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Abstract: Web applications have become ubiquitous for many business sectors due to their platform
independence and low operation cost. Billions of users are visiting these applications to accomplish
their daily tasks. However, many of these applications are either vulnerable to web defacement
attacks or created and managed by hackers such as fraudulent and phishing websites. Detecting
malicious websites is essential to prevent the spreading of malware and protect end-users from being
victims. However, most existing solutions rely on extracting features from the website’s content which
can be harmful to the detection machines themselves and subject to obfuscations. Detecting malicious
Uniform Resource Locators (URLs) is safer and more efficient than content analysis. However, the
detection of malicious URLs is still not well addressed due to insufficient features and inaccurate
classification. This study aims at improving the detection accuracy of malicious URL detection
by designing and developing a cyber threat intelligence-based malicious URL detection model
using two-stage ensemble learning. The cyber threat intelligence-based features are extracted from
web searches to improve detection accuracy. Cybersecurity analysts and users reports around the
globe can provide important information regarding malicious websites. Therefore, cyber threat
intelligence-based (CTI) features extracted from Google searches and Whois websites are used to
improve detection performance. The study also proposed a two-stage ensemble learning model that
combines the random forest (RF) algorithm for preclassification with multilayer perceptron (MLP)
for final decision making. The trained MLP classifier has replaced the majority voting scheme of
the three trained random forest classifiers for decision making. The probabilistic output of the weak
classifiers of the random forest was aggregated and used as input for the MLP classifier for adequate
classification. Results show that the extracted CTI-based features with the two-stage classification
outperform other studies’ detection models. The proposed CTI-based detection model achieved a
7.8% accuracy improvement and 6.7% reduction in false-positive rates compared with the traditional
URL-based model.

Keywords: malicious URLs; cyber threat intelligence; ensemble learning; internet security; cybersecurity

1. Introduction

Recently, the number of users surfing the Internet has increased exponentially. Due
to the proliferation of mobile devices, ad hoc networks, smart sensors, and the Internet of
Things technologies fueled by the imposed lockdown to mitigate the COVID-19 pandemic, the
Internet has become an essential part of people’s daily lives and activities worldwide [1–4].
Most businesses shifted online due to the availability of reliable infrastructures such as
cloud storage, cost-effective platforms, and a large target market. However, the Internet
brings many cyber threats such as malware, spamming, phishing, financial fraud, infor-
mation theft, and data sabotage [3–6]. Malicious websites are the primary attack vector
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that is used by cybercriminals to spread malware and archive attackers’ objectives [1]. A
malicious website contains content that can be harmful such as malware or phishing attacks
infecting the visitors’ smart devices with malware without user interaction, such as clicking
or downloading, with the website.

According to [5], 18.5 million websites are infected by malware. Moreover, according
to Google’s safe browsing report [6], there were two million phishing websites in September
2020, an increase of nearly 2800% compared with the number in September 2010. Attackers
spread fake information and advertisements to attract users to visit malicious websites.
Once a victim visits a malicious website, attackers use different strategies to infect users
browsing devices with malicious payloads or deceive victims into interacting with the
attackers for financial fraud or other types of attacks. Many harmful websites are not
intended to be malicious by the developers. Attackers can exploit vulnerable websites to
perform malicious intent. For example, an attacker can inject cross-site scripting into a
vulnerable website to steal a visitor victim’s sensitive information or perform a phishing
attack [7].

The problem with detecting malicious websites has been around since early 2004 [8–18].
Many solutions have been proposed to accurately detect these websites. These solutions
can be divided into three categories by their source of investigation: URL-based [8–16],
web content-based [19–21], and script-based [17,18]. URL-based detection is the most
investigated approach followed by content-based detection, while little research has been
investigated on script-based detection. URL-based detection is preferable because it is a
proactive and safe approach for the detection machines as it can detect the malicious URLs
before it is visited by the user. Moreover, detecting malicious URLs is more efficient for
real-time detection and resource-constrained applications such as mobile and Internet of
Things (IoT) devices.

Various techniques have been suggested to detect malicious websites and harmful
content by extracting features from their URLs [15,16,22–28]. Most of these techniques
rely on humans to derive the features [16,22–26] while few solutions used deep learning
techniques to automate the features [15,27,28]. Many sets of features were extracted and
used for the detection including host information features such as country name and host
sponsor, domain features such as .com and .tk, and lexical features such as the number of
dots in URL and URL length. However, the URL-based features are subject to manipulation
by attackers and can be dynamically changed, and may be insufficient for effective repre-
sentation. Attackers can use evasive techniques to bypass the security countermeasures.
Accordingly, any features extracted from these URLs can be misleading as attackers can
manipulate them to hide the malicious intent and malicious patterns of the website. There-
fore, features that are out of attackers’ control will be beneficial for improving detection
accuracy and reducing the false alarm rate.

The CTI feature can be used to enrich URL-based features to improve detection
performance. Cybersecurity analysts, users’ experiences, and website reputations can be
important sources of information. People usually share knowledge regarding malicious
websites in discussion forums, social media, and news websites. Cyber threat intelligence
can be safer, more efficient, and provide more accurate results than investigating the
website content. This study designed and developed a malicious URL detection model
that utilizes cyber threat intelligence-based features to improve classification performance.
The proposed model, called the Cyber Threat Intelligence-based Malicious URL Detection
model (CTI-MURLD), consists of three main components. The first component is for feature
collection. Three types of features are extracted: URL-based features, Whois information-
based features, and cyber threat intelligence features. The threat factors are researched
using Google searches and Whois information. The second component contains data
processing, including feature extraction, representation, and selection. N-gram is used for
feature extraction, the Term Frequency-Inverse Document Frequency (TF-IDF) technique
is used for feature representation, and mutual information (information gain) is used for
feature selection. The third component is classification and decision making. The RF
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algorithm was used to train three ensemble classifiers. Each classifier was trained using
different features. The probabilistic outputs of the decision tree classifiers in each forest were
aggregated and used to train a multilayer perceptron-based classifier for decision making.
The multilayer perceptron-based classifier could learn the hidden patterns that map the
classifier’s output with the correct class of URLs. We hypothesize that the multilayer
perceptron-based classifier can be more effective than the random forest classifiers’ three
independent majority voting schemes. The results of the experiments were validated
employing commonly used performance measures and benchmarked using a widely
accepted dataset that contains benign and malicious URLs. Additionally, a comparison
of related studies was carried out that shows the superiority of the proposed work. The
results show a significant improvement in the proposed model’s performance compared
with the state-of-the-art models. This study makes the following contributions:

1. A malicious URL-detection model based on CTI was designed and developed. Both
the URL and web content are subject to obfuscation; an independent source of features
that are outside of the attacker’s control was needed to strengthen the model’s perfor-
mance. Thus, cyber threat intelligence-based features were extracted from a Google
search and Whois information and used as new knowledge to train the proposed
detection model.

2. The study designed and developed an ensemble learning-based model that combines
three random forest-based predictors such as predetection and feature extractions
with multilayer perceptron-based classifiers for the final decision. Three RF classifiers
were trained using different feature dimensions extracted from URLs, Whois, and
Google-based CTI. The three majority voting schemes that were used by the trained
RF classifiers were replaced by the trained multilayer perceptron-based classifiers for
accurate detection.

3. Several machine learning algorithms have been investigated, including deep learning
techniques such as the convolutional neural network (CNN) model and sequential
deep learning model, which were trained to distinguish between malicious and benign
patterns. Results demonstrated that the cyber threat intelligence collected from Google
improves the detection performance of malicious websites.

The remainder of the manuscript is organized as follows: Section 2 reviews the related
work; Section 3 describes the proposed model; Section 4 explains the experimental design;
Section 5 presents the results with a detailed discussion; Section 6 presents the conclusion
and future work.

2. Related Work

For many decades, malicious URL detection has been a major concern for cybersecu-
rity specialists [8–14]. Several solutions have been proposed to detect malicious URLs and
protect users from being victims of an attack. These solutions can be categorized based
on the type of detection into feature-based detection or blacklist-based detection [23]. In
feature-based detection, the features that represent the URLs are extracted and automati-
cally analyzed while blacklist-based detection relies on user reports and expert analysis.
The centralized blacklist is the most widely used detection method in practice. The Internet
Protocol (IP) address of the malicious website is stored in a database through matching
detection. The feature-based detection can be further categorized into URL-based features
or web content-based features. In the former, the features are extracted from the URL’s
characters using N-gram techniques or derived directly from the URL (i.e., the length of the
URL, whether it contains a file, the status, request protocol, IP, domain name, and registrar
information). Meanwhile, in the latter, the features are crawled from the web content in
terms of text, HTML code, and programs scripts. Detecting malicious URLs is crucial as
many attackers spread malicious links to legitimate websites such as social media platforms
and e-mails. Moreover, some malicious URLs are spread by downloading malware which
can infect the detection machine during the crawling. Furthermore, detecting malicious
URLs is more efficient and accurate than detecting web content due to the high similarity of
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some malicious web content with legitimate content, for example, phishing and fraudulent
websites. Accordingly, this study focuses on reviewing URL-based detection solutions.

In [26], the authors proposed an improved malicious URL-detection model based on a
two-stage distance-metric learning approach, namely singular value decomposition and
linear programming for feature extraction. A set of 62 features were extracted from the
URLs including information from Whois such as top-level domain names (TLDs), registrar
information, lexical features such as the number of dots, keywords, and reputation-based
features. A dataset consisting of 33,1622 URLs was collected from “PhishTank” and used
to train three machine learning classifiers for the evaluation, namely K-nearest neighbor,
support vector machine, and neural networks. Results showed that the improvement of
the proposed feature extraction method was significant. However, the results showed that
the false alarm (false positive) and misrate (false negative) were still high.

Rakesh and Muthurajkumar [22] modified the C4.5 algorithm to detect cross-site
request forgery. Authors in [23] analyzed malicious URLs to extract common features
regarding attacker behavior. A similarity matching technique was used to detect attackers’
habitual behavior. A small set of features were extracted from the URLs. Chiramdasu and
Srivastava [16] proposed a malicious-URL-detection model using logistic regression. Three
sets of features were extracted, host information features such as country name and host
sponsor, domain features such as .com and .tk, and lexical features such as the number of
dots in the URL and URL length. He and Li [24] focused on the class imbalance issue and
then trained a model using XGBoost with cost-sensitive learning for detecting malicious
URLs. A total of 28 features were extracted from the domain name, Whois information,
geographic information, and suspicious words. Despite the results demonstrating that
the proposed model outperformed related studies, the poor sensitivity achieved is the
main limitation of this model. Authors in [29] proposed ensemble learning using a support
vector machine (SVM) and a neural network to identify the command and control (C&C)
server. The classifiers were trained based on features extracted from Whois and the DNS
of domains of C&C servers. Another study [25] extracted 117 features from URL features,
lexical features, domain name features, webpage source features, and short URL features.
Then, various decision-tree-based learning algorithms were studied including J48 decision
tree, simple CART, random forest (RF), random tree, ADTree, and REPTree for detecting
malicious URLs. Results showed that the random forest-based classifier outperformed
other constructed classifiers. In [30], two classifiers were trained using naïve Bayes and
logistic regression. Different sets of features were extracted including lexical features and
textual features represented by terms frequency/inverse documents frequency (TF-IDF). In
their experiments, logistic regression outperformed the naïve Bayes algorithm.

The performance of various deep learning techniques in detecting malicious URLs was
evaluated in [28]. The evaluated techniques included the recurrent neural network (RNN),
identity-recurrent neural network (I-RNN), long short-term memory (LSTM), convolution
neural network (CNN), and convolutional neural network-long short-term memory (CNN-
LSTM). The model constructed using LSTM and the hybrid network of CNN and LSTM
outperformed other studied models.

To summarize, many solutions have been proposed for detecting malicious
URLs [16,22,26]. Most of these solutions utilize supervised-based machine learning tech-
niques for classification [16,26,29]. The deep learning approach has also been investi-
gated [28]. However, most of these solutions extract the features solely from URLs such
as lexical features, textual features, and host features. It is commonly agreed among re-
searchers that obfuscated URLs and web content hinder effective detection. CTI has not yet
been investigated for improving detection performance. Therefore, this study proposed a
malicious URL detection model that utilized CTI to extract features safely without crawling
the actual malicious websites. User expertise regarding malicious URLs can be used for the
early detection of URLs without the need for intensive analysis of the websites. Due to their
classification performance and ability to extract effectiveness patterns from textual-based
features, the RF algorithm and the multilayer perceptron were combined to improve the
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classification performance. A detailed description of the proposed model is provided in the
following section.

3. The Proposed CTI-MURLD Model

Figure 1 shows the proposed Cyber Threat Intelligence-based Malicious URL Detec-
tion (CTI-MURLD) model. The proposed CTI-MURLD model consists of seven phases:
data collection, feature preprocessing, feature extraction, feature representation, feature
selection, ensemble learning-based prediction, and decision making. In the first six phases,
three ensemble-learning-based predictors were constructed using the random forest (RF)
algorithm. Each RF-based predictor was trained using different feature sets, URL-based,
Google-based CTI, and Whois-based features. Each RF classifier had two probabilistic out-
puts. The first output represents the belief that a sample is a malicious URL (p0 in Figure 1),
and the second output is the amount of belief that the URL is benign (p1 in Figure 1). In the
last phase, an artificial neural network (ANN) classifier was built for decision making. The
probabilistic outputs of the three RF classifiers were used to train the ANN classifier for
the final decision. As shown in Figure 1, the URLs requested by users were intercepted,
and three types of features were extracted. Each type of feature set was preprocessed to
remove the noise. Then, more features were extracted using the N-gram technique and
then represented by the TF-IDF technique. Then, the most representative features in each
set were selected from each feature set (denoted by f1 to fn) using information gain. Each
feature set is passed to its specifically trained RF predictor. The probabilistic outputs (two
probabilistic outputs for each predictor) of these predictors were fed into the ANN classifier
for the final decision about the URL class, whether it was malicious or benign. A detailed
description of each phase is presented in the following subsections.

Figure 1. The proposed CTI-MURLD model.

3.1. Phase 1: Data Collection Phase

In this phase, three types of features were collected, namely, URL content features,
cyber threat intelligence data crawled using a web search (Google-based CTI), and data
related to the domain owners crawled from Whois lookup (Whois-based CTI). The URL
data were collected by intercepting user HTTP requests in the application layer. To collect
the Google-based CTI, first, the domain name was extracted from the URL and the IP
address of the domain was searched, and then data related to the domain and its IP were
crawled from a Google search. The Whois-based CTI was crawled from a Whois search
which included the website owner, creation date, contacts, domain status, registrant email,
and registrant country.
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3.2. Phase 2: Data Preprocessing

In this phase, the textual data that were collected in the previous phase were sanitized
and normalized. The URL was preprocessed by removing symbols while the Google-based
CTI and Whois-based CTI data were preprocessed using natural language processing (NLP)
text-preprocessing techniques. Since Google-based CTI and Whois-based CTI data were
crawled from websites, unwanted text such as HTML codes, symbols, and punctuation
were removed to reduce feature complexity and enhance the classification performance.
The collected text data were converted to lower case and then normalized. The normaliza-
tion process aims were two-fold. Firstly, to convert the text from unstructured data to a
structured word vector. Secondly, to reduce the scarcity of the feature vectors by remov-
ing unnecessary words and reducing the number of words by rooting the words to their
originals. The normalization started with tokenization, then the removal of stop words,
lemmatization, stemming, and finally converting the words to their equivalent numerical
format. Tokenization is the process of representing the text sample by a list of words that
construct the URL data sample. Stemming is converting the words into their roots e.g.,
removing “s” from the plural words and removing “ing” from the word. Lemmatization is
the process of converting the words into base form by rooting the verbs to their root using
lexical knowledge base e.g., ‘took’ to ‘take’.

3.3. Phase 3: N-Gram Feature Extraction

The N-gram technique [31] was used to enrich the feature sets and create more repre-
sentative features. N-gram has been a commonly used method for malicious URL detection
and text analysis due to its effectiveness in improving the classification accuracy as reported
by previous researchers [32–36]. Both word N-gram and character N-gram were used in
this study. The character N-gram was used to extract features from the URL while the
word N-gram was used for Google-based CTI and Whois-based CTI data. The URL data
were converted to vectors of words each consisting of three, four, or five characters. To
reduce feature complexity the word bi-gram technique was used for Google-based CTI and
Whois-based CTI data. Each subsequent word was considered one additional feature. The
output of this phase was three feature vectors each consisting of sets of words called tokens.

3.4. Phase 4: TF-IDF Feature Representations

To convert the words (the tokens) to their equivalent numerical values, a corpus that
contained the list of unique tokens was constructed based on their frequency of occurrence
in each class. Then, the statistical-based text representation, namely TF-IDF was calculated
using the following equation:

t f _id f = t f .log
N
d f

(1)

where t f is the term frequency of the word in a specific instance, d f is the document
frequency for the word, N is the number of samples in the dataset. The term frequency
t f is the number of times a word has occurred in the sample while the inverse document
frequency id f refers to the inverse number of documents where the word has occurred. The
higher the t f _id f of a word in a document, the more relevant the document. The output of
this phase was three numerical vectors for each sample.

3.5. Phase 5: Feature Selections

In this phase, the features that represented the URL well were selected using informa-
tion gain (mutual information). As the CTI features were collected from Google, a huge
number of irrelevant features were included. These irrelevant features hindered the ability
to differentiate between benign and malicious URLs due to the high dimensionality of the
features. Thus, the learning task became complex, leading to poor training accuracy [28,37].
Similarly, the Whois information and URL features also contained irrelevant features, es-
pecially when the N-gram was used. The features were doubled based on the n-value
of the N-gram. Moreover, feature selection is common research procedure for text-based
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features [12,28,37,38]. Therefore, feature selection is important in this study. However, this
study selected the top five thousand features to minimize the probability of losing some
information while maximizing the generalizability of the trained models.

The features with low probabilities (the uncommon features) have more informa-
tion compared to features with high probabilities (the common features). The mutual
information-based feature selection uses entropy to measure the impurity of the features
when it is used to split the target variable. The entropy can be calculated using Equation (2).
The higher the entropy the more information. Mathematically, the entropy is written as:

E(p) = −
n

∑
i=1

pi log(pi) (2)

where n is the target class, pi the probability of a feature split the class i. The information
gain which represents the quality of the split can be calculated using the following equation.

Gain = 1 − E(p) (3)

where n is the target class of the entropy and the Gain is the quality of the split. A feature is
important for classification if it has a high gain. The higher the gain, the lower the entropy.
If the entropy is zero, the less impure the split. The output of this phase is a feature vector
with only high-gain features selected.

3.6. Phase 6: RF Ensemble-Based Prediction

Three predictors were constructed and grouped using the RF algorithm in this phase. A
predictor was trained for each type of feature, namely URL, Google-CTI, and Whois-CTI. A
random forest algorithm was selected to construct these predictors. RF was selected for two
reasons: firstly, for its diversity, which fits the diverse nature of the features in our collected
datasets, and secondly for its effectiveness with high-dimensional data. Even after selecting
a subset of important features, a high-dimensional vector consisting of 5000 elements was
selected so that we did not lose the valuable features and generalizability. RF is a supervised
machine learning algorithm that trains ensembles of weak classifiers using decision trees
and bagging methods. The RF algorithm searches for the best split in a random subset of
features before the tree is constructed. Thus, diverse trees were constructed that would
improve the model’s performance. The RF classifier was constructed using 100 decision
tree classifiers. Each decision tree classifier was trained based on a random subset of the
original features with a random subset of the training dataset. The results were three forests
of weak but diverse classifiers. The probabilistic outputs of these weak classifiers were
averaged to be used as the RF decision about the class of the sample. The output of a tree
was a real number between zero and one for each class. When the output value approaches
zero, it means a low probability that the sample belongs to that class. Because the trees
in the three RF classifiers were trained based on three different datasets, the results were
more diverse and thus the probabilistic output. Instead of using the majority voting as
the RF, in this study, the probabilistic outputs of the ensemble classifiers are used as input
to the artificial neural network (ANN) classifier for decision making. Meanwhile, if the
output value approaches one, it indicated a high belief that the sample belonged to that
class. Figure 2 illustrates how these probabilities are extracted and fed as new features to
the next stage of classification for decision making.
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Figure 2. The new features extracted from the three ensemble models.

In Figure 2, P(0) is the average probability of predicting a benign URL. In contrast,
P(1) is the average probability of predicting a malicious URL, DT denotes a decision tree
(the weak classifier), and N1 − 6 represents the neuron node in the ANN model. These
probabilistic values can be calculated as follows

P(0) =
∑n

i=0 p(class_label = 0)
n

(4)

P(1) =
∑n

i=0 p(class_label = 1)
n

(5)

where n denotes the total number of the estimators in each forest. These outputs are
aggregated using a voting scheme in the standard RF algorithm, and the decision is based
on the majority. In contrast, this study replaces the voting scheme of the three trained RF
classifiers with one trained using the multilayer perceptron (MLP) algorithm for decision
making. The MLP-based classifier uses the aggregated outputs of the RF classifiers as new
knowledge to train the ANN classifier to learn the hidden patterns that can collectively be
extracted from the outputs of these three ensemble models. A detailed description of this is
explained in the next section.
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3.7. Phase 7: ANN Decision Making

In this phase, a multilayer perceptron (MLP) artificial neural network (ANN) classifier
was constructed for decision making. The classifier was trained using a three-layer network
consisting of 6 input neurons, 6 hidden neurons, and one output neuron. ANN has
better generalization and can predict the actual class even with smaller data and complex
nonlinear problems. Given a set of input features X = (x1, x2, x3 . . . xn) and Y target
class, the MLP learns the relationship between the X and Y. Some parameters affect the
performance of the neural network such as weight initialization, biases, the activation
function, the loss function, the optimizer, the number of hidden layers, and the number
of neurons in each layer. The activation function provides output for the next layer by
calculating the sum of the products of numerical values of input features by their weights.
The loss or cost function is used to determine the classification error while the optimizer
is used to reduce the error. In this study, the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm was used as the optimization algorithm. BFGS is a local search and gradient-
based algorithm that is suitable for unconstrained nonlinear optimization problems to
effectively determine the decent direction. It approximates the second derivative of the
cost function (the Hessian) when the second derivative cannot be detected. The Sigmoid
function in the following equation is used as an activation function:

Segmoid(x) =
1

1 + e−x (6)

where x denotes the classification score and e is the natural logarithm which is approxi-
mately equal to 2.718281828.

To summarize, Figure 3 illustrates the operations of the proposed CTI-MURLD model.
As can be seen in Figure 3, once the URL was intercepted (e.g., by the network sniffer of
the detection system), three types of features were collected: the first types were the URL
features such as the domain name, sub-domains, and types; the second types were the CTI
features which were collected from a Google search; and the third types of features were
collected from Whois information. These features were preprocessed, enriched using N-gram,
and represented using TF-IDF techniques, as described in Sections 3.1–3.3. The important
features were selected and input into the three pre-trained RF-based prediction models.
Inspired by the divide and conquer principle, the RF prediction models were trained based
on a single type of feature set, namely, CTI-Google, CTI-Whois, or URL features. The
probabilistic aggregated outputs of the three RF prediction models (total output were 6
variables as shown in Figure 2, two values for each classifier) were used as input for the
ANN-based classifier. The ANN classifier was used to learn the correlation between the RF
prediction scores and the target class. It replaced the majority voting schemes used by the
three RF classifiers for more accurate detection. Without this divide and conquer principle,
such a correlation would not be released due to the curse of dimensionality because of the
massive set of extracted multifaceted features.
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Figure 3. Flowchart of the CTI-MURLD model Operation.
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4. Performance Evaluation

In this section, the used dataset, the experimental procedures, and the performance
evaluation are described.

4.1. Sources and Preprocessing of Datasets

This study used a malicious URLs dataset that is publicly available on the Kaggle.com
repository (available at https://www.kaggle.com/sid321axn/malicious-urls-dataset, ac-
cessed on 25 February 2022). The dataset was collected from widely-used sources by
researchers of malicious URL detection domains such as Phishtank [39,40] (available
at https://phishtank.org/, accessed on 25 February 2022) and URL dataset (ISCX-URL-
2016) [8] (available at https://www.unb.ca/cic/datasets/url-2016.html, accessed on 25
February 2022). The URLs in the dataset were categorized into two types, malicious and be-
nign. Malicious URLs included malware links, web defacement, spam, phishing, drive-by
downloads, etc. A random sample consisting of 20,000 URLs was drawn and used in this
study. Table 1 shows the number and types of URL samples in the datasets.

Table 1. Number and types of URLs used in this study.

Category Number of Samples

Total URLs 651,191
Total Benign 428,103

Total Malicious 223,088
Malicious URLs

Defacement 96,457
Phishing 94,111

Malware Link 32,520

4.2. Experimental Procedures

The dataset was split into training and testing sets with 70% for training and 30% for
testing. The training dataset was used to train the RF and MLP/ANN classifiers. The out-
puts (prediction values) of RF classes were used to train the ANN-based decision-making
classifier. For each RF classifier, 100 estimators were created. For the ANN prediction model,
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm was used as the optimization
algorithm. BFGS is one of the variants of the gradient descent algorithm and has proven to
have better accuracy than the plain gradient descent algorithm. The learning rate was set
close to zero i.e., 10–5 for better generalizability. Meanwhile, the logistic sigmoid function
was used as an activation function. The neural network prediction model consisted of three
layers, the input, hidden, and output layers. The input layer consisted of 6 neurons, the
hidden layer contained 6 neurons, and the output layer contained a single neuron.

4.3. Performance Evaluation

To validate the detection performance of the proposed model, five performance mea-
sures were used: the overall accuracy; the detection rate (recall); the precision; the F1 score;
the false-positive rate (FPR); and the false-negative rate (FNR). These performance mea-
sures are commonly used to evaluate the accuracy of the malware detection solutions in
the literature. To evaluate the proposed model, the commonly used machine learning
techniques that were used to evaluate the related malicious URL detection were used.
Moreover, three models were developed for the evaluation of the CTI-MURLD, Google-CTI,
Whois-CTI, and lexical URL-based features as baselines [8,11,13–15,23,41]. Furthermore,
two deep learning-based models were developed for the evaluation of SDL and CNN-based
malicious URL-detection models. A detailed description of the results is illustrated in the
following section. The following equations were used for calculating the used performance
measures in this study.

https://www.kaggle.com/sid321axn/malicious-urls-dataset
https://phishtank.org/
https://www.unb.ca/cic/datasets/url-2016.html
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Accuracy =
TP + TN

TP + TN + FP + FN
(7)

FPR =
FP

TP + FN
(8)

DR (Recall) =
TP

TP + FN
(9)

Precision =
TP

TP + FP
(10)

F-measure =
2 × Precision × Recall

Precision + Recall
(11)

For comparison, the base classifier of CTI-MURLD has been trained using state-of-the-
art machine learning techniques including deep learning that have been used for malicious
website detection, namely naïve Bayes (NB), logistic regression (LR), decision tree (DT),
random forest (RF), convolutional neural network (CNN), and sequential deep learning
(SDL) models.

5. Results and Discussion

The proposed Cyber Threat Intelligence-based Malicious URL Detection (CTI-MURLD)
model has been validated using the aforementioned dataset and performance measures.
Additionally, it was evaluated against the commonly used feature sets including the URL-
based features and Whois-based features. Different feature sets have been compared to
evaluate the proposed CTI-MURLD model. Table 2 and Figures 4–9 illustrate the results
obtained in terms of the detection accuracy, false-positive rate, false-negative rate, precision,
recall, and F1-Measure, respectively.

Table 2. Performance of the CTI-MURLD model using Different Classifiers.

Ensemble
Classifiers Accuracy FPR FNR Recall Precession F1

NB 75.60% 40.04% 11.27% 88.73% 68.65% 77.41%
LR 86.15% 18.85% 9.18% 90.82% 82.21% 86.30%
DT 95.70% 4.10% 4.29% 95.71% 95.69% 95.70%
RF 96.80% 3.13% 3.13% 96.88% 96.72% 96.80%

CNN 94.70% 5.27% 5.09% 94.91% 94.48% 94.69%
SDL 95.61% 4.57% 4.20% 95.80% 95.41% 95.61%

Figure 4. Comparison in terms of the detection-accuracy performance.
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Figure 5. Comparison in terms of the FPR.

Figure 6. Comparison in terms of the FNR.
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Figure 7. Comparison in terms of the precision.

Figure 8. Comparison in terms of the recall (True Positive Rate).

Figure 9. Comparison in terms of the F1-Measure.
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Table 2 presents the performance of the CTI-MURLD model. As can be seen in Table 1,
the RF technique outperformed the other machine learning algorithms. The decision tree
algorithm also achieved the second-best performance while the sequential deep learning
model and the CNN model performed slightly lower compared with RF and DT. However,
the sequential model SDL model was better than the CNN model. It was expected that
RF will perform better than DT because RF is a collection of DTs. A single DT can make a
series of decisions based on the given set of features based on the information gained.

In terms of accuracy, Figure 4 depicts the accuracy performance of the proposed
CTI-MURLD model compared with related works. In most cases, the CTI-based features
especially the combined ones, outperformed the traditional-based features and the single
set of features. For example, RF and DT DSL achieved accuracy higher than 95% with the
combined CTI-based features. Meanwhile, the accuracy of the same classifiers using URL-
based features was always lower than 90% except with the CNN model which achieved
90.8%. CNN was a commonly reported method that outperforms the conventional machine
learning classifiers. However, it is believed that CNN performance depends on the compe-
tence of the representative features present in the image-like matrix. In the case of a huge
number of features such as CTI-based features, a large portion of the dataset should be
available to achieve maximum accuracy. It is worth mentioning that Whois-based features
alone achieved the worst performance among the tested features while Google-based CTI
achieved almost similar performance results to the URL-based features. For example, with
the models DT, RF, SDL, LR, and NB, Google-based CTI features achieved the second-best
accuracy performance. This indicates that the CTI-based features can complement the
traditional features for detecting evasive malicious websites which try to evade detection
by looking similar to benign websites.

Figures 5 and 6 present the results in terms of FPR and FNR, respectively. The
models designed using the combined CTI-based features and the Google-based CTI features
achieved the lowest rate of false positives while Whois-based features achieved the highest
rate of false positives. However, the combined-based CTI features achieved the lowest
rate of false negatives. Meanwhile, the models designed based on the Google-based CTI
features suffered from a high rate of false negatives. In general, all models designed with
a single feature set such as the URL, Whois, or Google CTI suffered from a considerable
number of false negatives. This is because it is difficult to differentiate between some
malicious websites such as spoofing websites and other benign websites. Meanwhile, the
proposed combined features set with the RF classifier achieved the lowest rate of false
negatives which was 3.3% followed by SDL (4.2%) and DT (4.29%).

Figure 7 depicts the performance in terms of precision. The precision measures the
predictability of the positive class. The proposed CTI-MURLD models using decision
trees and deep learning-based classifiers achieved the highest precision compared with the
URL-based features and the single set features such as Google CTI and Whois information.
The proposed CTI-MURLD model achieved 96.7% precision using the RF classifier, 95.69%
using the DT, 95.41% using SDL, and 94.48% using the CNN-based classifier. The models
designed using the Google-based CTI features achieved the second-best results for precision.
For instance, it achieved 94.54% using the RF-based classifier and 91.43% using the DT
classifier. Meanwhile, the model’s design using Whois information is unprecise with all
classifiers compared with the URL-based and the other CTI features.

Figure 8 shows the performance in terms of the recall or the defection rate. The
proposed CTI-MURLD models using all classifiers outperformed the other types of feature
sets, namely, URL-based features and single-set features such as Google CTI and Whois
information. It achieved a 96.88% true positive rate using the RF-based classifier, 95.8%
using the SDL, 95.71% using DT, 94.91% using the CNN, 90.82%, and 88.73% using NB-
based classifier. The models designed using other feature sets vary lower than 90% except
with SDL-based classifier, the Google-based CTI features achieve 96% and URL-based
features achieve 92%.
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The harmonic means results in Figure 9 in terms of F-Measure (also called F1-Score)
summarizes how well the model performs with both precision and recall. The proposed
CTI-MWD model using a decision tree and deep learning-based classifiers achieved the
highest F1-Score value compared with the URL-based features and the single set features
such as Google CTI and Whois information. In most cases, the F1-Score of the proposed
CTI-MWD model achieves a 95% or higher value. It achieves a 96.8% score using the
RF classifier, 95.7% using the DT, 95.61% using SDL, and 94.69% using the CNN-based
classifier. The models designed using other feature sets vary lower than 90% except with
CN-based classifier and the Whois information-based features the model achieves 90% and
the model designed using Google-based CTI features with RF archives 90% F-Score.

As RF implicit feature selection by applying information gain and feature importance,
an experiment was conducted to evaluate the effectiveness of the feature selection used
by the model before applying the RF algorithms. Given that the datasets used in this
study were text data containing a massive number of features, most of these features were
irrelevant and should be eliminated. The results in Table 3 (see RF without FS in Table 3)
indicate that the RF with the proposed feature selection achieved better than the RF without
the selection. The RF randomly selects a subset feature to train each weak classifier. The
selection of the important features happened within the subset. In contrast, in this study,
selecting the importance classifiers before the RF enforces the RF algorithm to select the
subset features of the pool of the selected important features, which improves the accuracy
of the weak classifier and thus the overall accuracy.

Table 3. Performance of the CTI-MURLD model with and without feature selection and with grid
search best-found hyperparameters.

Ensemble
Classifiers Accuracy FPR FNR Recall Precession F1

RF without FS 96.30% 3.81% 3.59% 96.20% 96.58% 96.39%
RF with FS 96.80% 3.13% 3.13% 96.88% 96.72% 96.80%
RF with GS 97.25% 2.73% 2.76% 97.26% 97.36% 97.31%

Because RF algorithms use a different range of hyperparameters, a grid search is used
to search for the best parameters that improve the performance. Table 3 (see RF with GS in
Table 3) shows the performance results of the grid search. Based on the grid search results,
the hyperparameters that gave the best performance were: 1000 estimators, five minimum
sample split, two minimum samples leaf, an unlimited number of leaf nodes, samples
drawn with replacement, and an unlimited maximum number of features. As shown in
Table 3, the performance was further improved, as expected.

The results obtained using the proposed CTI-MURLD model raise an interesting but
fundamental question of why the ensemble-based RF and DT-based classifiers achieved
the best results compared with the deep learning-based classifiers. The answer lies in
the dataset itself, the number of features extracted using the Google-based CTI was huge
compared to the URL or the Whois information features. This created highly noisy data
with a sparse feature vector. Moreover, when the features were combined from CTI, Whois
information, and URL-based features a high-dimensional problem was created. In this
situation, DT and RF were suitable for high-dimensional noisy data [42]. With such high-
dimensional features, deep learning models such as CNN and SDL need a larger dataset to
attain their maximum performance. In addition, neural network-based classifiers create
patterns by connecting neurons with each other which is difficult to generalize in high-
dimensional datasets. Meanwhile, the RF classifier creates independent patterns which are
suitable for high-dimensional data and small datasets. This may be an indication of why
the decision tree-based classifier outperformed the deep learning model.
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6. Conclusions

In this study, a malicious website detection model was designed and developed based
on cyber threat intelligence extracted from Google. The first main contribution of these
studies was the use of cyber threat intelligence as a new set of features with a hypothesis
stating that cyber threat intelligence is an effective and safer alternative to improve the
detection accuracy of malicious websites. The domain names of the websites were extracted
using the Whois technique, and cyber threat intelligence was collected from Google and
combined with URL-based features. Due to the diversity of attack vectors of malicious
websites, high-dimensional features were created and used to train the proposed model.
The second main contribution of this study is in the design of the proposed detection
model. Three random forest classifiers were developed, each of which was trained based
on different features, namely, URL-based features, cyber threat intelligence features based
on Google, and Whois information-based features. The probabilistic outputs of the weak
classifiers in each tree were aggregated and used as input features to a multilayer perceptron
designed to replace the three majority voting schemes used by the trained random forest
classifiers. Several types of machine learning classifiers were investigated to validate
and evaluate the proposed model. Results show that the CTI-based features significantly
improved the detection performance, achieving 96.80% compared with the best 90.4%
achieved by the URL-based features. The false-positive rate was significantly decreased to
3.1% compared with 12% performed by the URL-based model. The main drawback of this
study is that the cyber threat intelligence collected is obtained from a Google search. Such
a source of data is not necessarily reliable and hence, false information is highly probable.
As a result, a solution based on a trusted source could be a possible future direction for
other researchers.
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