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Mixed convection flow 
of an electrically conducting 
viscoelastic fluid past a vertical 
nonlinearly stretching sheet
Ahmad Banji Jafar1,2, Sharidan Shafie2, Imran Ullah3, Rabia Safdar4, Wasim Jamshed5*, 
Amjad Ali Pasha6, Mustafa Mutiur Rahman7, Syed M. Hussain8, Aysha Rehman9, El 
Sayed M. Tag El Din10 & Mohamed R. Eid11,12

The study of hydromagnetic mixed convection flow of viscoelastic fluid caused by a vertical stretched 
surface is presented in this paper. According to this theory, the stretching velocity varies as a 
power function of the displacement from the slot. The conservation of energy equation includes 
thermal radiation and viscous dissipation to support the mechanical operations of the heat transfer 
mechanism. Through the use of an adequate and sufficient similarity transformation for a nonlinearly 
stretching sheet, the boundary layer equations governing the flow issue are converted into a set of 
ordinary differential equations. The Keller box technique is then used to numerically solve the altered 
equations. To comprehend the physical circumstances of stretching sheets for variations of the 
governing parameters, numerical simulations are made. The influence and characteristic behaviours 
of physical parameters were portrayed graphically for the velocity field and temperature distributions. 
The research shows that the impact of the applied magnetic parameter is to improve the distribution 
of the viscoelastic fluid temperature and reduce the temperature gradient at the border. Temperature 
distribution and the associated thermal layer are shown to have improved because of radiative and 
viscous dissipation characteristics. Radiation causes additional heat to be produced in liquid, raising 
the fluid’s temperature. It was also found that higher velocities are noticed in viscoelastic fluid as 
compared with Newtonian fluid (i.e., when K = 0).

A stretchable surface is an area that is supported at one end and moves in response to a tug at that end. Melted 
material is extracted from the slit and extended to the desired size while making sheets. As a result, the char-
acteristics of a product made via industrial extrusion will rely on the speeds at which the sheet is stretched and 
cooled. However, many industrial processes, including the manufacturing of glass fibre and paper, metal spinning, 
strengthening of copper wires, and hot rolling, include the analysis of laminar flow across a stretched surface. 
There are several possible methods to define the velocity where the sheet is pulled from the emulsion slit, includ-
ing linear, exponential, and nonlinear. In reality, many writers have looked at the flow of a linearly stretching 
sheet, for  instance1–8. A nonlinear stretching sheet is used in several real-world scenarios. In light of this, it is 
frequently required to assume that the velocity of the sheet varies nonlinearly as a function of space from the slit. 
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We concentrate on nonlinear stretching sheets in this study. As a result, external flow control mechanisms, such 
as a magnetic field, are required to assure the correct feature. One field of research that combines the mechanics 
of fluids with some electromagnetic aspects to describe the transport phenomena in an electrically conducting 
fluid is magnetohydrodynamic (MHD) fluids, a branch of fluid mechanics that involves the analysis of electrically 
conducting fluids. The performance of fluid flow and heat transfer phenomena is influenced, controlled, and 
regulated by the existence of a magnetic field inside the fluid. It also has a substantial impact on solar physics, 
bioengineering, heat and mass transfer, metal, high thermal plasmas, MHD power generators, MHD reactors, 
thermal insulation, turbines, nuclear reactors coolant, and electronic packages, among other  fields9. The vari-
ation of radiation and heat generation/absorption on MHD viscoelastic fluid flow via a stretched surface were 
examined by Datti et al.10. According to their findings, the existence of a magnetic field in the fluid causes a high 
rate of heat transmission, which improves heat transfer at the surface. Similar research is conducted by Abel 
et al.11 on the magnetohydrodynamic flow of viscoelastic fluid caused by a stretched surface. They noticed that 
as the magnetic parameter improves, the speed of the flow field reduces. This is brought on by a drag force that 
seeks to impede fluid flow and lower its velocity, known as the Lorentz force.  Sharada12 examined the effect of a 
magnetic field on a steady flow of viscoelastic fluid. The author reveals that the Lorentz force gains more strength 
with the increased values of a magnetic parameter. Kumar and  Sivaraj13 also examined the magnetohydrodynamic 
natural convective flow of Walters’ B viscoelastic fluid over a flat and vertical cone contained in a porous media.

In addition to exhibiting both viscosity and elasticity, one category of non-Newtonian fluids with dual effect 
features is viscoelastic fluid (i.e., heat transfer reduction and drag reduction properties)14, which contributes to 
a wide range of applications in the polymer industry. Manufacture of paper, fibre glass, dyes, films, extraction 
processes, copper wire thinning and hardening, synthetic fibre and plastic film processing, drawing of plastic 
sheet, cooling of metallic chips, and food processing are all included in  this15. In the process engineering of oil 
reservoirs, bio-engineering, the chemical industry, and nuclear technology, viscoelastic fluid is also crucial. 
Physically, the behaviour of viscoelasticity helps in depressing or enhancing the rate of the heat transfer process. 
However, it relies on the kinematic properties of the velocity field being studied as well as the heat exchange direc-
tion. Studying viscoelastic fluid and transport of heat adjacent to the continuous moving surface is an essential 
area of research as it helps in determining the desired and favourable output in most industrial and engineering 
processes. For this purpose,  Abel16 carried out heat transfer analysis in electrically conducting flow of viscoelastic 
fluid induced via non-isothermal linear stretching surface in the presence of heat generation and found that the 
temperature distribution within the boundary region reduces with an upsurge in viscoelasticity. The free con-
ductive flow of Walters’ B viscoelastic fluid via movable flat plates and vertical cones in the presence of varying 
electric conductivity was also examined by Sivaraj and  Kumar17. Their research revealed that the magnetic field 
and varied electric conductivity had a substantial impact on the viscoelastic flow.

Furthermore, the numerical solution of a viscoelastic fluid passing a flat plate was achieved by Maryam et al.18. 
They used a second-order parallelized finite volume method and noticed that the drag coefficient at the bound-
ary of viscoelastic fluids is lesser as compared to that of Newtonian fluids. Similarly, the impact of a magnetic 
field on two kinds of viscoelastic fluids produced by a stretched sheet was theoretically examined by  Cortell19. 
According to his observations, the viscosity is greater in the second-grade fluid when compared to Walter’s B 
liquid.  Mustapha20 examined the analytical solution of viscoelastic fluid generated by a nonlinearly stretching 
sheet by employing the method of homotopy analysis. The impact of viscous dissipation on the viscoelastic fluid 
flow caused by a vertical nonlinear stretching sheet was quantitatively examined by Jafar et al.21 while Seth et al.22 
investigated the influence of velocity slip on the Dufour and Soret phenomena of MHD viscoelastic fluid created 
by a nonlinearly stretched surface. It was found that the viscoelasticity parameter reduces the fluid’s tempera-
ture. Recently, Megahed et al.23 examined the variations of viscous dissipation and variable fluid properties on 
the transport phenomenon of magnetohydrodynamic viscoelastic fluid. They discovered that as the viscosity 
and viscoelasticity parameters increase, the sheet velocity also increases. The influence of chemical reaction 
on Buongiorno’s nanofluid model of viscoelastic fluid via a nonlinear stretched surface has been quantitatively 
examined by Nadeem et al.24.

The thermophysical characteristics of fluid are subtly connected to the phenomena of heat transport sys-
tems. Indeed, the increasing demands to enhance heat dissipation, and cooling/heating processes as well as 
saving energy, time, and cost of production in the industrial system has been a challenge to many engineers 
and scientists. However, the analysis of boundary layer flow and heat transport, which happens when a heated 
surface moves continuously over a static fluid, has several technical uses in engineering and industrial produc-
tion because it is crucial in determining the properties of the process’s end product. This involves the process of 
extrusion of hot plastic and metals, continuous casting, hot rolling, and production of glass fiber and  paper25. 
Convective heat transfer is usually the heat transfer process that exists in the presence of a fluid motion on a solid 
surface. Convective heat transfer is divided into two or three categories, which in turn aid the transfer of heat. 
The first category, which is usually called natural or free convection, arises due to the natural buoyancy forces 
(i.e. density gradient). The second category, which is usually called forced convection, arises due to the pressure 
differences and the last category occurs in a situation where the free convection is accompanied by the external 
force. In this case, mixed convection flow is the term for the type of heat transfer that results from the combined 
action of free and forced  convection26.

Much emphasis has been paid to the investigation of mixed convective flow along a rigid plate lately because 
it is essential for a variety of applications, including the electronic cooling devices by fans, the cooling of nuclear 
reactors during an unexpected failure, the placement of heating systems in minimal-velocity environments, solar 
cells, and others. When the flow is horizontal, the buoyancy force is disregarded in the analysis of flow across hot 
surfaces. However, the buoyant force has a substantial impact on the flow field for vertical or inclined surfaces. 
To achieve this, Lloyd and  Sparrow27 used the local similarity technique to solve the convective heat transfer flow 
caused by a vertical plate, showing that the numerical simulations included both forced and mixed convection. 
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Prasad et al.28 probed the impact of varying fluid characteristics on the mixed convection heat transport via a 
nonlinearly stretching sheet. Soret and Dufour effects on the convective flow of viscoelastic fluid over a stretched 
sheet encased in a porous medium were also studied by Jena et al.29. Furthermore, Hayat et al.30 also examined 
a viscoelastic Walters-B nanofluid mixed convection flow via a nonlinear vertical stretched surface with varying 
thickness.

The emission of energy in the form of electromagnetic waves is referred to as radiation. Through this method, 
energy can be conveyed as heat, energy, or light. Numerous fluid parameters are altered when such emission 
results from fluid  flow24. The thermal radiation effect is important for adjusting a system’s temperature, modify-
ing the pace of heat transport, and managing the thermal boundary layer. To explore the influence of thermal 
radiation on the natural convective flow Powell-Eyring nanofluid via a cylinder, Kumaran et al.31 conducted an 
investigation. They observed that a reduction in heat transfer processes results from an increase in the radiation 
parameter. Many studies, like Raja et al.7, Datti et al.11, and Ahmad et al.15, have considered the impact of radiant 
heat on boundary layer flow induced by a nonlinearly stretching sheet because of its significance in controlling 
and maintaining the system’s temperature.

One must also consider the viscous dissipation effect in addition to the impacts of magnetic and thermal 
radiation on the flow field. The energy created by the work done as a result of frictional heating between fluid 
layers is known as viscous dissipation. By acting as an energy source, the heat energy generated modifies tem-
perature distributions, which in turn affects fluid temperature and heat transfer rates. Greater gravitational 
fields, massive planets, denser space gases, and geological phenomena all result in viscous  dissipation32. Several 
authors have considered viscous heating effects on boundary layer flows, such as  Hsiao33, Reddy et al.34, Yaseen 
et al.35, and Jhahan et al.36.

The primary objective of the current study is to find a numerical solution for the flow of a viscoelastic fluid 
through a mixed convection boundary layer as a consequence of the cumulative impact of a uniform magnetic 
field, viscous dissipation, and thermal radiation via a vertical sheet that is not linearly stretching. By employ-
ing an unconditionally stable Keller box  strategy37 to analyse a group of linked nonlinear ordinary differential 
equations, the non-similar solutions of the modified equations are achieved numerically. This method has been 
widely used by many researchers like Kumaran et al.38 and Hayath et al.39 in dealing with parabolic differential 
equations. For more details  see40,41.

Governing equations. We take into account a viscoelastic fluid flowing in mixed convective two-dimen-
sional magnetohydrodynamic flow across a stretched sheet, as seen in Fig.  1. The extrusion slit, where the 
sheet is drawn, serves as the system’s point of origin. The x-axis is drawn along the continuously extending 
surface and faces forward. The sheet is parallel to the y-axis. The sheet is subjected to a perpendicular B(x) 
magnetic field. The sheet velocity, Uw(x) = axn is assumed to vary as a nonlinear function of the distance from 
the slit, where a > 0 is the stretching rate and n is a nonlinear stretching parameter. The temperature of the 
fluid, Tw(x) = T∞ + T0x

2n−1 is also considered as a nonlinear function of the distance from the slit, where T0 
is a positive constant and  T∞ is the ambient temperature of the fluid. Thus, using the conventional boundary 
layer approximation, the viscoelastic fluid equations governing the momentum and energy equations may be 
expressed as  follows11,21.

(1)
∂u

∂x
+

∂v

∂y
= 0,

Figure 1.  Schematic figure of a stretching sheet in viscoelastic fluid.
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where u and v are the fluid flow’s velocity components along x and y directions, µ, ν , ko , ρ , σ , g , β , ρcp , qr and k 
are respectively, the viscosity, kinematic viscosity, material constant, fluid density, electrical conductivity, gravita-
tional acceleration, thermal expansion coefficient, heat capacitance, radiative heat flux, and thermal conductivity 
of the fluid. The boundary conditions for the governing Eqs. (1)–(3) take the form

 where the subscripts wand∞ refer to stretching at the wall and free stream, respectively. The magnetic field B(x) 
is considered to have the form in order to simplify the similarity solution.

where B0 is a constant. In order to ensure that the generated magnetic field is minimal, it is also expected that 
the liquid has weak electrical conductivity. The Rosseland approximation is used to simulate the flow of thermal 
 radiation11,31. The heat flux is assumed to be proportionate to the temperature difference in this approximation, 
and heat moves from the hard surface to the liquid. In light of this, the radiative heat flux qr is written in the 
following form

where σ ∗ signifies Stefan-Boltzmann constant and k∗ symbolizes the rate. Assuming that T4 can be represented 
as a linear function of temperature T4

≡ 4T3
∞
T − 3T4

∞
 and that the temperature variations within the fluid flow 

are suitably low. With this, Eq. (6) can be written as

Substituting Eq. (7) into Eq. (3) gives

In order to simplify the governing equations of the present problem, the following specified similar quanti-
ties are introduced.

where η represents the similarity variable, f (η) is the dimensionless stream function, θ(η) corresponds to the 
non-dimensional temperature and the stream function ψ

(

x, y
)

 satisfies the continuity Eq. (1) such that the 
components of the velocity uand v are defined as

By using Eqs. (5) and (9), Eqs. (2), (4), and (8) can be transformed into the system of ordinary differential 
equations

(2)u
∂u

∂x
+v

∂u

∂y
= ν

∂2u

∂y2
−
k0

ρ

(

u
∂3u

∂x∂y2
+

∂u

∂x

∂2u

∂y2
−

∂u

∂y

∂2u

∂x∂y
+ v

∂3u

∂y3

)

−
σ

ρ
B2(x)u+gβ(T − T∞),

(3)ρcp

(

u
∂T

∂x
+ v

∂T

∂y

)

= k
∂2T

∂y2
−

∂qr

∂y
+ µ

(

∂u

∂y

)2

+ σB2(x)u2,

(4)
u = Uw(x) = axn, v = 0,T(x) = Tw(x) = T∞ + T0x

2n−1 a ty = 0,

u → 0, ∂u
∂y → 0,T → T∞ as y → ∞,

}

(5)B(x) = B0x
2n−1,

(6)qr = −
4σ ∗

3k∗

∂T4

∂y
,

(7)
∂qr
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= −

16σ ∗T3
∞
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.

(8)ρcp

(

u
∂T

∂x
+ v

∂T

∂y

)

= k
∂2T

∂y2
+

16σ ∗T3
∞

3k∗

∂2T

∂y2
+ µ

(

∂u

∂y

)2

+ σB2(x)u2.
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(13)
f (0) = 0, f ′(0) = 1, θ(0) = 1,

f ′(∞) → 0, f ′′(∞) → 0, θ(∞) → 0.

}
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The non-dimensional parameters that appeared in Eqs. (11)–(13) are the viscoelastic parameter K , magnetic 
parameter M , mixed convection parameter � , Prandtl number Pr , radiation parameter R , and Eckert number 
Ec. These parameters are respectively defined as

Upon formulation of the governing equations for mixed convective viscoelastic flow due to a nonlinearly 
stretching sheet with the aforementioned assumptions. Then, we develop the expressions for important physical 
parameters, which are of engineering interest. These parameters are the skin friction coefficient Cf  and the local 
Nusselt number Nux . They provide examples of the stretched surface drag and rate of wall heat transfer. Then, 
the wall shear stress τw is determined by

The non-dimensional skin friction coefficient is defined by

The skin friction coefficient in terms of transformation variables (9) and (10) can be obtained as

The heat flux at the stretched surface may be calculated using

and the heat transfer coefficient is defined as

where Re =
Uwx
ν

 is the local Reynolds number.

Numerical explanation procedure. In the current study, we reduced the dimensional governing equa-
tions into a non-dimensional form using similarity variables. The set of transformed differential Eqs.  (11), 
(12) and corresponding boundary conditions (13) were numerically solved using Cebeci and Bradshaw’s Kel-
ler box  method37, an implicit finite difference technique. Selecting acceptable finite values of η → ∞ is the 
method’s crucial stage. Nevertheless, we begin with starting values for pertinent parameters in order to establish 
f ′′(0)and θ ′(0) for the boundary value problem represented by Eqs. (10), (11) before attempting to determine 
η → ∞ . Until the findings are rectified to the necessary precision of 10−5 level, the procedure is repeated. The 
drag force f ′′(0) and Nusselt number θ ′(0) were quantified numerically for each pair of sequential values. For a 
different set of physical factors, the values of η may vary.

The related boundary value problem presented by Eqs. (10), (11) is then numerically addressed using the 
Keller box approach once the proper value of η has been established. This method was designed specifically for 
the parabolic type of differential equations. In this method, the numerical solution is obtained by considering the 
step size of 0.02 with a five-decimal places criterion of convergence for accuracy. In fact, one needs to consider 
the following four basic procedures in using the method:

1. Re-written the transformed Eqs. (10), (11)  with their corresponding boundary conditions (12) into a first-
order system of equations.

2. Using the central difference method to convert the obtained first order equations into set finite difference 
equations.

3. Newton quasi-linearization method is then employed in solving the system of non-linear equations.
4. Block-matrix algorithm is finally used to solve the differential equations.

Results and discussion
To better comprehend the flow pattern, numerical figures for the temperature and velocity are generated for 
variations of non-dimensional factors, such as the nonlinear stretching parameter (n) , viscoelastic parameter 
(K), magnetic field parameter (M), mixed convection parameter (�), radiation parameter (R), viscous dissipation 
parameter (Ec) and Prandtl number (Pr) . Additionally, the impact of these factors on non-dimensional Nusselt 
number and skin friction is explored. An investigation of the mixed convection flow of a viscoelastic fluid with 
combined effects of viscous dissipation and radiation across a nonlinearly extending sheet has been done in 
this paper. The whole flow fields are studied using the boundary layer idea in order to provide a set of linked 
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momentum and energy equations that may be used to solve the problem. The appropriate similarity variables 
have been provided, which converts the momentum and energy equations into a couple of nonlinear ordinary 
differential equations, hence simplifying the governing partial differential equations into ordinary differential 
equations. The Keller box approach was then used to achieve the numerical results. The analysis of the parameters 
n, K , M, �, R, Ec, and Pr effects on the velocity and temperature distributions were inferred from the data. 
The impact of these factors on non-dimensional heat transfer coefficient and skin friction is also examined in 
tabular form. Comparing the numerical solutions of heat transfer rate 

(

−θ ′(0)
)

 for various values of n and Pr by 
fixing K = M = � = 0 and R = Ec = 0.1 with  Hsiao33 allowed for the determination of the numerical method’s 
validity, as shown in Table 1. The comparison reveals good agreement, which supports the adoption of the Kel-
ler box approach.

Cooling is related to the heat transfer rate from the hot surface during numerous industrial manufacturing 
processes such as glass blowing, metal extrusion, glass fibre manufacture, and polymer extrusion. The primary 
goal in these types of issues is to limit the rate of heat transmission, which depends on the production method 
and the physical makeup of the issue at hand. Given this, Figs. 2, 3, 4, 5, 6, 7, 8 and 9, which illustrate the impacts 
of a viscoelastic, nonlinear stretching sheet, mixed convection, radiation parameter, Eckert and Prandtl numbers 
on the velocity f ′(η) and temperature θ ′(η) profiles are shown after the tables and their comments.

Figures 2 and 3 are displayed to see the influence of viscoelastic parameter K on the velocity and temperature 
profiles. From this plot, it is evident that rising viscoelastic parameter K  values cause the velocity across the 
boundary layer to rise. This implies that the fluid flow velocity increases as the viscoelastic parameter increases. 
This practically indicates that the characteristics of fluid flow in viscoelastic fluids may be influenced by modi-
fying the change in the K . It is also obvious from Fig. 3 that to increase the magnitude of K is to decrease the 
temperature profile. When the dimensionless temperature profile is lower, K value is higher.

As a result, the fluid’s heat may be readily removed from it by the viscoelasticity force, which has positive 
effects for more viscoelasticity. The reason for this is that while the thermal boundary layers are reduced as the 
viscoelastic effects become more pronounced, which results in a higher rate of heat transfer among the viscoe-
lastic fluid and sheet surface, the material variables, which have an inverse relation with the fluid viscosity, are 
what causes the increase in a momentum boundary layer.

The behaviour of nonlinear stretching parameter n on velocity profile is seen in Fig. 4. It demonstrates this 
since an increase in n causes the stretching sheet to increase. In actuality, stretching velocity rises because n 
is increased, which causes the viscoelastic fluid to deform more. As n increases, the boundary layer thickness 
eventually thickens. Where n = 1 results correspond to linear stretching sheet and for n > 1 results correspond 

Table 1.  Comparative analysis of −θ ′(0) obtained by the numerical technique with that of  Hsiao33 for 
numerous values of n and Pr. Fixing K = M = � = 0 and R = 0.2, Ec = 0.1.

n Pr Hsiao33 Present results

1.5 1 0.8240 0.82411

3.0 1 0.9142 0.91430

10 1 1.0018 1.00000

1.5 2 1.2807 1.28079

1.5 5 2.1788 2.17897

Figure 2.  Impact of viscoelastic parameter K on the velocity profile.
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Figure 3.  Impact of viscoelastic parameter K on the temperature profile.

Figure 4.  Impact of nonlinear stretching sheet parameter n on the velocity profile.

Figure 5.  Impact of nonlinear stretching sheet parameter n on the temperature profile.
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Figure 6.  Impact of mixed convection parameter � on the velocity profile.

Figure 7.  Impact of radiation parameter R on the temperature profile.

Figure 8.  Impact of Eckert number Ec on the temperature profile.
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to nonlinearly stretching surface. Studies comparing n = 1 and n > 1 show that when n > 1 (i.e., a nonlinearly 
stretching sheet) is present within the stretching boundary layer as opposed to the linear stretching sheet situa-
tion, velocity magnitude considerably rises. The behaviour of nonlinear stretching parameter n on temperature 
profile is depicted in Fig. 5. Practically, it is known that the heat transfer from a thinner region will be greater 
than that of a thicker region. The stretching rate of the surface rises as n grows because more energetic particles 
are delivered to the flow; as a response, the thickness of the sheet decreases, which improves the rate of heat 
transmission. Significantly, the thermal boundary layer gets thinner for larger values of n.

Figure 6 illustrates the effects of mixed convection parameters on the velocity profile. It is revealed that 
strengthening the value of � enhances the buoyancy effect in the flow regime and hence, the velocity profile grows. 
The buoyancy-assist flow (� > 0) has a higher velocity profile than the buoyancy-resisting flow (� < 0) , and vice 
versa. This effect is caused physically by buoyancy force, which behaves as a pressure gradient and propels or 
depreciates the fluid in the boundary layer, in turn raising the velocity profile. The effects � on the temperature 
profile show that it has a minimal impact on the temperature profile, hence no graph is presented.

Figure 7 shows the characteristics of radiation parameter R with the temperature profile. It is observed from 
this graph that the thermal field increased with the increase in R . More heat is transferred to the working liquid 
via the radiation phenomena because the radiation parameter is inversely related to the mean absorption coef-
ficient. A higher radiation parameter value causes k∗ to decline, which raises the temperature. As a result, the 
rate of thermal convection into the fluid increases, as does the deviation of radiative heat flow. The increased 
thermal heat transfer is advantageous for the development of thermal boundary layers. As a result, the thermal 
layer thickens.

Whether the sheet is being heated or cold affects how important viscous dissipation is. Due to the viscoelastic 
nature of the fluid, we used for the analysis, frictional heating caused by viscous dissipation will be used to store 
the energy in the fluid. Figure 8 displays the variation of viscous dissipation which is represented in terms of 
Eckert number Ec on the temperature profile. When a fluid is heated, viscous dissipation (Ec > 0) causes the 
temperature to rise, however when a fluid is cooled, we see the opposite behaviour regarding the temperature 
profile when (Ec < 0) . On the other hand, due to the effect of viscous dissipation, the existence of viscous dis-
sipation in the energy equation works as an internal heat source, causing the dimensionless temperature to 
increase at Ec > 0 in comparison to Ec < 0 . Due to frictional heating, Ec produces more heat in the liquid when 
it is physically bigger. Consequently, a hike in temperature is seen.

The trend of the Prandtl number Pr on the temperature profile is seen in Fig. 9. Fluids experience both 
conduction and convection. They can be viewed as competing with one another in terms of transmitting heat 
because the temperature differential is decreased by both processes, which transfer heat. Fluids come in a variety 
of forms, including mercury, oil, water, air, and many others. Various fluids exhibit different rates of conduction 
and convection. Conduction can sometimes take control. Convection occasionally takes control. One metric 
that can help indicate which process will prevail is the Prandtl number. If a fluid is more viscous, the Prandtl 
number is higher and the heat transfer will be less convective since Pr is the ratio of momentum to thermal 
thermal diffusivity. The thermal boundary layer thickness and temperature distribution are reduced as a result 
of poorer thermal diffusivity, which is associated with larger values of Pr.

For various values of the magnetic parameter M and viscoelastic parameter K , the values of the skin friction 
coefficient are shown in Table 2. The numbers in the table show that increasing the values of the skin friction coef-
ficient is a result of strengthening the values of M . This implies that when the magnetic field’s strength increases, 
the fluid flow will face significant resistance or drag. This happens because a higher magnetic field causes a Lorenz 
drag, which raises the value of the drag force. In practice, this means that raising the intensity of the magnetic field 
might be used to limit the fluid flow rate, which could be a beneficial method for managing the final qualities of 
the extrusion properties. Similar to this, it is observed that when the values of the viscoelastic parameters K grow, 

Figure 9.  Temperature profile for various values of Prandtl number Pr.
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the magnitude values of −f
′′

(0) decrease. Since the power required to stretch a sheet is reduced by strengthening 
the value K , this result is significant in many industrial applications.

Table 3 displays how the non-dimensional heat transfer coefficient −θ(0) is affected by magnetic parameter 
M , radiation parameter R , and viscous dissipation parameter Ec . From the data in the table, it is clear that 
decreasing the value of any one of the three factors would decrease the value of the heat transfer coefficient. As a 
result, the heat transfer coefficient will decrease as the magnetic field’s intensity increases, the fluid flow regime 
is exposed to radiative heat flux, and thermal energy from frictional heating caused by fluid movement is taken 
into account. This happens as a result of a sluggish heat transfer from the wall to the fluid caused by the magnetic 
field’s reduction in fluid flow rate. The temperature of the fluid rises as a result of increased thermal radiation and 
viscous dissipation, which also slows heat transmission from the wall to the fluid. By strengthening the magnetic 
field and raising the fluid’s temperature, it is possible to practically regulate the heat transfer across the stretched 
sheet’s fluid interface. To help create a better cooling environment, radiation should be reduced to a minimum.

Conclusion
In the presence of an applied magnetic field, thermal radiation, and viscous dissipation, the mathematical model 
including mixed convection boundary layer flow of viscoelastic fluid and heat transfer phenomena across a 
nonlinearly stretching sheet has been investigated. When building heat transfer systems for diverse industrial 
applications, the rate of heat transmission is a key consideration. Depending on the applications, it may occasion-
ally be necessary to raise or decrease the heat transfer rate to achieve better outcomes in the heating or cooling 
operations. Additionally, the findings are important since the material qualities of the wall rely on the pace of 
cooling or heating during the production of metal or polymer sheets. Therefore, an increase in temperature 
distribution and the associated thermal layer is caused by radiative and viscous dissipation. In reality, radiation 
causes more heat to be produced in liquids, raising their temperature. Radiation has an impact on heat transport 
and temperature distribution at high temperatures. Within the nonlinearly expanding boundary layer, opposing 

Table 2.  Numerical computation for drag force −f ′′(0) with various values of M and K with 
n = 2, � = 0.5, R = 0.2, Ec = 0.1, and Pr = 10.

M K f
′ ′

(0)

0 0.2 1.39209

1 0.2 1.63028

2 0.2 1.92373

3 0.2 2.26984

4 0.2 2.69223

1 0.0 0.99381

1 0.1 0.78283

1 0.3 0.45123

1 0.5 0.41428

1 0.7 0.20281

Table 3.  Numerical values of Nusselt number θ ′(0) for numerous values M, R, and Ec with 
n = 2, K = 0.2, � = 0.5 and Pr = 10.

M R Ec −θ
′

(0)

0 0.2 0.1 3.81352

1 0.2 0.1 3.47201

2 0.2 0.1 3.09209

3 0.2 0.1 2.81003

1 0 0.1 4.66732

1 0.5 0.1 3.59426

1 1.0 0.1 3.01694

1 1.5 0.1 2.37161

1 2.0 0.1 1.99023

1 0.2 0 3.85772

1 0.2 0.1 3.62598

1 0.2 0.2 3.59426

1 0.2 0.3 2.89809

1 0.2 0.4 1.73047
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transport phenomena are where the magnetic field dominates. The study also shows that the applied magnetic 
field parameter increases the temperature profile while decreasing the rate of heat transfer through the walls. The 
results also showed that the increment of the nonlinear stretching sheet parameter n increases the drag coefficient 
due to an improvement in momentum diffusivity, which is the cause of the low rate of heat transfer because the 
rate of heat transfer decreases with increasing boundary layer thickness.

The Keller-box method could be applied to a variety of physical and technical challenges in the  future42–52. 
Some recent developments exploring the significance of the considered research domain are reported  by53–65.

Data availability
All data generated or analyzed during this study are included in this published article.
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