating parameters on the velocity and the temperature profiles
of Maxwell nanofluid. The following numerical values for the parameters are assumed
to be fixed unless stated otherwise: α = 0.5 [32], λ = 0.1 [32], ϕ = 0.01 [32], M = 2 [6],
Rd = 0.1 [7], and E = 0.1 [7].
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Figure 2. Velocity profile for different values of nanoparticle volume fraction ϕ.
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Figure 3. Velocity profile for different values of magnetic parameter M.
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Figure 4. Velocity profile for different values of fractional derivative parameter α.
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Figure 5. Velocity profile for different values of relaxation time parameter λ.
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Figure 6. Temperature profile for different values of nanoparticle volume fraction ϕ.
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Figure 7. Temperature profile for different values of magnetic parameter M.
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Figure 8. Temperature profile for different values of thermal radiation parameter Rd.
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Figure 9. Temperature profile for different values of dissipation parameter E .
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The effects are ϕ, M, α, λ are elucidated in Figures 2–5. The suspension of Al2O3
nanoparticles in the fluid decreased the velocity flow; see Figure 2. Physically, this was
expected because increasing the volume concentration of nanomaterials inside the fluid
makes the fluid more viscous; as a result, velocity flow decreases. By drawing Figure 3,
an attempt has been made to evoke the influence of a magnetic field on the Maxwell fluid
velocity. The result shows that the velocity field reaches a maximum without a magnetic
field (M = 0) but slows down as M increases. Physically, when the magnetic number
increases, the Lorentz force increases and gives rise to magnetic resistance; as a result,
the velocity is slowed. The impact of fractional derivative α on velocity is depicted in
Figure 4, and it is worth noticing that as α grows higher, the amplitude of velocity decreases.
On the other hand, an increase in fluid velocity is visible for more significant estimations of
the relaxation time parameter λ; see Figure 5. Moreover, it deserves to mention that λ = 0
refers to Newtonian fluid flow.

Next, Figures 6–9 are provided to show the variations in the temperature distribution
for several governing parameters, including nanoparticle volume fraction ϕ, magnetic field
parameter M, thermal radiation Rd, and viscous dissipation factor E . Figure 6 is shown to
analyze the variations in the temperature of the fluid when Al2O3 nanoparticles are added.
In Figure 7, the fluctuations in the temperature distribution due to the magnetic field are
sketched. Unlike the velocity profile, the fluid temperature significantly increases when
M increases. This might be because high resistance produces more heat due to increased
friction force. Figure 8 depicts the aspects of the radiation parameter Rd on the temperature
profile. As one might expect, increasing the value of Rd causes the material particles to
have more kinetic energy, which increases the temperature distribution. The effects of
viscous dissipation on temperature distribution are shown with the help of surface and
contour plots, provided in Figure 9. Physically, if there is a lot of friction between the fluid
layers, viscous dissipation solely influences the fluid temperature. As seen from the results,
viscous dissipation causes both the surface temperature and the temperature of the fluid
layers to rise.

By fixing the y-coordinate, the one-dimensional velocity profile of Al2O3/mineral oil is
drawn; see Figures 10 and 11. The same conclusions as the surface plots are drawn; however,
the Maxwell fluid had a high-velocity profile than the Newtonian fluid. On the other hand,
the Newtonian fluid temperature is higher than that of the Maxwell fluid, as shown
in Figures 12 and 13.
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Figure 10. One-dimensional velocity profile for various values of ϕ. (a) Maxwell fluid,
(b) Newtonian fluid.
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Figure 11. One-dimensional velocity profile for various values of M. (a) Maxwell fluid,
(b) Newtonian fluid.
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Figure 12. One-dimensional temperature profile for various values of ϕ. (a) Maxwell fluid,
(b) Newtonian fluid.
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Figure 13. One-dimensional temperature profile for various values of E . (a) Maxwell fluid,
(b) Newtonian fluid.

5. Conclusions

The numerical simulation of mineral oil-based nanofluid flow with Al2O3 nanoparti-
cles across a horizontal plate, accompanied by an external magnetic field, thermal radiation,
viscous dissipation, and heat flux boundary conditions, is addressed. The following are
the most affirmative outcomes:

• Small values of the nanoparticle volume fraction and the magnetic parameter may
often predict Maxwell fluid flow augmentation.



Fractal Fract. 2022, 6, 180 20 of 21

• The relaxation time parameter increases the amplitude of the velocity.
• To manifest a surface heat enhancement, the nanoparticle volume fraction, magnetic

number, thermal radiation, and viscous dissipation parameters must all be substantial.
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