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Abstract: The search algorithm based on symbiotic organisms’ interactions is a relatively recent
bio-inspired algorithm of the swarm intelligence field for solving numerical optimization problems.
It is meant to optimize applications based on the simulation of the symbiotic relationship among
the distinct species in the ecosystem. The task scheduling problem is NP complete, which makes it
hard to obtain a correct solution, especially for large-scale tasks. This paper proposes a modified
symbiotic organisms search-based scheduling algorithm for the efficient mapping of heterogeneous
tasks to access cloud resources of different capacities. The significant contribution of this technique is
the simplified representation of the algorithm’s mutualism process, which uses equity as a measure
of relationship characteristics or efficiency of species in the current ecosystem to move to the next
generation. These relational characteristics are achieved by replacing the original mutual vector,
which uses an arithmetic mean to measure the mutual characteristics with a geometric mean that
enhances the survival advantage of two distinct species. The modified symbiotic organisms search
algorithm (G_SOS) aims to minimize the task execution time (makespan), cost, response time, and
degree of imbalance, and improve the convergence speed for an optimal solution in an IaaS cloud.
The performance of the proposed technique was evaluated using a CloudSim toolkit simulator, and
the percentage of improvement of the proposed G_SOS over classical SOS and PSO-SA in terms of
makespan minimization ranges between 0.61–20.08% and 1.92–25.68% over a large-scale task that
spans between 100 to 1000 Million Instructions (MI). The solutions are found to be better than the
existing standard (SOS) technique and PSO.

Keywords: cloud computing; cloud resource management; task scheduling; ecosystem; geometric
mean; symbiotic organisms search algorithm; convergence speed

1. Introduction

Cloud computing is a modern computing model that offers the virtualization of
computing services as a utility to Cloud service users [1–4]. It is a concept for obtaining
resources from a customizable shared resource, such as a group of networks, servers,
storage, utilities, and applications, instantaneously and based on request. Cloud service
providers use virtualization technologies to utilize resources better by allowing multiple
virtual machines (VMs) to operate on top of a single physical computer. Consumers of
cloud services are automatically provisioned based on Service-Level Agreements (SLA),
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which are usually formed by negotiations between Cloud service providers and Cloud
service users/consumers. Issues related to inefficient mapping of tasks to cloud resources
often occur in a cloud environment [5–8].

Task scheduling, therefore, refers to the efficiently scheduling of computational activi-
ties and rational allocation of computing resources under some restrictions in the IaaS cloud
environment. Scheduling’s job is to assign tasks to the most suitable resources in order to
achieve one or more goals. Therefore, selecting an appropriate work scheduling algorithm
to increase cloud computing resource efficiency, while keeping high quality of service (QoS)
guarantees, is an important issue that continues to attract research attention [9–11].

As a result of the broad solution space and the complex existence of heterogeneous
resources in cloud computing, the task scheduling problem falls into the group of NP-hard
issues [12–15].

Heuristic and metaheuristic scheduling techniques have been used to address the task
scheduling problem in cloud computing [2,16]. For more trivial concerns, heuristic methods
provide optimal results, but, as the size of the problem rises, the solutions generated
by these algorithms will be less optimal. On the other hand, metaheuristic algorithms
have shown impressive effectiveness in delivering near-optimal scheduling solutions for
a complex large-size problem. In recent years, an increasing number of independent
scholars have investigated the quality of service provided by task scheduling techniques.
Several metaheuristic strategies, such as Artificial Bee Colony (ABC) Algorithm, Particle
Swarm Optimization (PSO), Ant Colony Optimization (ACO), Genetic Algorithm (GA),
Symbiotic Organisms Search (SOS), Cuckoo Search (CS), and Flower Pollination Algorithm
(FPA), have been developed to address various challenges, such as inefficient cost, high
execution time, and SLA parameters to be fulfilled by cloud service providers as stated by
cloud consumers. A hybrid multi-objective Artificial Bee Colony Algorithm is used in a
cloud computing system to solve flexible work scheduling challenges [17]. The proposed
technique models the challenges as a hybrid flowshop (HFS) problem into HFS with
identical parallel machines and HFS with heterogeneous machines. In addition, several
different types of perturbation structures are examined to improve the searching capabilities.
An updated version of the adaptive perturbation structure is integrated into the proposed
technique to balance the exploitation and exploration capability.

In [18], a cloud computing task scheduling based on a hybrid particle swarm algo-
rithm and an ant colony algorithm is presented. The integrated algorithm can maintain a
specified concentration of particles in the fitness level while ensuring population diversity.
Furthermore, the global best solution with high accuracy convergence may be obtained
precisely by adjusting the learning factor. Similarly, an approach to adaptive load balanced
task scheduling in cloud computing has been presented by [19]. The proposed technique
hybridized the ACO algorithm and Genetic Algorithm to solve the challenges of balancing
jobs on available heterogeneous VMs.

However, these algorithms have problems, such as being trapped in a locally optimal,
having a high computational cost, a slow convergence rate, and being unsuitable for certain
decision variables [20–22]. Compared to GA and ACO, PSO converges faster and provides
a better solution because of its capacity to explore optimal solutions [23,24]. Therefore,
variants of PSO are utilized for benchmarking the proposed technique.

Initially, the standard SOS was intended to solve persistent numerical optimization
problems [25]. The SOS algorithm searches for a suitable species through symbiotic interac-
tions. It simulates the symbiotic relationship between organisms that helps them to survive
and propagate within the ecosystem. The SOS method takes into account a successive
search space in order to perform a successful numerical optimization. As a result, this
algorithm considers the population of organisms to find distinct areas from the stated
search space to identify the global optimum solution. An initial population is established
in the searching space by a group of randomly generated organisms. Each organism corre-
sponds to a possible solution, which is most likely related to a fitness value representing the
organisms’ level of adaption within their living environment. The biological interaction of
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organisms can be employed to determine variations in their life levels in each circumstance,
increasing the adaptability degree and the likelihood of the ecosystem’s durability. Current
numerical solutions would be determined in a virtual ecosystem using these organism’s
changes or adaptations to improve fitness levels. Since its inception, the SOS algorithm
has been modified multiple times to provide optimal and efficient solutions to various
optimization problems. Some researchers have provided an enhanced version of SOS that
includes changes to the phases and operators. These modified algorithms’ implementations
have been found in the literature, given in references [21,26–32]. In the work of [16], a
discrete variant of SOS (DSOS) is presented for tackling job scheduling problems in cloud
computing environments. Utilizing the CloudSim tool kit, the proposed technique for
transforming continuous solutions into discrete types was used to schedule independent
tasks. Similarly, a variant of the SOS algorithm for modifying the mechanism of organism
selection has been presented by [33]. The proposed technique chose three organisms from
the ecosystem that did not have a preset symbiotic relationship to maximize the likelihood
of obtaining an enhanced organism after a symbiotic interaction.

SOS, unlike most metaheuristic algorithms, is parameter free, which is useful for its
applications. However, compared to standard metaheuristic algorithms, SOS is a recent
approach with a few modified variants of successful applications. SOS’s capacity to
find a globally accepted solution to optimization problems makes it appealing for further
exploration and development. Thus, the quest for global solutions to optimization problems
would have a reasonable likelihood of success by further modifying the ecosystem’s mutual
characteristics between the distinct species to address the imbalance problem among the
heterogeneous cloud resources (VMs). Therefore, this study presents a G_SOS algorithm, a
scheduling method based on a modified SOS for the best feasible mapping of different tasks
to cloud resources to minimize task processing time, cost of resource usage, and optimal
usage of cloud resources. The technique employs equity represented by the geometric mean
of the randomly selected organisms to address the mutual characteristics of the organisms
in the mutualism phase to improve the imbalance among the heterogeneous resources.

The following are the contribution of this work:

• The formulation of an optimal solution scheduling optimization technique method for
minimizing makespan and degree of imbalance among VMs in the IaaS cloud.

• The design and implementation of the modified SOS algorithm tagged G_SOS for task
scheduling in the IaaS cloud.

• The replacement of the traditional SOS algorithm relationship characteristics between
two distinct organisms from an arithmetic mean to a geometric mean concept in order
to enhance search diversity and global convergence.

• The evaluation of the technique’s performance indicators, which include makespan,
cost, responsiveness, and the degree of imbalance among VMs.

Further discussions in this paper are arranged as follows: Section 2 introduces the
related literature; Section 3 presents the problem formulation; Section 4 briefly introduces
the Geometric Mean-Based Symbiotic Organisms Search (G_SOS) algorithm; the simulation
and results analysis are presented in Section 5. This paper’s work is concluded in Section 6.

2. Related Works
2.1. Metaheuristic Techniques Used in Cloud Task Scheduling

Metaheuristics techniques are based on analogues of biological concepts. It has been
demonstrated that metaheuristic-based strategies can achieve near-optimal solutions in a
reasonable amount of time for some complex problems [2,34]. Metaheuristic approaches
have been used to address resource scheduling difficulties, such as makespan and response
time reduction. The methods have been shown to find an optimal mapping of tasks to
resources, reduce computation costs, improve service quality, and increase computing
resource utilization. Metaheuristic algorithms have demonstrated exceptional effectiveness
in delivering near-optimal scheduling solutions for complex large-size problems and, as
such, have piqued the interest of various researchers [8,35]. Nevertheless, metaheuristic
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algorithms continue to suffer from being trapped in local optima, premature convergence,
delayed convergence, and imbalance between the search methods [20–22,36].

2.2. Symbiotic Organisms Search Technique (SOS)

The Symbiotic Organisms Search algorithm emulates the symbiotic relationship that
organisms must uphold to survive and grow in the ecosystem. Cheng and Prayogo [24]
applied the SOS (Symbiotic Organisms Search) algorithm to handle statistics, engineer-
ing design, and optimization problems. The results show that the algorithm performs
exceptionally well in several complex numerical problems.

Since its conception, the SOS algorithm has been continually modified to offer optimal
and efficient solutions to diverse optimization challenges [37]. It is worth noting that most
of the improvements to the original SOS algorithm were achieved by reworking either
the mutualism phase or the commensalism phase, or both. Except under exceptional
circumstances is a fourth phase added to the original three.

In Abdullahi et al. [16], a discrete variant of the Symbiotic Organism Search (SOS)
algorithm termed DSOS has been proposed. The proposed technique uses the Symbiotic
Organisms Search (SOS) in the cloud to find the best schedules for tasks based on the
available cloud resources. The results of the simulation process indicate that the algorithm
outperforms PSO and can be used to solve large-scale scheduling issues.

Nama S. et al. [38] suggested an Improved Symbiotic Organisms Search (I-SOS) to solve
various dynamic unconstrained global optimization problems. The technique employs a
random weighted reflective parameter and a predation phase to improve its performance.
The improved SOS experimental outcomes proved to have better efficiency compared to
the PSO, DE, and SOS algorithms.

A Modified Symbiotic Organisms Search (MSOS) algorithm was proposed by S. Baner-
jee and S. Chattopadhyay [27,39]. The algorithm changes the composition of the organism
and chooses a set of parameters for a newly created symbiotic organisms search (SOS) algo-
rithm to improve the convergence rate and its accuracy. MSOS splits the ecosize into three
inhabitants, and the combined inhabitant is executed based on predefined probabilities. A
new relationship is introduced into the phases to enhance the capacity to locate a stable and
high-quality solution in a shorter period. The MSOS algorithm is endowed with a chaotic
element created by the logistic map to find the most promising zones.

Tejani et al. [40] proposed an algorithm for optimizing structural design using adaptive
symbiotic organisms’ search (SOS). The proposed technique modifies the benefit factors
of SOS based on the fitness value of the current organism and the best organism’s fitness
value. Furthermore, the benefit factor improved the exploration capability, especially when
the two distinct organisms Xi or Xj (I 6= j) are far from the best (Xbest) in the search space. In
the same vein, when the two distinct interaction organisms are closer to the best organism,
it strengthens its exploitation capability.

A revised symbiotic organisms search algorithm for the problem of unmanned combat
aerial vehicle (UCAV) route planning was presented by F. Miao et al. [41]. Under a multi-
constrained global optimization problem, the proposed technique modified the standard
SOS based on the simplex method (SMSOS). The method improves population diversity,
thereby overhauling intensification and diversification to avoid premature convergence and
local optima entrapment. An improved discrete symbiotic organism search technique for
efficient cloud task scheduling has been presented by [42]. The proposed approach (eDSOS)
enhances the diversification of the local search space by replacing the best value with any
candidate in the ecosystem at the mutualism level of the DSOS algorithm, allowing it to
converge much faster when the search space is more extensive.

However, most of these modified SOS algorithms still face the perennial problems of
becoming stuck at the optimal local region of the search space, slow convergence rate, and
imbalance among the cloud resources resulting in poor performance.
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2.3. The Standard Symbiotic Organisms Search (SOS) Algorithm Procedure

The Standard Symbiotic Organisms Search (SOS) Algorithm that imitates the sym-
biosis relationship among distinct species in the ecosystem was presented by [25]. In this
technique, the generation of new solutions is guided by mimicking the biological interac-
tion between two species in the ecosystem. The technique has three phases of Mutualism,
Commensalism, and Parasitism, through which each species interacts with the other species
at random until the termination criteria are reached. The positions of the organisms at
the iteration stage are updated by imitating the three phases of symbiotic relationships
(mutualism, commensalism, and parasitism). The basic pseudocode of classical/traditional
SOS is depicted in Algorithm 1.

Definition 1. Given a function f :

1 
 

 → R find X′ ∈

1 
 

 : ∀ X ∈

1 
 

 f (X′) ≤ or ≥ f (X). ≤ (≥)
minimization (maximization), where f is an objective function to be optimized and

1 
 

 represents
the search space with the elements of

1 
 

 being the feasible solutions. x is a vector of optimization
variables with the values X = {x1, x2, x3, . . . , xn}. An optimal solution is a feasible solution X′

that optimizes f .

The procedure of SOS is described in more detail as follows:

1st Step: Ecosystem creation and initiation

The ecosystem’s initial population is generated and other control variables, such as
ecosystem size and the maximum number of iterations. Real numbers are used to indicate
the positions of the organisms in the solution space.

2nd Step: Choosing the organism with the best-fitting objective function, denoted as

Rbest

3rd Step: Mutualism phase

In the Mutualism Phase of SOS, for each organism Ri, an organism Rj, with j 6= i,
is randomly chosen from the population to interact with the organism Ri. Both organ-
isms benefit from a mutualistic symbiotic relationship. New candidate solutions for both
organismsRi andRj are calculated using (1) and (2), respectively.

R′i = Ri + γ′ ∗
[
Rbest − (Mv ∗ BF−1

)
] (1)

R′j = Rj + γ′′ ∗
[
Rbest − (Mv ∗ BF−2

)
] (2)

where γ′ and γ′′ are uniformly generated random numbers between 0 and 1. The joint
relational vector between organisms Ri and Rj denoted by Mv and benefit factors BF−1

and BF−2 are evaluated using (3)–(5), respectively.

Mv =
Ri +Rj

2
(3)

BF−1 = 1 + round
(
γ′
)

(4)

BF−2 = 1 + round
(
γ′′
)

(5)

The new speciesR′i andR′j are generated by modelling their structures from Mv and

BF corresponding to the best organismRbest of the current population. While Mv signifies
the association of mutual relationships between the distinct organisms, BF, on the other
hand, signifies the benefit level achieved by each species from their interaction. γ′ and
γ′′ are functions of randomly generated numbers between 0 and 1 that follow a uniform
distribution. The fitness values of these new species f (R′i) an f (R′j) are evaluated and
compared to each predecessor to select the fittest in the population. For instance, the fitness
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functions f (R′i) and f (R′j) are evaluated,Ri is updated toR′i using (1) if and only if f (R′i)
is greater than f (Ri) and Rj is equally updated to R′j if f (R′j) is greater than f

(
Rj
)

as
shown in (2). Note that the worst fitness values are replaced.

4th Step: Commensalism phase

In the ith iteration, an organismRj is randomly selected from the ecosystem to interact
withRi where i 6= j. WhileRj is neutrally affected in their relationship,Ri benefits. The
commensalism interaction is modelled according to (6).

R′i = Ri + γ′ ∗ (Rbest) (6)

where γ′ is a uniformly generated random number between −1 and 1. Therefore, the
fitness function f

(
R′i
)

is evaluated andRi is updated toR′i using (6) if and only if f
(
R′i
)

is greater than f (Ri).

5th Step: Parasitism phase

In the ith iteration, a parasite vectorRP is created by modifyingRi with a randomly
generated number in the range of the decision variables under consideration, and an
organism Rj with i 6= j is chosen at random from the population to act as host to the
parasiteRP. If the fitness value f (Rp) is greater than the fitness value f (Ri), thenRP will
replaceRi; otherwise,RP will be discarded.

Steps 2–5 are performed until the stopping criterion is met.

6th Step: Termination/Stopping criterion

Algorithm 1: Traditional Symbiotic Organisms Search Algorithm

Create and Initialize the Population of Organisms in the EcosystemR= {R1, R2, R3, . . . , RN}
Set the stopping the criteria

iterationnumber ← 0
Rbest ← 0
Do

iterationnumber ← iterationnumber + 1
i← 0

Do
i← i + 1 j = 1 to N
i f f

(
Rj

)
> f

(
Rbest

)
Rbest ← Rj

Mutualism phase
Commensalism phase
Parasitism phase
While i <= N
While the stopping criteria is false.

3. Problem Formulation

In a cloud computing environment, users’ various tasks are dynamically assigned
to the desired virtual machine (VM) or cloud resources. Tasks to be scheduled are sent
to the cloud broker by cloud users who query the cloud information service (CIS), a
register containing the datacenter specifications regarding the available services that can be
deployed to perform the job. It is assumed that tasks T =

{
T1, T2, T3, . . ., Tn} are received

by the cloud broker (CB) in a particular time interval and the processing elements (Virtual
Machines), which are heterogeneous in nature because of their varied processing power,
thus increasing the makespan of specific VMs while reducing the makespan of others. In
the same sense, the cost of processing tasks in each VM varies. Suppose there are m virtual
machines

{
VM1, VM2, VM3, . . ., VMm} at the datacenter when the cloud broker receives

the tasks. The primary purpose of this work is to identify the best schedule for executing a
group of tasks in VMs in the shortest time possible, while also improving the percentage of
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resource utilization, i.e., to schedule tasks on available VMs to achieve a minimal makespan
with high resource utilization. Hence, the proposed method leverages the Expected Time to
Compute (ETC) of the jobs to be scheduled on each VM to determine scheduling decisions.
Based on the number of instructions per second (MIPS) of a VM and the task’s duration or
length, ETC values are calculated, and the values are usually represented in matrix form as
shown in Table 1. ETC matrix is an (n×m) that keeps track of how long each task takes, i.e.,
Ti on each VMj. It is measured as the ratio of Task length to the virtual machine capacity.

Table 1. Expected time of completion (ETC) matrix.

T
VM T1 T2 - - Tn

VM1 T1/VM1 T2/VM1 - - Tn/VM1

VM2 T1/VM2 - - - Tn/VM2

- - - - - -
- - - - - -
- - - - - -

VMm T1/VMm T2/VMm - - Tn/VMm

Let ETCi,j i = 1, 2, 3, . . . , n, j = 1, 2, 3, . . . , m be the processing time of executing task Ti

on each virtual machine VMj. It is the ratio of the task length Ti measured in MI (millions
of instructions) to the speed of the virtual machine VMj measured in MIPS (millions of
instructions executed per second).

It is calculated as:

ETCi,j = Lenth o f TaskTi/capacity o f VMj = MIi/MIPSj (7)

Assume the task Ti start time is ST
(
Ti, VMj) on the VM VMj. The available time of

VMj is denoted by push(VMj). Equations (8) and (9) define the starting and finishing time
of a task Ti on virtual machine VMj.

Therefore, ST
(

Ti, VMj
)
= max

{
push

(
VMj

)}
(8)

Similarly, let the time of a task Ti be FT
(
Ti, VMj) on the VM VMj finish.

FT
(

Ti, VMj
)
= ST

(
Ti, VMj

)
+ETCi,j (9)

Equation (10), which measures the strength of the organism’s degree of adaptation to
the ecosystem, is used to calculate the fitness value of each organism.

Objective Function = max

{
m

∑
j=1

f
(
VMj)
m

}
(10)

f
(

VMj
)
=

1 
 

 

makespan
(11)

1 
 

 =
m

∑
j=1

1 
 

 
j

m
(12)

1 
 

 
j =

Task Ti

makespan
(13)

Makespan = max
{

ETCi,j i ∈ T, i = 1, 2, 3, . . . , n and j ∈ VM, j = 1, 2, 3, . . . , m
}

(14)

While Equation (11) represents the virtual machine VMj′s fitness value, Equation (12)
shows the average usage of virtual machines employed for task execution denoted by

1 
 

 .
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The utilization of virtual machine VMj is defined by

1 
 

 
j, as indicated in Equation (13).

Equation (14) defines the maximum time virtual machines work in parallel to accomplish
the task.

The Degree of Imbalance (DOI) presented in Equation (15) is the load distributed
among the total number of VMs according to their computing capabilities [43,44]. DOI
is calculated using the following equation. Here, Tmax, Tmin and Taverage represent the
maximum, minimum, and average execution times among all the VMs. The execution time
of a VM is the total time that the VM is busy.

DOI =
Tmax − Tmin

Taverage (15)

Let
{

Pc1, Pc2, Pc3, . . ., Pcm} represent the unit cost of virtual machine VMj per time
quantum [45,46].

The unit cost of executing a task Ti on a VMj in this study is considered per second basis.
The total cost of processing tasks Ti through Tn on the available virtual machines VMj

through VMm is presented in Equation (16) below:

TCost =
n,m

∑
i=1.j=1

{Ci,j ∗ Pcj} (16)

In this situation, the costs of data transmission and retrieval are ignored because the
tasks are independent [47,48].

The cost matrix is a 1 × n matrix that contains each virtual machine’s cost. The values
of the expected time of completion (ETC) matrix and the cost matrix are normalized by
dividing them by their respective maximum values [49,50].

Therefore, since the virtual machines are heterogeneous in nature, the related cost
of using each VM varies. The response time of a processor/machine is the time interval
between the task submission time and the starting time of task execution [51]. It is the
summation of the difference between submission time and waiting/delay time.

Response Time = (Start time− Submission time)

Therefore, the total response time denoted by TRespTime is presented in Equation (17)
and is calculated thus:

TRespTime =
n

∑
i=1

(StrTimeTi
− SubTimeTi

) (17)

The goal of the scheduling problem, according to the essential characteristics of task
scheduling in a cloud computing context, is to map every task Ti vigorously i = 1, 2, 3, . . . ,
n to a suitable cloud virtual machine VMj j = 1, 2, 3, . . . , m to reduce overall execution
time, cost, and response time, maximize resource utilization, and minimize the Degree of
Imbalance (DOI) among the scheduling VMs absolutely.

Correlation Coefficient

The correlation coefficient between two variables or metrics (makespan and cost) is
calculated using the correlation coefficient function denoted by r in Equation (18). The
correlation coefficient between variables x and y is given as

r = Cor{x, y} = ∑(xi − x)(yi − y)√
∑(xi − x)2 ∑(yi − y)2

(18)
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where r = correlation coefficient, the numerator of the expression represents the covariance,
and the denominator represents the standard deviation., i.e., r is the ratio of covariance to
standard deviation.

xi = values of x—variable in a sample
x = mean of the values of the x—variable
yi = values of y—variable in a sample
y = mean of the values of the y—variable
The correlation coefficient between makespan and cost using an instance of heteroge-

neous virtual machines with a specific workload or task shows how strong or weak is the
relationship between the metrics (makespan and cost). The value of r is measured between
(−1, 1). If r = 0, it indicates no relationship between the two variables or metrics, meaning
any increase or decrease in makespan will not have any effect on the cost. However, if r = +1
or close to 1, it indicates a strong positive relationship, meaning an increase or decrease in
makespan will translate into an increase or decrease in cost. Similarly, if r = −1, it indicates
a strong negative relationship, meaning an increase in makespan will lead to a decrease in
cost, and a decrease in makespan will lead to an increase in cost. The two principal partners
in the cloud, the cloud users or consumers and cloud providers, all have their objectives
which are conflicting in nature. The cloud users want their jobs performed on time with
minimum cost, while the cloud provider wants a judicious utilization of its resource to
maximize profit or break even. For a job to be completed on time to attract more cost,
meaning the smaller the processing time or makespan, the higher the cost incurred by the
cloud service provider to provide such a high-powered system and the higher the cost of
processing. This shows a robust negative relationship between makespan and cost.

4. Modified Symbiotic Organisms Search Algorithm (G_SOS)

The improvement of the SOS algorithm was informed by the relationship character-
istics of the mutual vectors between two distinct organismsRi andRj in the Mutualism
phase, calculated using the arithmetic mean, which signifies equality between the two
species. However, in a heterogeneous cloud environment, the cloud resources likened to
two distinct species can never have the same structure in terms of the processor’s speed,
memory size, and storage capacity. Therefore, the proposed technique presents the mutual
vector, which signifies relationship characteristics between organismsRi andRj that can
be computed using the geometric mean concept to signify equity between the two species
or resources.

A mutual vector (Mv) denotes a shared trait shared by two different species to improve
their chances of survival or sustainability.

Where Mv =
Ri+Rj

2 , i.e., the arithmetic mean.
Therefore, the geometric mean (Gm) for n number of organisms denoted by gm is

shown in Equation (19).

gm = n
√
{R1 ∗ R2 ∗ R3∗, . . .,Rn} (19)

The geometric mean for two distinct species, Ri and Rj, is calculated as shown in
Equation (20).

gm =
{
Ri ∗ Rj

} 1
2 (20)

Therefore, Equation (21) shows the mutual vector between the two distinct species,
calculated as the square root of the absolute value of the product ofRi andRj.

RMv = 2
√∣∣{Ri ∗ Rj

}∣∣ (21)

Gm ensures equity in each species contribution to their survival. Each VM contributes
its resource by its capability and strength to improve its mutualistic characteristics, in-
creasing its survival advantage, increasing the exploration capability of the technique,
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thereby increasing the convergence speed of the search process to achieve a globally
optimal solution.

4.1. Mutualism Phase

During this phase, two speciesRi andRj, where (i 6= j) are randomly chosen to interact
with each other. The two separate species were mutually beneficial. Equations (22) and (23)
represent the mathematical description of this technique, respectively:

A = Ri + γ′ ×
[
Rbest −RMv × BF−1

]
(22)

B = Rj + γ′′ ×
[
Rbest −RMv × BF−2

]
(23)

where A and B represent the two organisms selected randomly from the ecosystem. The
mutual vector (RMv) and benefit factors (BF −1 and BF−2) are derived from the respective
mathematical formulation in Equation (10) and Equations (4) and (5) as described in the
work of [36].

The new species R′i_new and R′j_new are generated by molding their structure from

RMv and BF (benefit factors), corresponding to the best organism
(
Rbest

)
of the current

population as shown in Equations (24) and (25).
Modify the new organisms to reflect the discretization of the algorithm using

R′i_new = [A] mode m + 1 (24)

R′j_new = [B] mode m + 1 (25)

The fitness values of new species R′i_new and R′j_new are evaluated and compared to
each predecessor to select the fittest in the population.

If f (R′i_new) < f (Ri)

Ri ← R′i_new

Similarly, if f
(
R′j_new

)
< f

(
Rj,
)
Rj ← R′j_new

Note that worst fitness values are replaced or rejected.

4.2. Commensalism Phase

Select a random organism Rj, where Ri 6= Rj and let C be the new status of the
organism Ri with an acceptable range of [0.4, 0.9] as expressed in the work of [52,53] as
against [−1, 1], which extends the search space with slow convergence speed to minimize
computation time, increase the convergence speed and ensure better results as shown in
Equation (26). Modify the new organisms to reflect the discretization of the algorithm using
Equation (27):

C = Ri + rand(0.4, 0.9)×
[
Rbest –Rj

]
(26)

Additionally, R′i_new = [C] mode m + 1 (27)

If f
(
R′i_new

)
< f (Ri)

Ri ← R′i_new
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4.3. Parasitism Phase

Select a random organismRj, whereRi 6= Rj, let D be the new status of the parasite
vector created from the organismRi as shown in Equation (28). Modify the new parasite
vector D to reflect the discretization of the algorithm using Equation (29).

D = rand(0, 1)×Ri (28)

Rp = dDemode m + 1 (29)

If f(Rp) < f
(
Rj
)

Rj ← Rp

While the steps of the modified SOS algorithm (G_SOS) are described in Algorithm 2,
Figure 1 shows the flowchart of the proposed G_SOS process/workflow.

Algorithm 2: Modified Symbiotic Organism Search algorithm (G_SOS) pseudocode

Input: Size of population (ecosize), maximum number of iterations (Maxitern)
Output: Rbest is the optimal solution.
The Looping of G_SOS begins:
While itern < maxitern

For i = 1: Population (ecosize)
For each species in the ecosystemRi, i = 1, 2, 3, . . . , ecosize, search for the organism with
the best fitness valueRbest

Mutualism Phase
Randomly select organismsRi andRj(i 6= j)
Calculate the mutual vector (RMv) Equation (21) and the benefit factors
(BF −1 and BF−2) using Equations (4) and (5) as described in the work of [36]

Using Equations (24) and (25) to generate the new organisms
R′i_new and R′j_new and evaluate their fitness values.

If the new organisms’ fitness values are higher, then
replace the predecessors

Commensalism Phase
Select organismRj randomly (i 6= j)

Using Equation (27) to generate a new organismR′i_new and evaluate
its fitness value

If the new organisms’ fitness values are higher, then
replace the predecessor.

Parasitism Phase
Select organismRj randomly (i 6= j)
Generate parasite vectorRp by modifyingRi in Equation (29)

Evaluate the fitness value
If the parasite vector (Rp)s’ fitness value is higher, then

replaceRj withRp

End for
Update the best organismRbest of the current population (ecosize)

End while
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5. Simulation and Results

Simulations were run using the cloudsim-3.0.3 toolkit simulator to test the performance
of the proposed technique [54–58]. The cloud environment was characterized by the
heterogeneity of tasks and virtual machines. A single data center with two hosts was
established. Each host had 1 TB of storage, 20 GB of RAM 10 Gbps of bandwidth, and a
time-shared virtual machine scheduling technique. Twenty (20) virtual machines (VMs)
were created, ten (10) each per host, each with a 10 Gigabyte image size, 0.5 Gigabyte
memory, 1 Gigabyte per second bandwidth, and one processing element. The VMs ranged
in processing power from 100 to 5000 MIPS, with prices ranging from USD 0.05 to 0.25.
All the VMs were run on a time-shared cloudlet scheduler with Xen VMM. In 100, 200,
300, 400, 500, 600, 700, 800, 900, and 1000 examples; a consistent distribution of task sizes
was generated, resulting in an equal number of large, medium, and small assignments.
We can better grasp the algorithms’ scalability and performance when dealing with large
problem sizes by using more significant instances. For each algorithm, the simulation
was repeated for 40 experimental runs. Table 2 lists the algorithm parameter settings
for the simulation experiment, while the CloudSim experimental settings are listed in
Table 3. Figures 2–6 show simulation results for the scheduling of G_SOS, SOS, and PSO
algorithms with a task count ranging from 100 to 1000 for 40 runs each. As illustrated
in Figures 2–5, the average makespan, cost, response time and degree of imbalance of
the proposed technique outperformed the traditional SOS algorithm and hybrid PSO-SA
algorithm. G_SOS achieves the shortest makespan, lowest cost, minimal response time, as
well as a minimal degree of imbalance. The statistical analysis of the performance of G_SOS,
SOS and PSO-SA under the same data instances is presented in Tables 4–9 and 11, which
indicate that, for data instances of 100 through 1000, the calculated correlation coefficient
between makespan and cost shows a strong positive relationship. This is deduced from the
simulation results, which indicate that, as the size of the workload/tasks increases, both
metrics of performance also increase in numerical strength.
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Table 2. Parameter settings for SOS and PSO.

Algorithm Parameter Value

SOS
Ecosize 100

Number of iterations 1000

PSO

Particle size 100
Static Inertial weight 0.9

Variable Inertia weight,

1 
 

 0.9–0.4
Coefficients C_1 and C_2 2

Number of iterations 1000

Table 3. Parameter settings for CloudSim.

Cloud Entity Parameter Value

Datacenter Number 1

Host

Number 2
Processing speed 1,000,000 MIPS

RAM 20 GB
Storage 1 Terabyte (TB)

Bandwidth 10 GB/s
Operating system Linux

Architecture x86
VMM Xen

VM

Number 20
Bandwidth 1 GB/s

Memory 0.5 GB
Image size 10 GB

Processing speed (MIPS) 100–5000
Scheduler Time-shared

Task Number of tasks 100–1000
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Table 4. Makepan comparison between SOS and G SOS for data instances generated from a uniformly
distributed dataset.

Number of Tasks SOS G_SOS Improvement Rate (%)

100 45.2864 44.8002 1.07
200 102.8854 102.2623 0.61
300 173.3352 167.5982 3.31
400 249.2924 230.9342 7.36
500 335.1172 304.1376 9.24
600 450.3151 395.4699 12.18
700 543.2537 464.5428 14.49
800 651.5674 520.7649 20.08
900 754.3735 610.7203 19.04

1000 845.7058 683.9238 19.13

Table 5. Makepan comparison between PSO-SA and G SOS for data instances generated from a
uniformly distributed dataset.

Number of Tasks PSO-SA G_SOS Improvement Rate (%)

100 46.6633 44.8002 3.99
200 104.2623 102.2623 1.92
300 185.9565 167.5982 9.87
400 253.4230 230.9342 8.87
500 366.0967 304.1376 16.92
600 461.7890 395.4699 14.36
700 572.8564 464.5428 18.91
800 651.5674 520.7649 20.08
900 799.3512 610.7203 23.60

1000 920.2861 683.9238 25.68

Table 6. Cost comparison between SOS and G SOS for data instances generated from a uniformly
distributed dataset.

Number of Tasks SOS G_SOS Improvement Rate (%)

100 164.3427 134.3689 18.24
200 179.9629 144.7120 19.59
300 175.3191 153.3664 12.52
400 189.1450 159.6989 15.57
500 207.0871 174.1581 15.90
600 212.2586 187.9840 11.44
700 226.0846 202.4432 10.46
800 229.0397 199.5936 12.86
900 230.7284 202.4432 12.26

1000 238.2218 194.9498 18.16

Table 7. Cost comparison between PSO-SA and G SOS for data instances generated from a uniformly
distributed dataset.

Number of Tasks PSO-SA G_SOS Improvement Rate (%)

100 194.9498 134.3689 31.08
200 203.0765 144.7120 28.74
300 204.2374 153.3664 24.91
400 213.4196 159.6989 25.17
500 231.8893 174.1581 24.90
600 234.2113 187.9840 19.74
700 254.4752 202.4432 20.45
800 256.6916 199.5936 22.24
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Table 7. Cont.

Number of Tasks PSO-SA G_SOS Improvement Rate (%)

900 259.6468 202.4432 22.03
1000 274.6337 194.9498 29.01

Table 8. Comparison of the Response Time of SOS and G_SOS for a uniformly distributed dataset.

Number of Tasks SOS G_SOS Improvement Rate (%)

100 8.9932 7.6580 14.85
200 16.3056 11.7867 27.71
300 21.3792 19.5100 8.74
400 33.8679 22.3035 34.15
500 40.7900 32.1424 21.20
600 46.3771 32.8203 29.23
700 53.4431 30.9511 42.09
800 56.6269 40.2560 28.91
900 64.8842 49.0474 24.41

1000 69.2799 47.9793 30.75

Table 9. Comparison of the Response Time of PSO-SA and G_SOS for a uniformly distributed dataset.

Number of Tasks PSO-SA G_SOS Improvement Rate (%)

100 8.3359 7.65801 8.13
200 16.5726 11.78667 28.88
300 24.1727 19.50995 19.29
400 29.8830 22.30347 25.36
500 35.4700 32.14243 9.38
600 47.3220 32.82027 30.64
700 52.7652 30.95108 41.34
800 59.1534 40.25598 31.95
900 67.8010 49.04737 27.66

1000 73.2648 47.97925 34.51

Table 10. Comparison of Degree of Imbalance between SOS and G_SOS for a uniformly distributed
dataset.

Number of Tasks SOS G_SOS Improvement Rate (%)

100 1.5908 1.5709 1.25
200 1.5496 1.5225 1.75
300 1.6315 1.6049 1.63
400 1.7180 1.6833 2.02
500 1.8529 1.6397 11.51
600 1.9312 1.7309 10.37
700 2.0265 1.8399 9.21
800 1.9612 1.7922 8.61
900 2.1308 1.8529 13.04

1000 2.1743 1.9482 10.40

Table 11. Comparison of the Degree of Imbalance between PSO-SA and G_SOS for a uniformly
distributed dataset.

Number of Tasks PSO-SA G_SOS Improvement Rate (%)

100 1.6267 1.5709 3.43
200 1.5532 1.5225 1.97
300 1.6138 1.6049 0.55
400 1.7228 1.6833 2.29
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Table 11. Cont.

Number of Tasks SOS G_SOS Improvement Rate (%)

500 1.8917 1.6397 13.32
600 1.9741 1.7309 12.32
700 2.0265 1.8399 9.21
800 2.1178 1.7922 15.37
900 2.2002 1.8529 15.79

1000 2.2956 1.9482 15.13

G_SOS produces higher-quality solutions than regular SOS and PSO-SA, especially
when the problem size is enormous. Figure 5 depicts G_SOS having the lowest degree
of imbalance among the heterogeneous virtual machines than the traditional SOS and
PSO-SA. Similarly, G_SOS’s search direction tends to converge to a stable position after
fewer iterations, as shown in Figure 6. The new technique can be used alone or combined
with other metaheuristic algorithms to address various optimization problems in cloud
computing and other disciplines.

The correlation coefficient between two variables or metrics (makespan and cost) is
calculated using the correlation coefficient function denoted by r in Equation (10). The
two principal partners in the cloud, the cloud users, or consumers, and cloud providers,
all have their own objectives which are conflicting in nature. The cloud users want their
jobs performed on time with minimum cost, while the cloud provider wants a judicious
utilization of its resources to maximize profit or break even. For a job to be completed
on time to attract more cost, meaning the smaller the processing time or makespan, the
higher the cost incurred by the cloud service provider to provide such a high-powered
system and the higher the cost of processing. This shows a robust negative relationship
between makespan and cost. However, in this scenario, the correlation coefficient between
makespan and cost is 0.940691, showing a strong positive relationship. That is, as the
workload size increases either on the same or different virtual machines, both metrics
(makespan and cost) also increase.

6. Conclusions and Future Works

This paper presents a modified symbiotic organism search optimization algorithm
called G_SOS motivated by the symbiotic relationship in organisms. The proposed method
uses a modified SOS algorithm that changes the relation characteristic of species from the
arithmetic mean, which signifies equality, to the geometric mean, which signifies equity,
to address the heterogeneous nature of the cloud resources. The proposed technique
was tested using the CloudSim tools to schedule independent jobs. The makespan, cost,
response time, and degree of imbalance were measured, and G_SOS was shown to be better
than the benchmarks, SOS and PSO-SA. According to simulation results, the proposed
technique, G_SOS, outperforms regular SOS and PSO-SA in terms of convergence speed,
cost, response time degree of imbalance, and makespan. The percentage of improvement
of the proposed G_SOS over SOS and PSO-SA in terms of makespan minimization is 0.61%
to 20.08% and 1.92% to 25.68%. Similarly, the percentage of improvement of the proposed
G_SOS in terms of cost minimization over SOS and PSO-SA is 10.46% to 19.59% and 19.74%
to 31.08%.

The response time minimization of the proposed technique (G_SOS) was achieved
with 8.74% to 42.09% and 8.13% to 41.34% of SOS and PSO-SA improvement, respectively.
Additionally, the Degree of Imbalance of G_SOS has a significant rate of improvement over
SOS and PSO-SA with 1.26% to 13.04% and 0.55% to 15.79%. The obtained results validate
the proposed G_SOS approach’s efficiency. The application of the proposed technique
G_SOS is not limited to task scheduling problems. In the future, it can be extended to
other domains, such as energy-aware task scheduling, scalability-aware task scheduling,
engineering construction design, etc.
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In this manuscript, the following abbreviations are used:
SOS Symbiotic Organisms Search
G_SOS Geometric-Based Symbiotic Organism Search
PSO Particle Swarm Optimization
QoS Quality of Service
SLA Service Level Agreement
VM Virtual Machine
MIPS Million Instructions per Second
CB Cloud Broker
CIS Cloud Information Service
ETC Expected Time to Compute
CPU Central Processing Unit
UCAV Unscrewed Combat Aerial Vehicle
eDSOS Enhanced Discrete Symbiotic Organisms Search
DSOS Discrete Symbiotic Organisms Search
SMSOS Simplex Method Symbiotic Organisms Search
MSOS Modified Symbiotic Organisms Search
I-SOS Improved Symbiotic Organisms Search
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