Universiti Teknologi Malaysia Institutional Repository

Effects of surface wettability and thermal conductivity on the wear performance of ultrahigh molecular weight polyethylene/graphite and ultrahigh molecular weight polyethylene/graphene oxide composites

Shahemi, Nur Hidayah and Shahira Liza, Shahira Liza and Sawae, Yoshinori and Morita, Takehiro and Shinmori, Hironori and Yaakob, Yazid (2022) Effects of surface wettability and thermal conductivity on the wear performance of ultrahigh molecular weight polyethylene/graphite and ultrahigh molecular weight polyethylene/graphene oxide composites. Polymers for Advanced Technologies, 33 (6). pp. 1916-1932. ISSN 1042-7147

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1002/pat.5651

Abstract

Recent studies have found a rapid increase of ultrahigh molecular weight polyethylene (UHMWPE) wear in the presence of proteins from the synovial fluid. Due to UHMWPE's high hydrophobicity, it tends to adsorb a tremendous amount of proteins. Moreover, since UHMWPE has low thermal conductivity, a temperature rise in the center of the contact area due to frictional heating could cause protein denaturation from the synovial fluid. It has been shown that the denatured protein may increase the adhesive wear response. This study aimed to address the effects of graphite and graphene oxide (GO) addition on the wear properties of UHMWPE in protein environments. The surface properties were characterized using surface roughness profiler, surface energy evaluation, zeta potential, and Fourier transform infra-red (FTIR). Following that, wear properties of UHMWPE composite were evaluated using a multidirectional pin-on-disc wear test under a bovine serum lubricated condition. The worn surface of the UHMWPE composite sample was evaluated, and the dominating factors of wear properties were determined. The effect of protein adsorption on the composite surface was also assessed after the wear test. The hydrophilicity of UHWMPE/1.0GO is considered to be the dominant contribution determining protein adsorption in static conditions. UHMWPE composite's wear resistance improvement was primarily dominated by GO filler (1.0 wt%) near the sliding surface, which has improved the subsurface strength of the material and heat dissipation effect, which reduces the denaturation of the proteins.

Item Type:Article
Uncontrolled Keywords:hydrophobicity, protein adsorption, surface charge, surface free energy, thermal conductivity, UHMWPE
Subjects:T Technology > TJ Mechanical engineering and machinery
Divisions:Malaysia-Japan International Institute of Technology
ID Code:103859
Deposited By: Yanti Mohd Shah
Deposited On:01 Dec 2023 02:15
Last Modified:01 Dec 2023 02:15

Repository Staff Only: item control page