Universiti Teknologi Malaysia Institutional Repository

Radiation shielding features for a new glass system based on tellurite oxide

Abu Mhareb, Mohammad Hasan and Sayyed, M. I. and Hashim, S. and Alshammari, Maha and Alhugail, Shadin and Aldoukhi, Houra and Hamad, Morad Kh. and Alajerami, Yasser Saleh Mustafa and Khandaker, Mayeen Uddin (2022) Radiation shielding features for a new glass system based on tellurite oxide. Radiation Physics and Chemistry, 200 (NA). pp. 1-11. ISSN 0969-806X

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1016/j.radphyschem.2022.11009...

Abstract

Ionizing radiation has become much more prevalent in our lives, which need an increasing requirement for radiation shielding materials. The conventional melt-quench procedure was used to fabricate five transparent glass samples with a composition of (70-x)TeO2-xMoO3-10SrO–20BaO (x = 0, 5, 10, 15, and 20 mol percent). The structural and radiation shielding properties of gamma, neutrons, and charged particles are investigated in this work. The amorphous nature was well-defined by X-ray diffraction (XRD), which was confirmed for all samples. Many structural and physical aspects were calculated using glass density values. At the same time, various gamma radiation shielding features were defined according to the Phy-X program. The adding of molybdenum oxide (MoO3) enhanced the density values from 5.3014 to 5.6672 g/cm3 and reduced molar volume from 28.8127 to 26.3999 cm3/mol. With the addition of MoO3, the shielding qualities for gamma and neutrons improved; the STBM20 sample has the most shielding features compared to the other samples. In contrast, the shielding characteristics for charged particles were reduced when tellurium oxide (TeO2) was replaced with MoO3. The possibility to use current glasses in the radiation shielding domain can be deduced from the observed results.

Item Type:Article
Uncontrolled Keywords:linear attenuation coefficient, physical properties, radiation shielding properties, tellurite glass
Subjects:Q Science > QC Physics
Divisions:Science
ID Code:103903
Deposited By: Yanti Mohd Shah
Deposited On:04 Dec 2023 07:52
Last Modified:04 Dec 2023 07:52

Repository Staff Only: item control page