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THEORETICAL APPROACH ON THE GROWTH RATE OF
SOLIDIFIED METAL INTERFACE

D. PRAYITNO1, E. HAMZAH2,  M.Z.M. GHAZALI3 & A.J. CLEGG4

Abstract. When nucleation is completed, the solidification process will continue with nucleus
growth. Increasing the growth rate will reduce the grain size of metal. Thus the study on the casting
parameters which have an effect on the growth rate should be carried out in order to improve the
mechanical properties of the metal. This work thus proposes an equation of growth rate of solidi-
fied metal interface in the molten state which is poured from a moving tundish into an inclined
mould. The proposed equation can be practically applied and the parameters can be experimen-
tally determined.
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Abstrak. Apabila penukleusan telah lengkap, proses pemejalan seterusnya melibatkan
pertumbuhan nukleus. Pertambahan kadar pertumbuhan akan mengecilkan saiz bijian logam.
Oleh itu, kajian ke atas paramater-parameter tuangan yang memberi kesan ke atas kadar
pertumbuhan perlu dilakukan bagi memperbaiki sifat mekanik logam. Kertas kerja ini dengan itu
mencadangkan suatu persamaan kadar pertumbuhan antara muka logam pepejal dalam keadaan
lebur yang dituangkan daripada suatu tundish bergerak ke dalam suatu acuan condong. Persamaan
yang dicadangkan boleh digunakan secara praktik dan parameter-parameternya boleh ditentukan
secara ujikaji.

Kata kunci: Pemejalan logam; tuangan; penukleusan; pertumbuhan bijian

1.0 INTRODUCTION

Grain refining has been regarded as one of the most effective ways to upgrade
metals since it can improve many mechanical properties, such as strength, tough-
ness, ductility and fatigue strength. The grain-refining methods that are carried out
in the melting and casting stage are generally more direct and efficient in obtaining
a fine-grain product than those applied in the subsequent processing of ingots or
billets. This is due to the fact that the former can reduce the homogenization time
and save the thermomechanical or heat-treatment efforts for refining the grain struc-
ture.

The principles of grain refining during casting are: (a) an increase in cooling rate,
(b) an addition of a grain refiner and (c) an application of an external force.  Increas-
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ing cooling rate can accelerate the nucleation rate and thus results in smaller grain
size. A chill block may be employed on the basis of this principle. A grain-refining
agent can induce a number of crystal nuclei near the solid-liquid interface and thus
prohibit the growth of columnar grains. Turbulent flow can be generated by the
application of a mechanical or electromagnetic force to the melt. The turbulent flow
can, as a result, enhance crystal multiplication by breaking and remelting the den-
drite.

Once a nucleus is formed, it will continue to grow. The growth rate of a solidified
metal interface is also important to consider for reducing the grain size of as-cast
structures, since increasing the growth rate reduces the tip radius of dendrites and
dendrite arm spacing. The concept of constitutional supercooling is probably one of
the most significant factors leading to a theoretical explanation of alloy solidification
[1]. This theory was mathematically described by Tiller et al., [2] and more recently
applied to the understanding of weld solidification by Savage et al., [3]. In these
investigations it was shown that solidification parameters i.e. alloy solute content,
thermal gradient in the liquid (G) and the growth rate of the solidifying interface (R)
were found to influence the resultant solidification structure. In the absence of con-
stitutional supercooling (which for a given alloy system is indicative of steep thermal
gradient and/or low growth rate), a planar interface would prevail. If the thermal
gradient or growth rates were such that constitutional supercooling increases (low
ratio of G/R), the interface would become unstable and break down into one of the
several dendritic-growth modes.

Many researchers [4–8] have studied and investigated the effect of growth rate on
the individual solidification structure. Important parameters such as tip radius of
curvature and initial secondary dendrite arm spacing were predicted as functions of
growth rate. Burden and Hunt [4, 5] developed a theory for dendritic growth based
on measurement of the tip temperature of cell and dendrites under unidirectional
solidification. The undercooling at the dendrite tip is given by an expression of the
form as shown in equation (1) at high thermal gradient, G and low velocities of
growth rate R, and D is the coefficient diffusion constant,

∆ = GD
T

R
(1)

However at high velocities the undercooling DT µ Rn where n is between 0.4 and
0.5. They also suggested a correlation between the radius of curvature (r) and the
growth rate (R) which is as follows;

( )

1
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D
r

mR k C
(2)
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where m = liquidus slope (K/wt %)
k = ratio solid composition and liquid composition

C∞ = composition at infinity (wt %)
G = thermal gradient in liquid (K/m)

DT = undercooing (K)

Trivedi [6] proposed the theory of dendritic growth of binary alloys. At low growth
rates the radius of curvature (r) can be expressed as follows;

1

0 0

2 1
1

−   −  = −     ∆ ∆      

D k GD GD
r

R k R T R T
(3)

where k is the ratio of solid composition and liquid composition (Cs/Cl). DT0 is the
liquidus to solidus range temperature. Thus, when k < 1 finite radius of dendrite is

obtained only when 
0

1<
∆

GD
R T

. Also for a planar interface condition, r Æ ∞ (radius

of dendrite close to infinite), is obtained when 
0

1→
∆
GD

R T
.

At high velocities, since the thermal gradient effect are negligible, the radius of
curvature (r) can be expressed as;

2

0

2γ=
∆ ∆

DL
r

S T R
(4)

where L ~ 10 is a constant
DS = entropy (erg/cm3 °C)

g = solid/liquid interfacial free energy (erg/cm2)

Thus, as in the case of the free dendrite growth Rr2 = constant for a given system
under constrained growth condition when the temperature gradient effects are neg-
ligible.

Esaka and Kurz [7] proposed an equation to obtain the relationship between the
initial secondary dendrite arm spacing (l2) and the growth rate (R) which is as
follows:

( )0.51 5 1.51 0.51
2 8.15 10 cm sλ − −= ×R (5)

Kurz and Fisher [8] proposed an equation for the prediction of tip radius of a
dendrite (r) as a function of growth rate (R);
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0
2π Γ=

∆
D

r
Rk T (6)

where G = Gibbs – Thompson Coefficient (Km)
Based on the welding metal structure, Porter [9] proposed an equation to suggest

that the growth rate of an interface (R) is equal to the welding speed (v).

R = v cos q (7)

where q is the angle between growth rate direction and welding direction. Since the
welding speed is constant, the growth rate has to vary considerably depending on
the position at the liquidus. It thus follows that the growth rate at the weld centre line
behind the moving heat source (q ~0°) grows fastest, while growth rate at the edge
of the weld (q ~90°) grows slowest.

According to Lancester [10] the solidification velocity (R) of the weld pool is
equal to the welding speed, v, multiplied by the sine of the angle j between the
tangent to the weld pool boundary and the welding direction;

R = v sin j (8)

Based on the equations proposed by these researchers, the present work pro-
posed an equation on the growth rate of the solidified interface from molten metal
poured from a moving tundish in an inclined mould which can be practically ap-
plied to design a new near shape casting machine.

2.0 THEORETICAL BASIS OF THE PROPOSED GROWTH
RATE EQUATION

Since the molten metal solidifies in the metal mould, heat extracted through the
mould is the heat of fusion of the solidifying metal. Thus the heat flux balance is

( )
ρ∆

=
−

f

m s

H R
h

T T
(9)

where Tm = melting temperature of metal (K)
Ts = solid temperature of solidified metal (K)
ρ = density (kg/m3)

∆Hf = heat fusion of metal (cal/kg)
R = crystal growth rate (assumed as a vector) (m/s)

The assumptions for equation (9) include: (a) the molten is in the Newtonian
conditions, (b) the heat from the molten metal is extracted by the mould with per-
pendicular direction to the mould wall, (c) the growth direction is parallel and oppo-
site of the heat flow direction, (d) quantity of molten metal is small, and (e) the heat
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transfer on the melt substrate interface dominates and that negligible temperature
gradient exists in the melt. The melt shows a characteristic of a laminar flow [11].

The growth rate, R, is assumed to be a vector which can be modified into Rx due
to the molten metal flowing (assumed as laminar flow) with velocity, v, which is also
a vector [12];

2 2 2= +xR R v (10)

3.0 VELOCITY DISTRIBUTION ON THE MOLTEN METAL IN
AN INCLINED MOULD

In the present proposal the molten metal was poured from a moving tundish into a
D groove of an inclined mould in order to obtain finer grain sizes. The velocity
distribution of molten metal in the experimental set up is based on the momentum
balance [13, 14]. The equation of momentum balance for a steady flow is as follows;

(rate of  – (rate of  
+
 (sum of forces  = 0

momentum in)  momentum out)  acting on system)
(11)

Figure 1 Velocity Distribution of Molten Metal in the D-shaped Inclined Mould. (a) Molten
Metal Flows out From Tundish into the D-shaped Inclined Mould (b) Parts of Momentum Balance
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Now consider the flow of liquid at a steady state along the D groove as shown in
Figure 1. The liquid is at a constant temperature, and therefore its density and
viscosity are constant. Furthermore, only that portion of the D groove we consider
where the entry and exit of the fluid to the D-Groove sufficiently removed so as not
to influence the velocity, vz. In this situation, vz is not a function of z but obviously a
function of x. Figure 1 also depicts the unit volume as a “shell” with a thickness ∆x
and length L, radius of the shell is d. The important terms considered to solve
equation (3.1) is given as follows;

Rate of momentum in across D groove
surface at x (momentum transport due
to viscosity)

Rate of momentum out across D groove
surface at x + Dx (due to viscosity)

Rate of momentum in across D groove
surface at z = 0 (due to fluid motion)

Rate of momentum out across D groove
surface at z = L (due to fluid motion)

Gravity force acting on fluid

In this particular problem, the pressure is assumed to be equal throughout the
liquid. Also note that all terms in the list including the first two are z-directed forces.
Figure 1(b) shows that momentum-in by viscous transports is x directed, but if we
think of interpreting txz in an alternative way, namely, as shear stress we certainly
realize that we are dealing with a z-directed force.

When all these terms are substituted into the momentum balance, we get;

2 22 2 2 2
02 2 2 2

π π π πτ τ ρ ρ       − + ∆ − ∆       + ∆ = =       xz xz z z
x x x x

L L x v x vx x z zx

2
cos 0

2
π ρ β + ∆ =  

x
L x g (12)

Since we are restricted to that part of the inclined mould which does not feel the
effect of the exit and entrance, vz is independent of z. Therefore, the third and fourth

( )2
2
π τ  

    
xz

x
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L

( )
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π ρ
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z z

z
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2
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z z
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2
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x
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terms cancel one another out. Equation (12) is now divided by 2
2
π  ∆  

L x  and, if Dx

is allowed to be infinitely small, we obtain

0
lim cos

τ τ
ρ β+∆

∆ →

−
=

∆
xz xzx x x

x
g

x
(13)

We have now recognized the definition of the first derivative of txz with respect to
x, and have thus developed the differential equation pertinent to our system;

cos
τ ρ β=xzd

g
dx

(14)

this equation is integrated to yield

1cosτ ρ β= +xz gx C (15)

Equation (15) describes the momentum flux (or alternatively the shear-stress
distribution), but contains an integration constant C1. This constant is evaluated by
recognizing that the shear stress in the liquid is very nearly zero at a liquid-gas
interface. In other words the gas phase in this instance offers little resistance to liquid
flow which results in a realistic boundary condition: Boundary Condition 1 at x = 0,
txz = 0. Substitution of this boundary condition into equation (15) requires that
C1 = 0; hence the momentum flux is

cosτ ρ β=xz gx (16)

If the fluid is newtonian, then we know that the momentum flux is related to
velocity gradient according to

τ η= − z
xz

dv
dx

(17)

where h = viscosity (Ns m–2)
Substituting this expression for txz in equation (16) gives the distribution of the

velocity gradient:

cos
2

ρ β
η

= −zdv g
x

dx
(18)

integrating Equation (18), we have

2
2

cosρ β
η

= − +z
g

v x C (19)
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Another integration constant has evolved which is evaluated by examining the
other boundary condition, namely, that at the liquid–solid interface the fluid
clings to the wall that is boundary condition 2. At x = d, vz = 0. Substituting this
boundary condition into equation (19), we determine the constant of integration;

2
2

cos
2

ρ β δ
η

 
=  

 

g
C . Therefore the velocity distribution is:

22 cos
1

2
ρ δ β

η δ
  = −     

z
g x

v (20)

and is parabolic. Once the velocity profile has been found a maximum velocity,
max
zv , is that velocity at x = 0,

2
max cos

2
ρ δ β

η
=z

g
v (21)

The foregoing analytical results are valid only when the liquid is in laminar flow
(straight streamlines).

There is an assumption that the maximum velocity max
zv  is equal to the tundish

speed, vtundish [15, 16]. Thus equation (20) could be replaced as follows:

2

1
δ

  = −     
z tundish

x
v v (22)

4.0 GROWTH RATE EQUATION

Since the velocity of molten metal in the D-groove of inclined mould is distributed
as velocity distribution (vz), The molten velocity (v) in the equation (10) could be
replaced by vz. Thus the growth rate of the solidified metal can be expressed as
follows;

2 2 2= +x zR R v (23)

When equation (9) and (22) are substituted into equation (23), an equation for
growth rate as shown in Figure 2 can be obtained as follows;

( )
22 2

2 1
ρ δ

    −   = + −     ∆         

m s
x tundish

f

h T T x
R v

H (24)
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where Rx is growth rate of solidified interface in a flowing molten metal. This is
schematically shown in Figure 2.

Figure 2 Growth rate of solidified metal interface in the D-shaped inclined mould
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Based on the three dimensional heat flow on welding process [17] and thermal
boundary layer theory [18, 19], the molten metal which is directly in contact with the
base metal has a temperature value close to the base metal temperature or mould
temperature, where as the centre line surface of molten metal has a temperature
value close to its melting temperature. Based on these arguments it can be said that
the solid temperature (Ts) in equation (24) depends on its location in the molten
metal. Since the location is near to the mould wall, Ts is relatively equal to the mould
temperature and the Ts is close to the melting temperature at the centre line of
surface of the molten metal. Thus all the parameters in the proposed equation can
be determined experimentally and this equation may be used to design a new near
shape casting machine which may improve the mechanical properties of any ferrous
or non-ferrous metals.

5.0 CONCLUSION

An equation of growth rate of solidification metal has been proposed which can be
practically applied and experimentally determined in order to design a new near
shape casting machine for ferrous and non-ferrous metals.
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