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Abstract: A medication’s approximate release profile should be sustained in order to generate the
desired therapeutic effect. The drug’s release site, duration, and rate must all be adjusted to the drug’s
therapeutic aim. However, when designing drug delivery systems, this may be a considerable hurdle.
Electrospinning is a promising method of creating a nanofibrous membrane since it enables drugs
to be placed in the nanofiber composite and released over time. Nanofiber composites designed
through electrospinning for drug release purposes are commonly constructed of simple structures.
This nanofiber composite produces matrices with nanoscale fiber structure, large surface area to
volume ratio, and a high porosity with small pore size. The nanofiber composite’s large surface area to
volume ratio can aid with cell binding and multiplication, drug loading, and mass transfer processes.
The nanofiber composite acts as a container for drugs that can be customized to a wide range of drug
release kinetics. Drugs may be electrospun after being dissolved or dispersed in the polymer solution,
or they can be physically or chemically bound to the nanofiber surface. The composition and internal
structure of the nanofibers are crucial for medicine release patterns.
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1. Introduction

Nanostructured materials, also known as nanomaterials, are becoming more common in
our daily lives and are considered as the trendiest basic materials. Nanomaterials also offer
incredible promises for enhancing the performance of existing materials while at the same
time introducing new features and uses. Nanomaterials have sparked tremendous interest
in research and industrial applications during the last few decades. Nanomaterials, defined
by their size within the nanoscale, usually 1 to 100 nm, are of significant interest due to their
limitless potential application in the health care area [1]. Nanomaterials have gained a lot of
interest due to their distinct features such as a huge surface area and designed properties such
as high porosity [2]. At the nanoscale, these nanoparticles offer a number of ways to combine
materials in new ways by taking advantage of the unique way these materials interact with
each other. [2]. Numerous studies have been conducted using biomaterials with a definite
3D structure and cell-informative signals with components similar to the extracellular matrix
(ECM) to control the cycles’ biological activity [3–5]. Many ECM molecules contain a diversity
of intertwined nanoscale fibrous constructions that promote cell adherence and bioactivity,
therefore producing architectural scaffolds that imitate ECM [6]. Nanomaterials are now
being researched in various disciplines including self-assembly and thin films, quantum dots,
nanofibers, nanorods, nanotubes, nanowires, nanocrystals, and nanofoams [7]. It is widely
accepted that nanofibers are one of the most fascinating and significant 1D nanostructures
that may be employed in nonwoven membranes.

Scaffolds with a nanofibrous structure have been created via phase separation, self-
assembly, and electrospinning [8]. Among the processes to produce nanofibrous scaffolds,
the electrospinning approach has received much attention from numerous industries.
Nanofiber membranes are created using electrospinning, also known as electrostatic spin-
ning. This technique is a unique and basic method that is easy to use, cost-efficient, and
has the potential for upscaling, allowing for new industrial applications [9,10]. Recent
research and commercial interest in electrospinning, a widely used process for electrostatic
fiber production that harnesses electrical forces to make polymer fibers with diameters
ranging from 2 nm to several micrometers, has increased dramatically [11,12]. Worldwide
research and publications linked to electrospinning have gradually increased over the last
decade. The data in Figure 1 demonstrates that over the past 22 years, the total number of
publications in electrospinning have elevated remarkably from only five papers in 2000 to
1880 in July 2022. These data were retrieved from Scopus using the term electrospinning
nanofibers and covered a variety of topics including improvements in electrospun func-
tional nanofibers [13–16], electrospinning processing parameters [17,18], and electrospun
characterization for a variety of applications [19–22].

Nanofibers excite a lot of interest nowadays due to their outstanding characteristics.
Nanofibers are fibers with diameters ranging from 1 to 100 nanometers. Nanofibrous mate-
rials are being researched and created because they hold great potential for a wide range
of uses while also achieving some of the benefits of nanostructured materials. Moreover,
the field of nanofibers has piqued the attention of many in the fields of biotechnology
and medicine, and it has seen rapid progress in recent years. Nanofibers have beneficial
properties such as a large surface area-to-mass ratio, adjustable size, shape, and the ca-
pacity to construct a porous mesh, which provides an excellent three-dimensional (3D)
network environment, which accounts for their increased capabilities [23]. 3D electrospun
scaffolds are also helpful for infusion nutrients and cell penetration into the fiber deepening
structure [24]. Significant technological developments in the electrospinning technique
have allowed for the development and fabrication of desirable features of novel polymeric
materials including the structural modification of nanofibers and their capacity to alter
wettability, conductivity, and antimicrobial properties [25].
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A medication needs a proper drug delivery mechanism to produce the requisite thera-
peutic effect to ensure its specific release profile. As precisely as feasible, the disposition,
time, and release rate of a medication must be adapted to the therapeutic goal of the
medicine. It is widely utilized to regulate the medication supply from hydrophilic and
biodegradable polymers in health care due to the obvious distinctive traits of nanofibers.
A wide variety of medicines such as water-insoluble medications, soluble in water drugs,
weakly soluble in water drugs, and macromolecules including bioactive proteins and DNA
should be supplied with nanofibers [26]. A composite material is a mixture of two or
more different materials with distinct physical and chemical characteristics. When the
two materials are combined, they form a material that is tougher, or lightweight. The
combination can also increase the strength and rigidity. Biocompatibility, biodegradabil-
ity, excellent specific modulus, and durability are only a few of the benefits offered by
fiber-reinforced composite fibers to the biomedical field [27]. A polymer composite is a
multi-phase material that combines reinforcing fillers with a polymer matrix to provide
synergistic mechanical qualities that neither component could attain alone [28]. Many
studies have been conducted considering the employment of nanofiber composite scaf-
folds in nerve tissue engineering, antimicrobial applications, blood vessel graft, cancer
nanomedicine delivery, soft tissue reconstruction, diabetic wound healing, artificial mus-
cled design, and bone regeneration [29–36]. Ergo, this review article has emphasized the
significant ability of electrospinning and post-treatment modification to produce nanofiber
composites as drug carriers in drug delivery applications. First, a brief overview empha-
sizes the electrospinning technique as an approach to fabricate nanofibrous scaffolds for
drug delivery purposes. Parameters affecting the fabrication of nanofibers, synthetic and
natural polymer nanofiber, nanofiber system type, and drug release mechanism are also
topics that are discussed in this review. In addition, this review also highlights the benefits
and drawbacks of each material, type, the properties, and characterization approaches of
the nanofiber composites utilized in the manufacturing of nanofiber composite scaffolds.
Moreover, this review accentuated the latest application of electrospun nanofibers as drug
carriers in pharmaceuticals, bone tissue engineering, nerve tissue engineering, periodontal
tissue engineering, wound dressing, and cancer therapeutics drug delivery.
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2. Electrospun Nanofiber

Electrospinning is a technique that employs nanoscale fibers to construct an imper-
meable nonwoven fabric by driving a liquid jet with a millimeter diameter through an
electric field-induced nozzle, which results in the formation of submicron fibers. Generally,
electrospinning is an electrohydrodynamic technique. In this process, a liquid droplet is
electrified to create a jet, which is then stretched and elongated to produce fibers. During
the electrospinning process, a high voltage power supply is commonly applied to the solu-
tion, which later causes the production of pendant droplets [37]. The pendant droplet is a
result of surface tension when the liquid is discharged from the spinneret [38]. The charging
effect on the surface of the pendant droplet created at the tip of the blunt needle is a result
of an electric field that causes a wobbliness that changes the shape of the hemispherical
droplet into a cone, usually called the Taylor cone [39].

In this process, the repulsive electric forces surpass the surface tension when the
applied electric field achieves a threshold value [40]. When the field strength is adequately
strong, a jet of liquid is continually extruded from the tip of the cone and shatters, pro-
ducing charged particles. A steady, continuous stream of charged particles is conceivably
constructed in this cone-jet way of operating [41]. The jet loses solvent through evaporation
as it travels toward the collector during electrospinning. The diameter, morphology, and
characteristics of the final solidified nanofibers are determined solely by the fast evaporation
of the solvent, followed by stretching of the jet due to electric forces and jet instabilities [42].
Thinning of the jet allows for an increased surface area per unit volume to ensure aid for
evaporation, where this process thins the jet even further, resulting in thinner fibers [43].
As the solvent evaporates, the diameter of the jet shrinks dramatically as the jet solidifies,
resulting in ultrafine-diameter fibers [44].

Figure 2 illustrates the fundamental arrangement for electrospinning, which is fairly
simple. A high-voltage power source, a syringe pump, a syringe with a needle with a
blunt tip, and a grounded conductive metal collector are the main components of the
electrospinning. Although the setup is basic, understanding the concepts and factors that
govern the electrospinning process is required before any polymer solutions may be turned
into desirable nanofibers. Furthermore, by changing the electrospinning settings, the choice
of materials and postprocessing treatments as well as the characteristics of nanofibers may
be adjusted to meet specific requirements in terms of the layer thickness, fiber diameter,
porosity, and other capabilities [45]. Electrospinning parameters, for instance, processing,
solution, and ambient parameters, influence the diameter and structure of the fibers gener-
ated [46–49]. The processing parameters cover the applied voltage, flow rate, or feeding
rate and distance between the needle tip to the metal collector. Solution parameters include
the viscosity, concentration, molecular weight, surface tension, and conductivity. The
ambient or environmental parameters usually include humidity and temperature. Figure 3
illustrates the essential parameters that concern the desirable fabrication of nanofibers.
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Can-Herrera et al. [50] conducted an investigation to study the morphological prop-
erties of electrospun polycaprolactone (PCL) nanofibers in relation to the applied voltage.
According to their research, the fibers had a uniform appearance, and beads were absent at
any of the tested voltage levels. When the voltage was increased, large pores and branch-
shaped fibers were detected. This may be described in the following way: Multiple jets of
electrospinning are induced by high voltages, lowering the electrostatic forces, and stretch-
ing the nanofibers [51], due to which shortened fibers are generated. When the voltage was
increased from 15 kV to 20 kV, the fiber diameter increased. Increased voltages accelerated
the jet toward the collector, resulting in a shorter flight time for stretching the jet preparatory
to deposition, allowing for the formation of fibers with a larger diameter [52]. In another
study conducted by Bakar et al. [53] on electrospun polyacrylonitrile (PAN) nanofibers, they
discovered that the fiber diameters increased as the applied voltage increased. Meanwhile,
in research on bubble electrospinning by Liu et al. [54], they discovered that the number of
beads present on the nanofibers decreased as the applied voltage increased. Additionally,
the increase in the average diameter of fibers may be due to the fact that a higher applied
voltage results in a greater electrostatic force, so those with larger diameters that may be
unavailable at a low electrostatic force [54].

A study conducted by Zargham et al. [55] on the effects of flow rate on the morphology
and deposition of electrospun Nylon 6 nanofibers identified that the flow rate impacted
the distribution of the fiber diameters, droplet size, and form at the capillary tip, jet
trajectory, Taylor cone retention, regional density, and nanofiber structure. The flow rate
fluctuations had an effect on the distribution of the fiber sizes. Clearly, as the flow rate
increased, the diameter dispersion of the fibers became broader. To generate continuous
fibers, a stable Taylor cone must be formed [55,56]. In addition, in research completed
on the effect of the flow rate on poly(vinylidene fluoride) (PVDF) nanofibers by Zulfikar
et al. [57], they found that as the flow rate increased, the electrospun fibers generated
retained their basic cylindrical form, but the number of bead defects in the fiber mat
decreased noticeably. When the flow rate was increased, the fibers developed quicker,
resulting in additional strain stress on the grounded collection and the beads not having
enough time to form [57]. More solution is expelled from the needle tip in a given amount
of time when the feeding rate is increased in which the surface tension may be responsible
for forming the beads when the electric field force is insufficient to stretch the jet [58].
Al-Hazeem [59] studied the effect of the distance tip-to-collector on titanium dioxide
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(TiO2) incorporated polyvinylpyrrolidone (PVP) nanofibers. Al-Hazeem [59] identified
that the fiber diameter and structure were determined by the distance, as increasing the
distance improved the morphology with a smaller average diameter. When the distance
was extended, the morphology was enhanced as the diameter decreased; this happened
because as the distance was short, there was insufficient time to evaporate the solvent before
the deposition of the fibers on the collector, so the fibers may combine. The distance of the
tip-to-collector should be suitable to enable sufficient time for the solution to evaporate
and stretch before settling on the collector [60]. The distance of 15 cm produced the best
outcomes among the chosen distances, with the fiber forming on a regular basis and
having an average diameter smaller than the other distances. Bakar et al. [61] discovered
that the characteristics of the electrospun polyacrylonitrile (PAN) fibers generated were
discovered to be highly dependent on electrospinning parameters such as the PAN solution
concentration. The nanofiber diameter increase with the polymer solution concentration
was due to the number of macromolecular chains and chain entanglements, which rose
with an increasing concentration in the electrospinning fluid [61].

The electrospinning solution viscosity can be enhanced by increasing the concentration
of the polymer solution [62]. Nezerati et al. [63] identified that beaded fibers formed at the
lowest viscosity of poly(carbonate urethane) (PCU) of 7 Pa·s, uniform fibers formed at an
intermediary viscosity of 13 Pa·s, whilst at a higher viscosity of 23 Pa·s, the diameter of the
fiber increased. The formation of beads was due to the solution at a lower concentration
lacking the viscosity required to withstand fiber deformation without fault under the
applied electric field [63]. Meanwhile, a higher viscosity of the high concentration of
PCU produced greater viscoelastic forces, which opposed the axial stretching during
whipping in electrospinning, generating a larger nanofiber diameter [63]. Koski et al. [63]
analyzed the impacts of molecular weight on the electrospun polyvinyl alcohol (PVA) fiber
morphologies while in fact, the molecular weight plays an important role that affects the
nanofiber morphologies. At 25 wt.%, at a low molecular weight (9000–10,000 g/mol), beads
were present on the nanofiber. At an intermediate molecular weight (13,000–23,000 g/mol),
nanofibers formed in a uniform structure and beads were absent whilst high molecular
weights (31,000–50,000 g/mol) resulted in flat-shaped nanofibers. As the concentration of
the solution increased, the diameter of the fibers and the distance between them expanded,
resulting in a gradual transition from circular-shaped to flat-shaped fibers. Gelb et al. [64]
investigated the effects of the polymer solution properties on the electrospun nanofiber
properties for drug delivery. Greater applied voltages were needed for PVA solutions with
increasing surface tension to produce a consistent Taylor cone. Their research confirmed
that to pull the solution into a nanoscale jet, it would take more force if the surface tension
was higher, thus explaining that surface tension plays a large role in the spinnability of an
electrospinning process.

Raksa et al. [65] studied the silk fibroin (SF) incorporated PVA nanofibers’ shape and
mechanical characteristics, which were affected by humidity during electrospinning. The
fiber’s shape and thickness became more irregular as the relative humidity rose. The fiber
diameter became smaller when the relative humidity became higher. At a relative humidity
of 80%, the SF/PVA nanofibers exhibited a smooth morphology and beads were absent on
the nanofiber. Meanwhile, the distance of the interconnecting pores showed a decrement
as the humidity rose. Yang et al. [66] investigated the impacts of the working temperature
on the fabrication of the electrospun nanofiber in which this parameter obviously plays an
important role in electrospinning. The smooth surface of the nanofiber was generated as the
working temperature increased. As the working temperature was increased from 20 to 60 ◦C,
the PAN nanofibers shrank in size. However, when the working temperature was raised to
80 ◦C, the resulting PAN nanofibers had an average diameter of 260 ± 40 nm, indicating that
the temperature increment from 60 to 80 ◦C had no effect on the creation of PAN nanofibers.
Table 1 shows some of the possible factors influencing the production of nanofibers.
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Table 1. The electrospinning factors that affect the fabrication of the nanofibers.

Parameters Details

Process parameters
Applied voltage The formation of average diameter of nanofibers of increased with the

applied voltage [50,53,54].
Flow rate or feeding rate Diameter of nanofibers decreases as the flow rate decreases [55,67].

Distance from needle tip-to-metal collector When distance tip-to-collector increases, average diameter of nanofibers
decreases [59].

Solution parameters
Solution concentration Fiber diameter decreases with solution concentration [61].
Solution viscosity Fiber diameter increases as solution viscosity increases [63].
Molecular weight Diameter of fiber increases with molecular weight [68].

Surface tension Electrospun fibers have a tendency to be uniform and continuous when
the surface tension is low [69].

Ambient parameters Humidity As the humidity increases, the interconnecting pores and the diameter
of the fibers decrease [65].

Temperature A temperature increase resulted in a decrease in the fiber diameter [66].

A variety of synthetic and natural polymers have been employed in the construction
of nanofibrous scaffolds with a variety of structural characteristics. Synthetic polymers, as
opposed to natural polymers, often offer greater versatility in terms of production, processing,
and alteration as well as being more cost-effective than natural polymers. It is also important
to note that their mechanical characteristics may be modified efficiently and selectively.
Synthetic polymers, however, have poor bioactivity and hence need more alterations than
natural polymers. Natural polymers, in contrast, are intrinsically bioactive, exhibiting cell-
interactive domains on their backbones, and scaffolds created from them promote greater
cell attachment, multiplication, and differentiation than scaffolds generated from synthetic
polymers [69]. Blends of different polymers have been used instead of single polymers
to obtain the desired properties. This is because blends combine the benefits of different
polymers and get around their weaknesses. For example, cress seed oil enhanced the polymer
compatibility and modified the viscosity behavior of a polymer mixture of polyvinyl alcohol
and starch [70]. Moreover, to utilize the benefits of both synthetic and natural polymers,
researchers have developed hybrid scaffolds that have physical qualities and strong bioactivity,
making them particularly well-suited for tissue regeneration [71]. In another example, coaxial
fibers were created using a combination method of hydrophilic polyvinylpyrrolidone (core)
and hydrophobic poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (sheath) [72]. These
fibers have the ability to optimize the release of a poorly water-soluble drug, curcumin. This
combination can prolong the curcumin release up to 24 h, which significantly enhances the
therapeutic effectiveness of curcumin. Table 2 lists some of the examples of natural and
synthetic polymers that have been electrospun to form nanofibers.

2.1. Nanofiber for Drug Delivery

In order to produce the intended therapeutic effect, a medication must be administered
via the proper drug delivery system, which ensures that the drug’s precise release profile is
maintained. The location, duration, and rate of release of a medicine must be tailored to the
therapeutic target of the drug to the greatest extent feasible. Unfortunately, when it comes
to the design of medication delivery systems, this might be a significant obstacle. Of the
numerous ways to create a nanofibrous membrane, electrospinning is one that seems to hold
promise since it allows for medications to be put into the nanofibrous membrane and their
release at varying periods can be regulated [94]. Electrospinning has proven to be a simple
and beneficial method used to produce, from the micrometer to nano scale, fiber materials
for implementation in tissue regeneration, drug carriers, and wound dressing [94–96]. In this
way, they are among the most general and promising drug delivery systems, and they may
be tailored to a broad variety of drug-release kinetics when used in combination with other
drugs [94]. Nanofibers may be used to produce instantaneous and controlled medication
release in a variety of situations [97,98].
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Table 2. Polymers that have been electrospun from a solution to a nanofiber.

Polymer Solvent Concentration References

Cellulose acetate Acetone: dimethylacetamide: ethanol (3:2:1 v/v) 17% (w/v) [73]
Chitosan Ultrapure water and 0.7% acetic acid 2% (w/w) [74]
Ethyl cellulose Water: ethanol: acetic acid (2:2:6 v/v/v) 30% (w/v) [75]
Gelatin Acetic acid (20% v/v in distilled water) 20% (w/v) [76]
Fish gelatin Distilled water 40% (w/v) [77]
Gum Arabic Deionized water 5.8% (w/v) [78]
Collagen Hexafuoroisopropanol 10% (w/v) [79]
Pectin Water with 2% (v/v) acetic acid 4 wt.% [80]
Polyethylene oxide Deionized water 4% (w/v) [81]
Poly(D, L)-lactide-co-glycolide Tetrahydrofuran: N,N-dimethylformamide (3:1 v/v) 25% (w/v) [82]
Polyvinylpyrrolidone K60 Anhydrous ethanol 8% [83]
Poly(3-hydroxybutyrate) Trifluoroacetic acid 9 wt.% [84]
Poly(glycerol sebacate) Polyol glycerol/sebacic acid (1:1) 30 wt.% [85]
Poly(l-lactic acid) Chloroform: acetone (2:1) 25% (wt/v) [86]
Poly(3-hydroxybutyric
acid-co-3-hydroxyvaleric acid) Chloroform: trifluoroethanol (3:2) 7.5% (w/v) [87]

Poly(L-lactide-co-e-caprolactone) 1,1,1,3,3,3-hexafluoro-2-propanol 10% (w/v) [88]
Poly(N-isopropylacrylamide) Anhydrous ethanol 25% (wt/v) [89]
Poly(vinylidene fluoride) Acetone/N,N-dimethyl acetamide (70:30) 16 wt.% [90]
Polyacrylonitrile N,N-dimethylformamide [91]
Polyamide-6 Formic acid 15 wt.% [92]
Polycaprolactone Acetic acid:formic acid (50:50 v/v) [93]

The fabrication of electrospun fibrous scaffolds follows a distinct hierarchy based on a
range of geometrically controlled approaches. Dual extrusion electrospinning is a method
to create a multi-layered 3D scaffold by layering the fibrous meshes of two different feed
materials in an alternate way to make micro/nanomixed meshes. Remarkably, employing
lysozyme as the model medication and poly(vinylpyrrolidone)/Eudragit® RS100 as the film
forming polymers, Edmans and colleagues successfully created a dual-layer mucoadhesive
patch via an ethanol/water combination by applying the dual extrusion electrospinning
approach for protein delivery to the oral mucosa [99]. Melt electrospinning is a type of
electrospinning that is driven by temperature and uses a higher temperature. This method
uses a polymer melt instead of a polymer solution so that 3D scaffolds can be made with the
highest level of control over their porosity and alignment. In order to do this, the polymer
is put into a syringe, heated to an appropriate high temperature, and pumped with air
pressure. This method is better because it avoids using most of the harmful solvents. For
instance, melt electrospinning was employed to deposit PCL loaded paclitaxel. During the
process, the jet shot straight to the collector while whipping (compressed jet) happened
close to the collector, creating random-placed fibers. The drug–polymer solution was heated
to a 72 ◦C heating temperature and 150 kPa N2 gas pressure was used during the melt
electrospinning process [100]. The dual-spinneret system based on melt electrospinning
provided a novel technique for tailoring a high functional scaffold for drug delivery. In
addition, ultrasound mediated electrospinning is an innovative electrospinning method
used in the manufacturing of nanofibers. This method was the latest method that Laidmäe
et al. patented in 2016 [101]. It uses targeted ultrasound bursts of high intensity to form
an ultrasonic fountain on the interface of the polymeric solution. Around the top of the
fountain, an electric field initiates the formation of a Taylor cone, through which a nanofiber
jet is ejected [102,103]. For example, Partheniadis and colleagues constructed a polyethylene
oxide loaded theophylline nanofiber using conventional electrospinning and ultrasound
enhanced electrospinning. During the process, the drug–polymer solution was put in a
positively charged vessel that was in direct contact with the Mylar membrane while a
negatively charged collector plate was put over the ultrasonic fountain [104].

An appropriate technique of drug loading should be developed in order to achieve
the optimal drug release kinetics, taking into consideration the characteristics of the drug
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to be administered. Before conducting electrospinning, drugs may be simply dissolved
or disseminated in the polymer solution, or in rare situations, they can be physically or
chemically bonded to the nanofiber surface [105,106]. Primarily, the nanofiber composition
and interior structure are critical to achieving the desired medication release patterns.

Many medications have therapeutic implications that are dependent on their ability
to produce rapid effects. As a result, the dosage form must be developed so that the
drug is released immediately, or as rapidly as feasible, following administration. Many
medicines with quick pharmacological activities are insoluble in water and hence have poor
disintegration [106]. Thus, to ensure prompt drug release, such drugs need to be stored in
a manner that provides fast wetting and breakdown. Hence, nanofibers are a well-studied
and promising delivery technique for poorly soluble medicines. The identification of a
suitable water-soluble polymer as the nanofiber-matrix to protect the drug in a noncrys-
talline condition and that allows for fast wetting, breakdown, and drug dissolution is vital.
Table 3 shows a list of such polymers. The primary characteristics that form nanofibers
and makes them attractive candidates for achieving immediate drug release are their high
specific surface area ratio, which constitute a significant area of contact for dissolution, their
high porosity, and their ability to convert crystalline drugs to an amorphous form [107,108].
Moreover, if an appropriate water-soluble polymer is employed for the inclusion of a
medication into nanofibers, the dissolution profile and solubility properties of the drug as
well as its bioavailability may be increased significantly [109,110].

Table 3. Some examples of the polymers used and integrated drugs or active agents for immediate
drug release.

Polymer (s) Drug or Active Agent References

Polyethylene oxide and poloxamer 188 Lovastatin [111]
Polyvinylpyrrolidone and Soluplus® Meloxicam [112]
Poly (lactic acid) and butylene poly (butylene
adipate)-co-(butylene terephthalate) Aceclofenac [113]

Cellulose acetate Alpha-arbutin [114]
Hydroxypropyl-beta-cyclodextrin and
polyvinylpyrrolidone Acyclovir [115]

Polyethylene oxide and poloxamer 407 Carvedilol [116]
Polyvinylpyrrolidone and ethyl cellulose Ciprofloxacin [117]
Poly(lactic-co-glycolic acid) and
polyvinylpyrrolidone Pirfenidone and moxifloxacin [118]

Polyvinylpyrrolidone and zein Ketoprofen [119]
Ketoprofen 1,4 trans aminohexanoic acid drug [120]

In contrast to the immediate drug release mechanism, modified-release techniques are
intended to accomplish the required pharmacological effects by extending or delaying drug
delivery or by targeting a particular region inside the body. Prolonged-release drugs are
designed to keep the medication accessible for an extended length of time after intake. This
enables a decrease in the number of doses required in comparison to a medicine delivered
in a traditional dosage form [121]. Prolonged drug release is also referred to as ‘controlled
release’, ‘extended release’, and ‘sustained release’ [122]. In order to provide prolonged
drug release, nanofibers made of biodegradable or swellable polymers that breakdown
gradually and in a regulated way and that swell in a biological environment are very
desirable choices [123,124]. An important factor in long-term drug release from a nanofiber
mat is its hydrophobicity and the thickness of the nanofibers [125]. It is possible to extend
drug release by using core-shell nanofibers, which have numerous drug-loaded layers,
or an outer polymer layer that acts as a rate-controlling barrier [126]. In this paper, for
sustained drug release, nanofibers were categorized into two types based on their structural
features. The first prolonged drug release was based on matrix-type nanofibers, which
were composed of drug and polymer blends [127], whilst the other type was core-shell
nanofibers, which were either multi-matrix systems with multiple drug-loaded layers [128]
or reservoir-type systems [129], in which the outermost part acts as a barrier to drug release.
Table 4 shows the examples of a prolonged drug release system.
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Table 4. Some examples of the polymer fused drug(s) or active agent(s) for controlled drug release.

Nanofiber System Type Polymer Drug (s) or Active Agent (s) References

Matrix type

Dense
Gelatin Amphotericin B [130]
Poly(D,L-lactide-co-glycolide) Ciprofloxacin hydrochloride [98]

Porous

Chitosan, sodium alginate, and polyvinyl alcohol Deferoxamine [131]
Polyvinyl alcohol, Polyvinylpyrrolidone 5-flurouracil [132]
Cellulose acetate Ferulic acid [133]
Polycaprolactone Metronidazole, ciprofloxacin hydrochloride [125]
Polycaprolactone, parylene Pramipexole [134]

Core-shell

Polyvinylpyrrolidone (core),
Poly lactic-co-glycolic acid (shell) Pirfenidone, moxifloxacin [118]

Polyethylene oxide (core),
Polycaprolactone (shell) Doxorubicin hydrochloride [135]

Stimulus-responsive polymers may be used as a basic matrix-type nanofiber construction
or as a core-shell nanofiber layer to generate stimulus-activated drug release in environments
such as pH [136], water [137], CO2 responsive [138], and electroresponsive [139]. After
being exposed to an appropriate stimulus, responsive polymers can display changes in
their physicochemical characteristics. A burst release is followed by a persistent release in
a biphasic drug release system [140]. In addition, a simple matrix and core-shell nanofiber
construction can be utilized for biphasic drug release [141,142]. Table 5 displays the examples
of stimulus-responsive drug release polymers and biphasic drug release polymers.

Table 5. Some of the polymer incorporated drug(s) or active agent(s) for stimulus-responsive drug release.

Drug Release Mechanism Polymer (s) Drug(s) or Active Agent(s) References

pH-responsive release

Cellulose acetate, collagen Naproxen [143]
Polyethylene oxide Pramipexole [144]
Poly(lactic-co-glycolic acid) Ibuprofen [145]
Polycaprolactone, gelatin Ciprofloxacin [146]

Mechano-responsive Poly(vinylidene fluoride-trifluro-ethylene) Crystal violet [147]

Thermoresponsive Poly(N-isopro-pylacrylamide-co-
acrylamide-co-vinylpyrrolidone Doxorubicin [148]

Biphasic drug release

Polyvinylpyrrolidone, Ethyl cellulose Ketoprofen [149]
Poly(butylene succinate) Rhodamine B [150]

Polycaprolactone Silver nitrate, gallium nitrate,
vancomycin [151]

Poly(vinyl pyrrolidone), poly(vinyl alcohol) Buprenorphine [152]

Polyvinylpyrrolidone, sodium dodecyl
sulfate, sucralose Helicide [153]

Light-responsive drug release
Polyethylene glycol,
poly(3-hydroxybutyrate-co-3-hydroxy
valerate), cellulose nanocrystal-zinc oxide

Tetracycline hydrochloride [154]

2.2. Types of Nanofiber Composite Used in Drug Delivery

Composite materials are materials that are anisotropic and inhomogeneous in nature.
A composite material is created by mixing a minimum of two or more natural or synthetic
components, frequently with contrasting physical or chemical properties, to form a new
stronger material [155]. However, the component elements do not entirely mix together or
lose their unique identities; rather, they integrate and offer their most beneficial characteristics
in order to enhance the ultimate result or final product. Composite materials are classed
according to their composition, which is divided into two categories: base material and filler
material [156]. When it comes to structures, the base material, which binds or keeps the filler
material together, is referred to as a matrix or a binder material, whilst the filler material may
be found in the presence of natural or synthetic materials in the shape of sheets, fragments,
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particles, fibers, or filaments [156]. As presented in Figure 4, fiber is an example of a filler
material being modified with a base material, producing fiber-reinforced composites.
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Figure 4. An illustration of the filler material integrated with the base material producing a reinforced composite.

Nanofiber composites may be roughly divided into three categories according to the
matrix component: polymer matrix composites (for example, polyvinyl alcohol/carbon
nanotubes nanofibers [157]), ceramic matrix composites (for example, collagen/nano-
hydroxyapatite nanofibers [158]), and metal matrix composites (for example, zinc ox-
ide/polyacrylonitrile nanofibers [159]). Polymer matrix composites are composed of a con-
tinuous phase of various organic polymers and a dispersed phase of reinforced fibers [160].
The continuous phase acts as a matrix, holding the fibers together and allowing for effective
weight transmission between them [161,162]. Ceramic matrix composites are typically
made up of ceramic fibers embedded in a ceramic matrix in which the fabrications are
intended to alleviate the major disadvantage of inflexible ceramics, particularly, their
brittleness [163]. Metal matrix composites are materials that involve the addition of a
reinforcement to a metal or alloy matrix in particle form, fibers, whiskers, or even a sheet
metal [164]. Metal matrix composites have a diverse array of characteristics that signifi-
cantly outperform rigid parent materials such as good mechanical properties, resistant to
wear, and corrosion [164].

Generally, a suitable composite is chosen based on the application site where it will
be employed. Ceramic–polymer nanofiber composites may be an excellent alternative for
osteogenic applications where inorganic–organic components play a significant role in
the bone tissue structure. For example, hydroxyapatite/polycaprolactone nanofibers have
been used as a drug carrier for rifampicin for orthopedic implant related infections [165].
Hydroxyapatite was used because it is a biocompatible osteoconductive ceramic that has
been shown to be an important material in improving bioactivity [165]. Furthermore,
polymer–polymer nanofiber composites may be ideal for use in soft tissue repair such
as the skin or heart. For instance, a biocompatible patch for cardiac tissue engineering
constructed of a hydrophilic intermediate layer made of a combination of silk fibrin and
polyvinyl alcohol, while the upper and lower layers were developed from polycaprolactone
and polylactic acid individually [166]. As a result, the material used was solely determined
by the functional attributes necessary for the particular application.

2.3. Characteristics of the Nanofiber Composite

Nanofiber composites have been shown to have a considerably greater surface area
than common composites while maintaining their volume portion [167]. Because the
increased surface area compensates for the poor bonding between the fiber matrix inter-
phase, nanofiber composites are stronger than conventional composites made with the
same volume percentage [156]. Surface treatments might be applied to these composite
structures to improve or add new beneficial applications. For instance, the electrospinning
process was used to create novel core-shell nanofibers for the encapsulation of vancomycin
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in the shell section, which was made of polyethylene oxide/chitosan in the shell while
polyvinylpyrrolidone/gelatin encapsulated imipenem/cilastatin in the core sections [168].
This study revealed that incorporating imipenem/cilastatin into the core portion played
a part in a slower and more regulated release than a faster release of vancomycin in the
shell section [168]. The mechanical strength of the constructed core-shell nanofiber had
an ideal mechanical strength to be utilized in biomedical applications [168]. A few of the
most important properties of the nanofiber composites are illustrated in Figure 5. These
characteristics are quite adaptable and may be tailored to meet individual requirements
and applications. For instance, the impact of various solvents and solvent binary combi-
nation on the morphology of pullulan nanofibers [169]. Primarily, the shape and sizes of
the nanofibers were linked to the solution viscosities, solvent–polymer interactions, and
solvent vapor pressure [169].
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3. The Use of Nanofiber Composite as a Drug Delivery System

A growing number of researchers are interested in the unusual physiochemical fea-
tures such as the huge surface area, smaller diameter, and high aspect ratio of the composite
nanofibers made from biodegradable and biocompatible polymers [170–173]. An elec-
trospun nanofiber that meets these criteria is ideal for use as a drug carrier. Composite
nanofibers refer to multiphase fiber structures in which minimally, one of the phases has
a dimension in the nanoscale. Primarily, the mechanical characteristics, heat resistance,
chemical stability, surface and optical properties, electrical conductivity, and molecular
permeability of the composite nanofibers outperformed those of the separate material com-
ponents in a variety of areas. The potential of electrospun nanofibers being incorporated
with a composite to enhance the properties can be seen in a study conducted by Rezk et al.,
who incorporated beta-tricalcium phosphate into polycaprolactone and cellulose acetate to
form a composite mat to imitate apatite to stimulate the biomineralization process [174].
They also loaded simvastatin into a multi-membrane of polyvinyl alcohol and polyvinyl
acetate to promote and enhance the osteogenic process with the use of controlled drug
release [174]. Li et al. [175] successfully fabricated a compound nanofiber made of flexible
inorganic composites with carboxy modification for sustained drug release. This study
revealed that a greater amount of drug loading capacity, and a slower drug release rate,
were achieved once these nanofibers were further treated with carboxyl radicals [175].
The ionic contact involving daunorubicin molecules and the carboxyl group, which has
been confirmed by FTIR, was the primary mechanism of the improved drug loading [175].
Abasalta et al. [176] performed a coaxial electrospinning method to produce core-shell
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nanofibers composed of an N-carboxymethyl chitosan-polyvinyl alcohol/polycaprolactone
composite loaded doxorubicin, an anticancer drug. The incorporation of N-carboxymethyl
chitosan into the polyvinyl alcohol solution was then electrospun together separately with
polycaprolactone through the coaxial electrospinning setup, as shown in Figure 6 [176].
In contrast to physiological pH, the carboxylic and amine groups of N-carboxymethyl
chitosan were shown to be weak at a pH of 5.5, resulting in greater swelling and quicker
release of doxorubicin from the nanofibers at acidic pH [176]. Doxorubicin molecules were
more easily dispersed from the nanofibrous matrix at acidic pH because of the increased
solubility of doxorubicin at acidic pH [176]. Consequently, the composite nanofibers that
were constructed from the core-shell matrix are ideal candidates for use as a pH-sensitive
drug carrier for doxorubicin. Zhao et al. [177] successfully constructed a drug delivery
system from a composite nanofiber made of carboxymethylation curdlan incorporated
polyethylene oxide through the electrospinning process. In their research, the presence of
carboxymethylation curdlan in polyethylene oxide can increase the conductivity of the spin-
ning solution, which was due to the enhanced ionization properties of carboxymethylation
curdlan [177]. The elongation of the nanofibers dropped notably when the carboxymethyla-
tion curdlan concentration in the nanofibers was increased [177]. The presence of hydrogen
bond interactions between the carboxymethylation curdlan and polyethylene oxide in the
nanofibers resulted in the tensile strength and Young’s modulus being notably escalated as
the carboxymethylation curdlan concentration increased [177].

Polymers 2022, 14, x FOR PEER REVIEW 14 of 30 
 

 

carboxymethylation curdlan incorporated polyethylene oxide through the electrospin-
ning process. In their research, the presence of carboxymethylation curdlan in polyeth-
ylene oxide can increase the conductivity of the spinning solution, which was due to the 
enhanced ionization properties of carboxymethylation curdlan [177]. The elongation of 
the nanofibers dropped notably when the carboxymethylation curdlan concentration in 
the nanofibers was increased [177]. The presence of hydrogen bond interactions between 
the carboxymethylation curdlan and polyethylene oxide in the nanofibers resulted in the 
tensile strength and Young’s modulus being notably escalated as the carboxymethylation 
curdlan concentration increased [177]. 

 
Figure 6. An illustration of the coaxial electrospinning setup. 

3.1. Applications in Pharmaceuticals 
The construction of nanofiber composites as a possible drug delivery system for a 

variety of medicinal purposes has been intensively investigated. Most of the medications 
have low solubility, stability, and low biodistribution within the biological system. Aside 
from these challenges these medications do not have exact targeting abilities and they also 
have a short half-life, which further leads to systemic toxicity and rapid removal. Amer et 
al. [178] developed a composite nanofiber made of polyvinyl alcohol incorporated with 
quercetin and essential oils for acne alleviation. Quercetin was used in this study as it 
contains antioxidant, anti-inflammatory, anti-cancerous, and anti-bacterial properties 
[178]. In this research, they demonstrated that this composite nanofiber promoted an ac-
ceptable skin deposition, substantially more antibacterial activity against Propionibacte-
rium acne than quercetin alone, and was completely safe on the skin fibroblastic cells 
[178]. Clinical testing on acne patients revealed that the nanofibers reduced inflammatory, 
comedonal, and total acne lesions by 61.2%, 14.7%, and 52.9%, respectively, indicating a 
possible composite nanofiber working as a drug carrier to treat skin diseases [178]. Pour-
pirali et al. [179] constructed an electrospun composite nanofiber made of polycaprolac-
tone/gelatin encapsulated titanium dioxide nanoparticles and metformin-loaded mesopo-
rous silica nanoparticles using electrospinning. The incorporation of titanium dioxide na-
noparticles and metformin-loaded mesoporous silica nanoparticles into hybrid polymeric 
nanofibers improved the mechanical characteristics and decreased the burst release of 
metformin, resulting in a three-week continuous release [179]. Additionally, after 28 days 
of culture, the created composite scaffold successfully increased the viability and prolif-
eration rate of human adipose-derived stem cells [179]. As a matter of course, these find-
ings indicate that a composite nanoplatform may offer potential benefits for obtaining ad-
equate amounts of functional human adipose-derived stem cells and enhancing scaffold-
based regenerative treatments [179]. Successful stem cell treatments must develop 

Figure 6. An illustration of the coaxial electrospinning setup.

3.1. Applications in Pharmaceuticals

The construction of nanofiber composites as a possible drug delivery system for a vari-
ety of medicinal purposes has been intensively investigated. Most of the medications have
low solubility, stability, and low biodistribution within the biological system. Aside from
these challenges these medications do not have exact targeting abilities and they also have a
short half-life, which further leads to systemic toxicity and rapid removal. Amer et al. [178]
developed a composite nanofiber made of polyvinyl alcohol incorporated with quercetin
and essential oils for acne alleviation. Quercetin was used in this study as it contains antioxi-
dant, anti-inflammatory, anti-cancerous, and anti-bacterial properties [178]. In this research,
they demonstrated that this composite nanofiber promoted an acceptable skin deposition,
substantially more antibacterial activity against Propionibacterium acne than quercetin
alone, and was completely safe on the skin fibroblastic cells [178]. Clinical testing on acne
patients revealed that the nanofibers reduced inflammatory, comedonal, and total acne
lesions by 61.2%, 14.7%, and 52.9%, respectively, indicating a possible composite nanofiber
working as a drug carrier to treat skin diseases [178]. Pourpirali et al. [179] constructed an
electrospun composite nanofiber made of polycaprolactone/gelatin encapsulated titanium
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dioxide nanoparticles and metformin-loaded mesoporous silica nanoparticles using elec-
trospinning. The incorporation of titanium dioxide nanoparticles and metformin-loaded
mesoporous silica nanoparticles into hybrid polymeric nanofibers improved the mechanical
characteristics and decreased the burst release of metformin, resulting in a three-week con-
tinuous release [179]. Additionally, after 28 days of culture, the created composite scaffold
successfully increased the viability and proliferation rate of human adipose-derived stem
cells [179]. As a matter of course, these findings indicate that a composite nanoplatform
may offer potential benefits for obtaining adequate amounts of functional human adipose-
derived stem cells and enhancing scaffold-based regenerative treatments [179]. Successful
stem cell treatments must develop innovative expansion procedures for adipose-derived
stem cells that sustain the cells’ multipotency, even after extensive cell expansions. Thus,
Mohebian et al. [180] developed a nanofiber composed of curcumin-loaded mesoporous
silica nanoparticles incorporated into polycaprolactone/gelatin using the electrospinning
method. The in vitro drug release study results demonstrated that the mesoporous silica
nanoparticles inserted into the electrospun nanofibers permitted for prolonged curcumin
release, which may have a beneficial potential to increase the lifetime and long-term prolifer-
ation of human adipose-derived stem cells without diminishing their stemness potency and
undergoing cellular senescence [180]. Electrospun nanofibers are indeed a very appealing
material that may be employed as a foundation for the formation of multiple-drug dosage.
Chi et al. [181] conducted an analysis on non-steroidal anti-inflammatory drugs: parac-
etamol, nimesulide, and ibuprofen loaded into polyvinylpyrrolidone/polycaprolactone
composite nanofibers. They conducted high-speed capillary electrophoresis separation and
detection at 200 nm to evaluate the multiple medicines emitted from the polyvinylpyrroli-
done and polycaprolactone composite nanofibers [181]. Since polyvinylpyrrolidone is a
hydrophilic polymer, its increment in the polyvinylpyrrolidone/polycaprolactone compos-
ite ratio boosts the release of medicines inside the nanofiber in a dissolution medium as well
as improves the dissolution efficiency [181]. Tort et al. [144] successfully constructed an ef-
fective pramipexole-loaded nanofiber for use as a floating drug delivery system embedded
in cast films made of polyethylene oxide and sodium bicarbonate. The floating nanofiber
membranes were composed of polymer hosts Eudragit RL and RS, which were fabricated
using the electrospinning technique [144]. They found that adjusting the Eudragit RS/RL
ratio is an easy way to modify the integrated pramipexole’s release kinetics [144]. Accord-
ing to the present study, the polyethylene oxide/sodium bicarbonate film integrated in an
electrospun nanofiber-based floating gastro-retentive drug carrier delivered a 24 h release
of pramipexole [144].

3.2. Tissue Engineering

Tissue engineering is a part of regenerative medicine, which is a multidisciplinary
discipline. Proposing new methods to keep tissues and organs functioning correctly, par-
ticularly after they have been damaged, is its primary goal [182]. Despite the fact that
transplanted organs may be used to cure patients with sick and damaged organs, there is
indeed a major scarcity of donor organs that worsens year after year as the elderly popula-
tion grows [183]. Tissue engineering relies heavily on nanomaterials such as nanofibers.
Basu et al. [184] proved that by using the electrospinning method, they were capable of
producing a scaffold for soft tissue engineering applications that are composed of polyethy-
lene oxide and carboxymethyl cellulose/polyethylene oxide scaffolds. In this research, the
incorporation of polyelectrolyte carboxymethyl cellulose with polyethylene oxide gener-
ated nanofibers with smaller diameters compared to the pure polyethylene oxide nanofiber.
Cell viability was confirmed after 24 h of culture, and the thiazolyl blue tetrazolium blue
(MTT) test findings indicated that the scaffolds may be able to support cell proliferation
and metabolic activities [184]. This integration can be further studied to form a nanofibrous
drug delivery carrier.

In another study conducted by Bazzi et al. [185], a hybrid nanocomposite nanofiber
comprised of a chitosan-polyvinyl alcohol matrix reinforced with graphene nanoplatelet
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fillers was also fabricated by the electrospinning technique. The addition of 1% of graphene
nanoplatelet fillers into the matrix reduced the diameter of the nanofibers as a result of the
conductivity enhancement of the chitosan-polyvinyl alcohol suspension, while at the same
time that these findings were made, this nanofiber promoted the improvement in the cell
activity including growth, proliferation, and migration [185]. Due to the hydrogen bonding
among elements of the nanocomposite fibers and the electrostatic interaction that occurs
among them, graphene nanoplatelets are distributed throughout the fibers in a uniform
manner, resulting in enhanced mechanical characteristics [185]. Thus, these characteristics
offer this nanocomposite an excellent chance as a drug delivery candidate for use in tissue
engineering applications.

Developing biomimetic scaffolds that mirror the structure and biological features of the
natural extracellular matrix is a crucial necessity for the treatment of injuries and illnesses
via tissue engineering. Nitti et al. [186] used electrospinning to produce a possibly idyllic
scaffold for tissue engineering applications composed of an aligned chitosan nanofibrous
mat treated with amino acids and L-arginine as a stabilizing agent. According to the
present study, they found that nanofiber mats with L-arginine had better wettability and
architectural stability compared to the untreated chitosan nanofiber mat [186]. After 60 days
of being immersed in tris(hydroxymethyl)amino-methane hydrochloride, the pristine
nanofiber mats turned out to have a significantly degraded nanofiber structure [186]. On
the other hand, the L-arginine treatment on the chitosan nanofiber mat was shown to
preserve the nanofibrous structure [186]. The biomimicking capability of the nanofibrous
structures to be utilized for soft tissue regeneration was further demonstrated in cell-based
studies employing murine fibroblasts in which the addition of L-arginine was shown to
play a vital role as a chemical stabilizer and as a naturally occurring metabolic substrate for
influencing cell–material interactions [186].

3.2.1. Bone Tissue Engineering

Tissue engineering approaches can be used to create bone-compatible scaffolds but cre-
ating a scaffold with significantly bioactive molecules to govern bone remodeling remains
a monumental effort. Because of its three-dimensional porous nature, the electrospinning
technology has been employed to create fibrous scaffolds for biological purposes. Electro-
spun scaffolds have a very high surface-to-volume ratio, pore diameters ranging from a
few to tens of micrometers, and tunable high porosity, which makes nanofibers as ideal
constructions that are able to mimic the natural nanostructure of bone [187]. Jahanmard
et al. [188] recently proved that the integration of COOH-Multiwall carbon nanotubes into
polycaprolactone nanofibers was discovered to be an excellent strategy for independently
controlling the material surface nanoroughness and stiffness, two critical factors associated
with cell function regulation. High interfacial nanoroughness or stiffness resulted in in-
creased osteoblast differentiation [188]. In another study conducted by Raj Preeth et al. [189]
whereby they created a bioactive zinc, quercetin/phenanthroline was incorporated with
polycaprolactone/gelatin to be electrospun to form nanofiber scaffolds to improve bone
tissue regeneration. In addition to their osteogenic function, these composites stimulated
angiogenesis in ovo. Figure 7 illustrates the incorporation of quercetin/phenanthroline
with polycaprolactone/gelatin to form electrospun nanofiber composites that have been
proven to enhance osteoblastogenesis for bone development.

In the meantime, Gong et al. [190] utilized icariin, a traditional Chinese medicine
herba epimedium to be integrated into polycaprolactone/gelatin nanofibers through elec-
trospinning to produce a novel artificial periosteum. The introduction of icariin definitely
contributes to the membranes’ hydrophilicity while also promoting preosteoblast differ-
entiation and proliferation [190]. Bakhsheshi-Rad et al. [191] constructed bone regenerat-
ing electrospun nanofibers using electrospinning, which constituted gelatin-ciprofloxacin
nanofibers on the surface of a magnesium-calcium alloy. A gelatin-ciprofloxacin nanofiber
coating resulted in prolonged drug release, with an initial fast drug release of roughly
20–22% within 12 h, followed by a delayed release stage that may successfully manage
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the infection [191]. Adding ciprofloxacin into gelatin nanofibers as a coating considerably
improved the antibacterial activity and resistance to corrosion of the untreated magnesium-
calcium alloy without impairing cytocompatibility [191].
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3.2.2. Nerve Tissue Engineering

The adult human neurological system’s potential to regenerate is frequently restricted.
Consequently, individuals with nervous system impairments or trauma frequently have sen-
sory or motor dysfunction as well as neuropathic symptoms [192]. Electrospun biodegrad-
able nanofibers constitute a new class of potential scaffolds for nerve regeneration. The
biological scaffold material, seed cells, and different growth agents are the three compo-
nents of peripheral nerve tissue engineering [193]. The use of biocompatible polymer
nanofibrous conduits with the regulated delivery of drugs for peripheral nerve restoration
has recently received a lot of interest.

Fallah-Darrechi et al. [194] constructed a conductive conduit from electrospun poly (L-
lactide-co-D, L-lactide) (PLDLLA) nanofibers integrated with multi-walled carbon nanotubes
(MWCNT) and 4-aminopyridine (4-AP) deposited molecularly imprinted poly(methacrylic
acid) (MIP6/4-AP) nanoparticles. Once the MIP6/4-AP nanoparticles with the maximum drug
adsorption were obtained, they were then integrated with PLDLLA/MWCNT, producing
an electrical conductivity of 2870 × 10−7 Scm−1 [194]. Drug release studies of the com-
posite nanofibers showed that the presence of the PLDLLA/MWCNT nanofiber could suit-
ably extend the 4-AP release with a gradual slope in which the emergence of the peak
stage was delayed by about 12.5% until a 4 day time frame, particularly during the fi-
nal hours of its release [194]. When compared to plain PLDLLA nanofibers, the culture
results of adrenal phaeochromocytoma (PC12) as a neuroblastoma cell line on the ideal
PLDLLA/MWCNTs/MIP4-AP nanofibrous sample demonstrated the maximum cell growth
without cytotoxicity. In another study, conductive nanofiber scaffolds composed of chi-
tosan/collagen/polyethylene oxide integrated with polypyrrole were formed using elec-
trospinning, producing a maximum electrical conductivity of 164.274 × 10−3 Sm−1 [195].
The electrical conductivity of the fabricated nanofibers was evaluated to be in the range of
semiconductive materials and conductive polymers for nerve tissue application [195]. The
addition of a polypyrrole polymer chain in conductive scaffolds improved the cell adhesion,
growth, and proliferation [195,196]. Moreover, Mohamady Hussein et al. [197] constructed a
core-shell electrospun nanofibrous membrane for a dual-drug delivery system. Phenytoin
was filled into the shell layer of polycaprolactone while silver-chitosan nanoparticles were
inserted into the polyvinyl alcohol core compartment of the nanofibrous membrane [197]. The
addition of silver-chitosan nanoparticles into the coaxial electrospun nanofiber enhanced the
cumulative phenytoin release mechanism by over half, which was 53.8% of the originally
loaded phenytoin being released gradually and regulated from the matrix after 7 days [197].
The inclusion of silver-chitosan nanoparticles into the core-shell nanofiber made it more
hydrophobic in the environment, enabling phenytoin to be progressively released, which
makes this membrane ideal for nerve regeneration [197].
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3.2.3. Periodontal Tissue Engineering

Periodontitis is a severe inflammatory condition that can lead to the deterioration of the
periodontium and, eventually, tooth loss. Periodontal tissue is indeed a unique component
of the body in which soft, mineralized connective and epithelial tissues are arranged to pro-
duce a dentogingival junction [198]. Abdelaziz et al. [199] efficaciously constructed a novel
electrospun polylactic acid/cellulose aetate and polycaprolactone nanofiber integrated
with hydroxyapatite nanoparticles and green-synthesized silver nanoparticle scaffolds
to enhance antibacterial activity for directed periodontal tissue and bone regeneration.
Nanofibers loaded with green-synthesized silver nanoparticles demonstrated inhibition of
bacteria growth [199]. In vitro experiments revealed that the presence of hydroxyapatite
nanoparticles increased the cell viability by roughly 50% for both types of nanofibrous
scaffolds, while the addition of 10% hydroxyapatite nanoparticles also increased the tensile
characteristics [199]. In addition, to accommodate periodontal regeneration, Ekambaram
et al. [200] magnificently constructed innovative amine synthesized zirconia nanoparticle
filled curcumin integrated sulfonated polyether ether ketone (SPEEK) nanofibrous scaf-
folds. Curcumin significantly identified anti-bacterial properties, augmenting its benefit
in the treatment of periodontitis [200]. Amine, zirconia, and curcumin were added to
the nanofibers to increase the physicochemical, mechanical, and biological properties of
the nanofiber scaffold, which are suitable for periodontal regeneration purposes [200].
Schematic 8 demonstrates the comprehensive role of the constructed electrospun amine
functionalized zirconia and curcumin incorporated SPEEK nanofibrous membrane to com-
bat oral pathogens through the delivery of the anti-microbial properties of amined zirconia
and curcumin Figure 8.
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3.3. Wound Dressing

The skin is the body’s biggest organ, and it serves as the body’s principal defensive
mechanism, preventing disease infiltration. A wound is a form of injury in which the
dermis has been damaged by an abrasion, laceration, puncture, and avulsion. With the
rising expenses of wound care, several studies have been conducted to investigate new
medicines that might reduce the inflammation, particularly in infected wounds [201,202].

Sofi et al. [203] conducted an in vitro investigation that showed that nanofibrous
dressings made of polyurethane and incorporating lavender oil and silver nanoparticles
has combinatorial antibacterial effects against Escherichia coli and Staphylococcus aureus. The
hydrophobicity of the polyurethane fibers was altered by the diffusion and penetration
of lavender oil into the nanofibers [203]. Additionally, due to the strong hydrophobicity
of polyurethane nanofibers encompassed with lavender oil and silver nanoparticles, cell
fixation research indicates that fibroblasts grew in their natural shape on the fiber mats
compared to the spherical shape on the pristine nanofibers [203]. Another study using
an essential oil as a natural antibacterial agent for wound healing was conducted by
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Beikzadeh et al. [204], where they utilized lemon myrtle essential oil (LMEO) encapsulated
in cellulose acetate electrospun nanofibers. At the minimum LMEO loading concentration,
the LMEO-loaded cellulose acetate electrospun nanofibers proved to have completely
eradicated Escherichia coli and Staphylococcus aureus [204]. The electrospun fiber mats with
modest LMEO loading demonstrated continuous LMEO release over a long period of
time, and the nanofibers kept their strong antibacterial capabilities, even after two storage
periods, making these nanofibers suitable as wound dressings [204]. Figure 9 illustrates the
functional nanofibrous wound dressing composed of essential oil to fight against bacteria.
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Lan et al. [205] constructed a low cytotoxicity coaxial electropsun nanofiber mem-
brane acting as an antioxidant and antibacterial wound dressing treatment. Antioxidant
tea polyphenols were combined with a polyvinyl alcohol membrane while antibacterial
ε-poly(L-lysine) was integrated with polycaprolactone as a shell [205]. ε-Poly(L-lysine)
demonstrated a rapid release to inhibit bacterial growth in the early stages, whereas tea
polyphenols demonstrated a controlled release to eliminate excess reactive oxygen species
(ROS) [205]. Acute injuries necessitate the rapid release of a medicine to combat infec-
tions without causing any negative effects [206]. Qiu et al. [196] successfully merged
photodynamic antimicrobial chemotherapy (PACT) with electrospinning for wound heal-
ing purposes. Indocyanine green (ICG) as a photosensitizer was incorporated with chi-
tosan/polyvinyl alcohol to form an electrospun nanofiber membrane in which in vitro, ICG
exhibited good antibacterial properties against methicillin-resistant Staphylococcus aureus
(MRSA) and meropenem-resistant Pseudomonas aeruginosa (MRPA) [196]. ICG is released
from nanofibers in vivo to destroy germs on the injury surface and inhibit infection [207].

3.4. Cancer Therapeutics Drug Delivery System

Chemotherapy using anticancer medications is the most often used treatment for
cancer, however, it frequently fails due to the toxic impact of the chemotherapeutic agents,
which have been found to have severe adverse effects. As a result, major efforts are being
put toward the development of an advanced drug delivery system that can specifically
target malignant areas while causing minimum adverse effects in other sections of the
body. Bazzazzadeh et al. [208] effectively assembled magnetic MIL-53 nanometal organic
framework particles being combined with poly(acrylic acid) grafted-chitosan/polyurethane
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core-shell nanofibers for the sustained delivery of temozolomide (TMZ) and paclitaxel
(PTX) against glioblastoma cancer cells. The encapsulation effectiveness of TMZ and PTX
for synthesized core-shell nanofibers was more than 80%, indicating that core-shell fibers
have a significant potential for use in drug carriers [208]. Temperature and pH each plays a
vital role in releasing PTX and TMZ in the core-shell nanofibers; the minimum drug release
at a pH and temperature of 7.4 and 37 ◦C, respectively, while the maximum drug release
at a pH and temperature of 5.5 and 43 ◦C individually [208]. Flow cytometry revealed
that 31.3% and 49.6% of glioblastoma cancer cells experienced apoptotic cell death when
exposed with a magnetic MIL-53 nanometal organic framework particle/poly(acrylic acid)
grafted-chitosan/polyurethane loaded TMZ and PTX in the non-existence and existence of
alternating magnetic field, respectively [208]. Arumugam et al. [198] developed an anti-
cancer composite nanofiber made of silk fibroin/cellulose acetate/gold-silver nanoparticles.
In this study, the composite nanofiber inhibited most of the human breast cancer [209].
In another study on the breast cancer treatment accomplished by Mohebian et al. [210],
they modified curcumin (CUR) as a natural anticancer agent inside mesoporous silica
nanoparticles (MSNs), then electrospun the nanocomposite with poly(lactic-co-glycolic
acid) (PLGA) through electrospinning, producing a controlled drug release. This study
showed loading CUR/MSNs into the PLGA nanofiber produced a steady and extended
drug release behavior [210]. This composite nanofiber also had greater in vitro cytotoxicity,
low migration, and was capable of enhancing apoptosis induction [210]. More research on
breast cancer treatment has been conducted in which CUR and PTX were encapsulated in
graphene oxide, a nanocarrier, then electrospun with pullulan to form a nanofiber drug
carrier [211]. The sustained release of both medications was validated in this research, and
a simultaneous impact of PTX and Cur was demonstrated against breast cancer cells, where
cell growth was suppressed [200].

4. Future Perspectives

Composite nanofiber architectures have aided in the evolution of drug delivery appli-
cations by allowing for the regulated delivery of therapeutic agents in consistent dosages
over extended periods of time, cyclic dosing, and the infinitely adjustable release of both
hydrophilic and hydrophobic medicines. Current drug delivery developments are now based
on a fundamental construction of polymers that are suited for particular contents and are
made to perform diverse biological activities. Optimizing a composite with a polymer as
electrospun nanofibers to form a drug carrier to deliver the medications to a specific loca-
tion is extremely crucial in drug delivery applications, tissue engineering, cancer treatment,
and pharmaceutical applications. Future work may further focus on the development of
a smart drug delivery system that is sensitive to optical stimulation, pressure stimulation,
electric impulses, ultrasound exposure, or electromagnetism in order to provide targeted
drug administration. Additionally, the fast growth of knowledge and the creation of more
advanced mutual systems could help make it easier to make smart, integrated devices that
can control the amount of drug released from the nanofibrous membrane when the body is
stimulated. On the other hand, second phase nanomaterials, which are also known as filler
materials, possess appealing characteristics such as high surface area in the nanoscale, and
great biocompatibility, which produces a good drug carrier. Therefore, more research using
second phase materials with natural polymers such as gum arabic, chitin, honey, pectin, wool,
starch, dextran, and chitosan is needed for a controlled and targeted drug delivery system.

5. Conclusions

Over the last few decades, electrospinning has changed significantly. Electrospinning is
a quick and easy way to make drug delivery systems that are smart and can be controlled.
Electrospinning can be used in many different ways, and it is a great place to start when
making new ways to deliver drugs that improve therapy while reducing the side effects. The
choice of drugs and polymers can easily be adjusted for different uses or areas. By changing
the mechanical properties or release kinetics, the nanofiber could lead to new ways to make
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precise medications. Amongst the most complex and challenging obstacles in medication
delivery is getting the intended therapeutic agent to the right place at the right time with the
right dosage. In this review paper, we highlighted the utilization of nanofibers as drug loaders
or drug carriers for controlled drug release. The design of nanofibers is essential for drug
delivery purposes, which in this review paper, we emphasized the categories of nanofiber
composites being used in a drug delivery system. Characteristics of the nanofiber composites
are highly customizable to specific purposes and applications. Nanofibrous scaffolds are an
area of research that has not been fully explored yet in diabetes, hormone treatment, and
immune disorders. The problems with electrospun nanofibers might be easier to solve with a
thorough and structured plan. Enhanced scaffolds that incorporate tissue engineering with
controlled drug release without negative side effects could be a useful tool in the future for
treating patients in hospitals. Configurable nanofibers could play a pivotal role in personalized
medicine because of their unique properties and ease of use.
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129. Zupančič, Š.; Preem, L.; Kristl, J.; Putrinš, M.; Tenson, T.; Kocbek, P.; Kogermann, K. Impact of PCL nanofiber mat structural

properties on hydrophilic drug release and antibacterial activity on periodontal pathogens. Eur. J. Pharm. Sci. 2018, 122, 347–358.
[CrossRef] [PubMed]

130. Shamsipour, M.; Mansouri, A.M.; Moradipour, P. Temozolomide Conjugated Carbon Quantum Dots Embedded in Core/Shell
Nanofibers Prepared by Coaxial Electrospinning as an Implantable Delivery System for Cell Imaging and Sustained Drug Release.
AAPS PharmSciTech 2019, 20, 259. [CrossRef]

131. Wang, J.; Cai, N.; Chan, V.; Zeng, H.; Shi, H.; Xue, Y.; Yu, F. Antimicrobial hydroxyapatite reinforced-polyelectrolyte complex
nanofibers with long-term controlled release activity for potential wound dressing application. Colloids Surf. A Physicochem. Eng.
Asp. 2021, 624, 126722. [CrossRef]

132. Sohrabi, A.; Shaibani, P.M.; Etayash, H.; Kaur, K.; Thundat, T. Sustained drug release and antibacterial activity of ampicillin
incorporated poly (methyl methacrylate)-nylon6 core/shell nanofibers. Polymer 2013, 54, 2699–2705. [CrossRef]
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