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Abstract: Membrane separation processes are prevalent in industrial wastewater treatment because
they are more effective than conventional methods at addressing global water issues. Consequently,
the ideal membranes with high mechanical strength, thermal characteristics, flux, permeability,
porosity, and solute removal capacity must be prepared to aid in the separation process for wastewater
treatment. Rubber-based membranes have shown the potential for high mechanical properties
in water separation processes to date. In addition, the excellent sustainable practice of natural
fibers has attracted great attention from industrial players and researchers for the exploitation
of polymer composite membranes to improve the balance between the environment and social
and economic concerns. The incorporation of natural fiber in thermoplastic elastomer (TPE) as
filler and pore former agent enhances the mechanical properties, and high separation efficiency
characteristics of membrane composites are discussed. Furthermore, recent advancements in the
fabrication technique of porous membranes affected the membrane’s structure, and the performance
of wastewater treatment applications is reviewed.

Keywords: rubber-based membrane; natural fiber; filler; adsorbent; ENR/PVC; thermoplastic elastomer;
wastewater treatment

1. Introduction

Most developing countries are confronted with the problem of water pollution, which
is a key worry that must be addressed to ensure people’s well-being. Water pollution
occurs when there is a change in physical, chemical, and biological properties from its
original state that exceeds the limits and standards set as contained in the Water Quality
Standard (WQS) that are harmful to living organisms [1]. In general, this pollution is caused
by human activities that have adverse effects on the environment, such as health, living
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resources, ecological systems, and others [2]. One of the main causes of water pollution is
due to a permanent source of wastewater from sewage treatment plants and industry [3–7].
It is estimated that a large amount of wastewater production is concentrated in the palm oil
and textile industries [8–11]. Therefore, effective and capable solutions to overcome this
pollution problem are very much needed.

Therefore, the water treatment method using membrane technology is seen to be able
to overcome the existing problems. Treatment using the membrane method is expected to
reduce the presence of contaminants and in turn improve the quality of wastewater [12].
The advantages of this method are that separation can be performed continuously, it re-
quires low energy, it requires no additives, and is easily combined with other separation
processes [13–16]. However, there are still problems regarding the exploration of materials,
and the methods used in the manufacture of membranes ideally require high thermal sta-
bility, porous surface structure, low-cost, and high wastewater treatment potential. The use
of membranes as a medium for wastewater treatment requires the necessary characteristics
in terms of mechanical strength, durability, heat resistance, and porosity [17–19]. Thus,
the preparation of membranes with high mechanical strength, thermal properties, poros-
ity, and solute removal capability has attracted the attention of researchers in industrial
wastewater treatment.

Various types of polymers have been used in the production of membranes for water
separation applications, such as cellulose [20–22], cellulose derivatives [23–25], poly (ether-
sulfon) (PES) [26–28], poly (sulfone) (PSf) [29–31], and poly (vinyl chloride) (PVC) [32–35] as
well as the batter. Interestingly, the rubber-based membrane had the potential to be utilized
in wastewater treatment applications [36]. According to Tanjung et al. [37], the blending of
ENR-50 and PVC could result in a miscible blend due to the creation of hydrogen bonds
between the chlorine groups of PVC and the epoxy groups of ENR. The Epoxidized nat-
ural rubber/polyvinyl chloride/microcrystalline cellulose (ENR/PVC/MCC) composite
membranes for palm oil mill effluent (POME) treatment was prepared [38]. Moreover, the
methods employed in membrane preparation will affect the performance of the membrane.
According to Siekierka et al. [39], the membrane’s properties depend on the use of appropriate
techniques and material modifications to achieve the required structure and morphology for
the separation process. Membranes can be made in many ways, including molding, electro-
spinning, solution casting, sintering, stretching, coating, and phase inversion [40]. Figure 1
shows the membrane preparation technique of asymmetric membranes.
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Figure 1. Membrane preparation techniques. Reproduced from [41], Institute of Research and
Journals, 2018.

Recently, the use of natural fiber as fillers has been gaining the attention of many
researchers in the development of polymer composites. Increased awareness regarding
the overly worrying problem of agricultural and industrial waste disposal has inspired re-
searchers to exploit these materials [42–44]. Natural fibers are abundant resources, low cost,
available, biodegradable, not harmful to health, and considered green materials [45–47].
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Moreover, natural fibers have been widely used as reinforcing fillers in composite materials
due to their biodegradability, renewability, and low cost [46]. In addition to overcoming
the problem of pollution, the use of natural fiber as a filler has many advantages. Figure 2
shows the incorporation of natural fiber in the rubber matrix, promising a closed-loop
sustainable approach for developing renewable and sustainable rubber. Moreover, the
addition of fillers to the polymer matrix is to modify the properties of the base polymer
and improves its mechanical properties [48–50]. Among the natural fillers that are often
used are oil palm empty bunch fiber [51,52], coconut fiber [53,54], jute [55,56], pineapple
leaves [57,58], sugar palm fiber [59,60] and rice husk [61–64].
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This study aims to review and critically evaluate this growing area of research by
exploring the potential of natural fiber as filler and pore former for rubber-based mem-
branes. The fabrication techniques, as well as the effectiveness of the separation process for
wastewater treatment applications, have also been discussed.

2. Membrane Technology

Membrane technology is developing rapidly, following its use in a variety of applica-
tions [66–70]. A membrane is an intermediary between two adjacent phases that acts to
control the transport of a substance that has different components [14]. Membranes have
different thicknesses and structures according to their application. Based on the shape
of the membrane, it consists of symmetrical and asymmetrical membranes. Symmetrical
membranes have a homogeneous and relative pore structure, while asymmetrical mem-
branes have a non-homogeneous pore structure. Based on the structure and principle
of separation, membranes can be classified into three types, namely, porous membrane,
nonporous membrane, and carrier membrane. Membranes consist of natural membranes
and synthetic membranes. The natural membrane is a system in the life processes of living
beings such as the kidneys. Synthetic membranes are membranes produced by humans
that are made from natural materials or synthetic polymers or a mixture of both. Typically,
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the natural materials used in the production of membranes are cellulose, pulp, and cotton,
while synthetic materials include poly (sulfone) (PSf), poly (ethylene glycol) (PEG), and
poly (ethylene) (PE), etc. [71–75]. Synthetic membranes are divided into two categories,
namely organic (polymer) and inorganic (ceramic) membranes. The use of membranes of
the polymer type is more widespread than that of ceramic membranes. In general, all types
of polymers can be used in the production of membranes, but the selection of polymers
should be appropriate to the method of production of membranes and also its application.

The membrane structure is the most important factor in the principle of separation [76].
An effective membrane in wastewater treatment is a membrane that has pores on its
structure to increase the selectivity rate and flux value of the membrane. The principle of
separation of porous membranes is based on the difference in particle size of the substances
to be separated and the size of the pores on the membrane [76]. Only particles of a certain
size can pass through the membrane while the rest will be retained. The size of the pores
on the membrane plays an important role in determining the type of membrane separation
technique. Table 1 shows the membrane separation technique and the pore size required
for its separation application.

Table 1. Membrane separation technique and pore size.

Membrane Separation Technique Pore Size

Mikrofiltration (MF) 0.04–100 µm
Ultrafiltration (UF) 0.1–1 µm
Nanofiltration (NF) 100 Å–0.001 Å

Reverse Osmosis (RO) 1 Å–10 Å

Studies of porous membranes produced from porous polymers such as poly (sulfone)
(PSf) and poly (vinyl chloride) (PVC) have been conducted by several researchers. Novel TiO2
coated functionalized halloysite nanotubes (TiO2@HNTs) were embedded with poly(vinyl
chloride) ultrafiltration (UF) membranes (PVC/HNTs) for water treatment in the study by
Mishra and Mukhopadhyay [77]. The pure water flux of the prepared membrane increased
from 127.33 to 212.22 L/m2.h for the PVC/HNTs-0 membrane and PVC/HNTs-2 membrane,
respectively. The flux recovery ratio for BSA increased from 77.23% (PVC/HNTs-0) to
92.10% (PVC/HNTs-2), and the flux recovery ratio for sewage water went up from 71.42%
(PVC/HNTs-0) to 92.16% (PVC/HNTs-2). Bhran et al. [78] fabricated new composite
membranes of polyvinyl chloride (PVC) and polyvinylpyrrolidone (PVP) as polymers
and tetrahydrofuran (THF) and N-methyl-2-pyrrolidone (NMP) as solvents by using the
phase inversion method. The scanning electron microscopy results show that the prepared
membranes are smooth and that their pores are distributed evenly across the entire surface
and bulk body of the membrane, with no visible cracks. The stress–strain mechanical
test demonstrated that the presence of PVP in the prepared membranes improved their
mechanical performance. According to the membrane performance results, the salt rejection
achieved 98% with high flux. Dong et al. [75] studied the utilization of a bio-derived
solvent for nonsolvent-induced phase separation (NIPS) fabrication of polysulfone (Psf)
membranes. The pores of Psf/bio-derived solvent membranes resembled sponges, and the
membranes exhibited higher water flux values (176.0 ± 8.8 LMH) as well as slightly higher
solute rejection (99.0 ± 0.5%).

Polysulfone (PSf) membranes are generally favored for water treatment due to their
high thermal stability and excellent chemical resistance [74]. However, the filtration capacity
of the polysulfone membrane is limited due to low water flux and poor antifouling ability,
both of which are caused by the membranes’ low surface hydrophilicity. In 2019, Nguyen
et al. [74] blended graphene oxide (GO) or graphene oxide-titanium dioxide (GO-TiO2)
with a polysulfone matrix to improve hydrophilic and antifouling properties using the
phase inversion method. Experiments have shown that graphene oxide can be used to
make stable membranes. Then, by lowering the water contact angle values, the surface of
these membranes becomes hydrophilic. This increases the permeability and water flux of
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methylene blue from the aqueous feed solution, which makes the membrane more resistant
to fouling. Huang et al. [73] prepared a series of polysulfone membranes with different pore
structures using electrochemical impedance spectroscopy (EIS). The impact of electrolyte
concentration on the impedance spectrum of polysulfone membranes was then investigated
in depth.

Sun et al. [71] integrated and implemented a novel, mussel-inspired, sticky catechol-
functionalized poly (ethylene glycol) (Cate-PEG) as an additive to modify the hydrophobic
poly (vinylidene fluoride) (PVDF) ultrafiltration (UF) membrane to reduce the leakage
of poly (ethylene glycol) (PEG) from the membrane matrix for practical water treatment
applications. Surface segregation allowed the Cate-PEG polymer to migrate from the
matrix onto the membrane surface and internal pores, resulting in a hydrophilic membrane.
Moreover, the PVDF/Cate-PEG UF membrane demonstrated a high-water flux, good BSA
rejection, and satisfactory antifouling performance following BSA solution cycling tests.
An electrospun polyvinylidene fluoride (PVDF) nanofiber-supported TFC membrane with
high performance has been successfully manufactured [79]. Negatively charged electro-
spun polyacrylic acid (PAA) nanofibers were deposited on electrospun PVDF nanofibers to
form a support layer of PVDF and PAA nanofibers. This result indicates more hydrophilic
support than the plain PVDF nanofiber support. The PVDF-LbL TFC membrane produced
enhanced hydrophilicity and porosity without giving up mechanical strength. Conse-
quently, it exhibited a high pure water permeability and low structural parameter values
of 4.12 L/m2.h.bar and 221 µm, respectively, which were significantly superior to those of
commercial FO membrane.

Mansourizadeh et al. [80] also reported on the production and characterization of PSf
porous ring fiber membranes using the phase inversion method. The resulting membrane
has a high porosity with the addition of glycerol as a pore-generating agent. The results of
the study also found that the addition of glycerol concentration up to 5 wt% has narrowed
the pore diameter, thereby increasing the porosity of the membrane. However, the opposite
occurs when the glycerol concentration exceeds 5 wt%.

Chinpa et al. [81] prepared and characterized a porous asymmetric membrane of
PVC/poly (methyl methacrylate-co-methacrylic acid) (P (MMA-MAA)) through a phase
inversion technique. The addition of P (MMA-MAA) to the PVC solution produced larger
pores on the membrane surface. The size of structured pores, such as radius and membrane
porosity, increased with increasing P (MMA-MAA) composition, thereby increasing the
permeability and flux of bovine serum albumin (BSA). However, the increase in pore
size on the membrane has lowered the values of tensile strength and elongation at the
breaking point.

In a study conducted by Lin et al. [82], porous PMMA/Na+-montmorillonite (MMT) cation-
exchange membranes were produced for cationic dye adsorption [82]. Srivastava et al. [83]
have studied the capability of modified poly (vinylidene fluoride) (PVDF) membranes for
ultrafiltration of textile wastewater [83]. The effect of the addition of Styrene-acrylonitrile
(SAN) into PVDF was studied. SAN was added to the PVDF from 0 to 100 wt%. The study
found that the number of pores increased with the addition of SAN and in turn increased
the water flux. The modified PVDF membrane successfully removed 97% of the congo red
dye (CR) and over 70% of the five reactive black dyes (RB5) from the original solution.

2.1. Membrane Fabrication Techniques

Moreover, an important point in the process of membrane separation is the nature of
the membrane itself. The properties of the membrane depend on the use of appropriate
methods and material modifications to obtain the appropriate structure and morphology for
the separation process [39]. Various methods are used to produce membranes such as mold-
ing [84,85], solution casting [86,87], sintering [88,89], stretching [90], coating [91,92] and
phase inversion [40,93–95]. The solution casting techniques, phase inversion techniques,
and electrospinning are the most frequently used techniques for membrane production.
The solution casting method is a process in which a solution is poured into a mold and
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allowed to solidify at room temperature [87]. The shape of the membrane is influenced
by the shape of the mold used. Pore formation is expected to result during the solvent
evaporation process during the drying process.

2.1.1. Phase Inversion Method

Lately, many researchers have chosen the phase inversion approach for the manufac-
ture of porous membranes. Figure 3 shows the diagrammatic representation of membrane
fabrication by phase inversion process. The phase inversion process is the process of ex-
change of a polymer from the liquid phase to the solid phase that occurs under controlled
conditions [96]. Phase separation occurs when the solvent and nonsolvent phases change
when the solution is immersed in an agglomeration container [97]. This process produces a
porous layer on the membrane surface [81,98]. The resulting pore structure depends on
several parameters, such as the composition, additives, and temperature of the agglomera-
tion container. The morphological properties of the membrane are strongly influenced by
the properties of the material and its processing conditions. The phase inversion method
is the most effective method for producing porous membranes [99]. This method is the
most popular and widely used technique in membrane preparation [100]. It refers to a
technique of exchange of a poured polymer solution from a liquid phase (polymer solution)
to a solid (macromolecular network or gel) [101,102]. During this phase inversion process,
a thermodynamic equilibrium occurs and causes the polymer solution to separate into
two phases namely the polymer-rich phase and the polymer-less phase. The polymer-rich
phase will form a membrane matrix, while the polymer-less phase will form pores. This
method can be carried out in several ways, as shown in Table 2.

Table 2. Membrane synthesis by using phase separation technique.

Technique Principle

Thermally-induced phase separation (TIPS)
- This method is based on the fact that when the temperature is lowered, the

solvent quality usually decreases. The solvent is removed by extraction,
evaporation, or freeze-drying after demixing.

Air-casting of a polymer solution
- A volatile solvent and a less volatile nonsolvent are mixed to dissolve the

polymer. The polymer’s solubility diminishes as the solvent evaporates,
allowing phase separation to occur.

Precipitation from the vapor phase - Phase separation of the polymer solution is caused by the entrance of
nonsolvent vapor into the solution during this process.

Immersion precipitation
- A thin layer of polymer solution is cast on support or extruded through a die,

then immersed in a nonsolvent bath. Precipitation can happen when the
polymer solution’s excellent solvent is replaced by a nonsolvent.

The phase inversion method is the most widely used in the preparation of porous
membranes. Feng et al. [103] made a study on the preparation and characterization of mem-
branes from poly (vinylidene fluoride-co-tetrafluoroethylene) using the phase inversion
method [103]. Dimethylacetamide solvent (DMAc) and trimethyl phosphate pore-forming
agent (TMP) were used. The effects of solution composition, agglomeration process time,
and agglomeration container temperature on the structure of poly membrane (vinyli-
dene fluoride-co-tetrafluoroethylene) were studied. The resulting membrane morphology
showed that the number of pores on the membrane increased with increasing TMP compo-
sition. The presence of pores on the membrane results in higher flux values compared to
PVDF membranes without TMP. High flux values have increased membrane permeability
and selection rates [104,105]. Yang et al. [106] conducted a study on the preparation of
microbial membranes from cellulose/glucomannan conjugation (KMG) in an aqueous
NaOH/thiourea solution using the phase inversion technique. The polymer solution was
poured on the surface of a glass plate and spread using a casting knife to produce a mem-
brane with a thickness of 0.24 mm and then immersed in calcium chloride (CaCl2) for
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10 min. The resulting membrane has micro-sized pores, and the pore size increases with
increasing KGM composition. A portion of the KGM is extracted out into the immersion of
running water, causing pores to form on the membrane.

A polyethersulfone (PES)/microcrystalline cellulose (MCC) composite membrane for
humic acid (HA) removal in water was made by Nazri et al. [107] using the phase inversion
method. A rheological study showed that MCC-containing casting solutions increased
viscosity, affecting the composite membrane’s pore structure. Comparatively, composite
membranes have larger surface pores, an elongated finger-like structure, and sponge-like
pores. The water contact angle and pure water flux of the composite membranes indicated
that their hydrophilicity had increased. However, the permeability of composite mem-
branes began to decrease at 3 wt% MCC and above. The natural organic matter removal
experiments were performed with humic acid (HA) as the surface water pollutant. The
hydrophobic HA rejection was greatly increased by the enhanced hydrophilic PES/MCC
composite membrane through interaction between hydrophobic and hydrophilic groups
and pore size exclusion.
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A study on the production of asymmetric cellulose acetate with the addition of poly
(ethylene glycol) (PEG) was once conducted by Saljoughi et al. [109]. In this study, the
polymer was dissolved in a 1-methyl-2-pyrrolidone (NMP) solvent. The polymer solution
is poured and spread on a glass plate using a casting knife. The dispersed film is immersed
into a nonsolvent that produces a polymer precipitate which is a membrane. Morphological
studies show that pores can be produced in large numbers when the CA concentration
decreases, the PEG concentration and temperature increase, and the flux value of pure water
also increases. Mahendran et al. [110] prepared ultrafiltration membranes from cellulose
acetate (CA)/poly (sulfone sulfonate) (SPS) and cellulose acetate (CA)/epoxy resin (ER)
blends using solution mixing and phase inversion techniques [110]. The effect of SPS and
ER polymer material composition on the flux value and water permeability rate of the CA
membrane was studied. The concentration of PEG additive on the ultrafiltration properties



Polymers 2022, 14, 2432 8 of 30

of the membrane was also studied. The results of the study found that the polymer
composition and the concentration of additives in the polymer solution have influenced
the properties of the membrane, such as membrane resistance and water content.

2.1.2. Electrospinning Method

Electrospinning is a versatile method for making nonwoven nanofibrous membranes
with a submicronic-interconnected pore-like structure that can be used in a wide range of
applications at a low cost [111]. Electrospun polymer nanofibers have emerged as one of
the most encouraging and evolving engineered materials for membrane synthesis due to
their extremely high porosity, high permeate flux and selectivity, excellent physicochemical
stability, and tunable properties [112]. Nanofibers made with this unique electrospinning
process have a large surface area compared to nanofibers made with other spinning pro-
cesses. In a typical electrospinning process, a polymeric solution in a syringe is exposed
to a high DC electric voltage. The syringe needle is connected to the positive terminal
of the DC supply, while the negative terminal is connected to a collector plate. Beyond
a certain electric field (threshold voltage), the repulsive electrostatic forces overcome the
surface tension of the polymeric solution, and a loaded flow of the polymer solutions is
ejected from the tip of the Taylor cone at the syringe needle in the form of nonwoven fibers.
Solvent evaporation depends on the distance between needle tip and collector, solution
vapor pressure, temperature, and humidity in the spinning chamber [111]. Figure 4 de-
picts a schematic representation of an electrospinning process for nanofibers fabrication.
Ren et al. [113] conducted experiments utilizing an electrospinning technique to produce
gas diffusion layers (e-GDLs) composed of nanosized carbon fibers with a nanoscale pore
structure. In addition, vapor deposition of Dow Corning Sylgard 184 was used to apply a
hydrophobic coating to the e-GDL to increase its hydrophobicity. The e-GDL has excellent
elastic deformability, which can effectively mitigate the irreversible damage caused by the
pre-tightening force during the stack assembly process, thereby improving the durability
and lifetime of PEMFCs.
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2.2. Applications of Membrane Technology in Wastewater Treatment

Industrial wastewater means wastewater or sewage water that has been used in
industrial activities. Wastewater from various industries will produce wastewater that has
a variety of organic substances. Most industrial industries in Malaysia produce wastewater
that is liquid and is still rich in organic matter that is easily decomposed. Excessive
disposal will cause odor pollution and water pollution that disrupts the human life system.
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Therefore, all industrial operators who dispose of wastewater have been required by the
authorities to first treat industrial wastewater before it is discharged into rivers to avoid
environmental pollution.

Malaysia is well-known for its palm oil sector, and it is one of the world’s leading
producers of palm oil goods, accounting for around 41% of worldwide palm oil produc-
tion [114,115]. However, the production of palm oil has led to the discharge of Palm Oil
Mill Effluent (POME), which is very much resulting in serious water pollution [100]. The
POME produced has a high rate of biochemical oxygen demand (BOD), chemical oxygen
demand (COD), total suspended solids (TSS), and high turbidity. It has been reported
that POME production for 2005 was 44.88 million metric tonnes, and of this amount, BOD
was estimated at 1.122 million tonnes, which is equivalent to the pollution produced by
61,479,500 people (with an average per resident producing 0.05 kg of BOD per day).

Various treatment methods, including physical, chemical, biological, or a combination
thereof, have been used to treat wastewater from this industry [116–123]. However, these
methods are still seen to be less effective and less efficient because the resulting wastewater
has various compositions and is difficult to classify in general [124,125]. The chemical
treatment process is a surprisingly rapid method of treating water but is often seen as
less effective because the cost of purchasing the chemical is quite high and harmful to the
environment [126]. Meanwhile, the biological wastewater treatment process generally uses
a large area and a lot of energy [127,128]. This situation will be a problem for industries
located in places with narrow areas. In addition, the biological treatment process requires a
long time for the process of decomposition of its organic matter before being released into
the river. This will cause an increasingly serious problem of odor pollution and will disrupt
the daily lives of locals [3,129].

Apart from the palm oil industry, the textile manufacturing industry is also one of the
most important industries in Malaysia. Indeed, the textile manufacturing industry has long
been practiced in this country and is very famous on the east coast peninsular of Malaysia.
The growth of the textile industry in Malaysia has increased the rate of its wastewater
production every year. According to Hassan et al. [130], the textile industry contributes
22 percent of total wastewater generation in Malaysia. Wastewater from the textile industry
contains a lot of dye content that is difficult to decompose depending on the nature of the
chemical, its molecular size, metals, and salts. According to Yuan et al. [131], industrial
wastewater contains various types of chemicals, such as enzymes, sodas, dyes, salts,
and acids, that will cause serious environmental pollution. Textile wastewater produces
dyes and suspended solids, and high COD values will cause allergies, cancer, and skin
irritation if left untreated [132]. Therefore, the separate treatment of organic materials,
as well as the decolorization of these dyes, must be performed according to standards
before being released into the river to overcome the problem of pollution. For wastewater
from the textile manufacturing industry, the most commonly used treatment methods
are ozone treatment, biological oxidation, chemical agglomeration, and adsorption [83].
Nevertheless, the treatment of wastewater containing dyes has posed serious problems
in its decolorization process [124]. High pH values and salt concentrations, as well as
complex chemical structures, require more effective and efficient treatment than existing
methods [133]. Therefore, to eliminate the problem, one of the other technologies that can
be used to clean up industrial wastewater is membrane technology.

Membrane technology in water and wastewater treatment is a physical separation
process that separates larger components from smaller ones. Various types of membrane
separation techniques are categorized based on the type of driving force applied, the type
and configuration of the membrane, and its removal capability [15]. Membrane processes
are used in drinking water and wastewater treatment systems, such as in desalination
processes, removal of organic matter, removal of colors, particles, and others [16,117].
Today, membrane technology is used in industrial wastewater processing and treatment
industries [134]. This technology has been around for the past 25 years, and in recent times,
the process has undergone rapid development. Industrial wastewater treatment using
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membrane technology has proven that this technology has a high potential to overcome
the problem of environmental pollution [12]. Membranes can filter contaminated organic
matter and then obtain and recycle clear water for the processing plant [135]. Treatment
methods using membrane technology are gaining attention because these alternative
methods provide more efficient treatment methods, require minimal energy, and do not
require the addition of chemicals into the waste system. Thus, membrane separation
technology is one of the potential technologies to treat industrial wastewater without
disturbing the environmental balance [136].

The quality of wastewater from the palm oil industry (POME) that has been treated
using membrane technology is much better than water treated by conventional methods
in terms of the level of clarity and odor [136]. The results of his research prove that the
treatment process using this membrane technology takes a maximum of only three days
compared to the existing treatments (aerobic and anaerobic processes), which take from
80 to 120 days. Membrane technology has great potential in POME treatment systems.
This is due to its high ability to separate contaminants from POME as well as recover
high-quality water. Sulaiman and Ling [137] studied the potential of bare fiber membranes
with MWCO ranging from 30 to 100 K in POME treatment [137]. Studies show that the
use of these membranes has successfully reduced the values of COD, TSS, TKN, and
nitrogen-ammonia by 97.66%, 98.00%, 53.85%, and 61.91%, respectively.

As for wastewater from the textile manufacturing industry, Chakraborty et al. [138]
reported that textile wastewater treated using membrane technology can reduce wastewater
production and, in turn, reduce its treatment costs [138]. Textile industry wastewater
treatment using various types of membrane processes proves this technology has the
potential to overcome pollution problems [138]. Several researchers [139–141] have reported
that membrane technology is highly effective in the treatment of textile wastewater.

Laqbaqbi et al. [142] applied the direct contact membrane distillation for textile
wastewater treatment using a flat-sheet polyvinylidene fluoride (PVDF) membrane. The
results demonstrated that high separation factors (α) were achieved (>99.73%), demon-
strating substantially less wetting and penetration of the dyes across the membrane pores.
Karim et al. [143] synthesized biobased composite membranes for water purification by
freeze-drying and packing cellulose nanocrystals (CNCs) in a chitosan matrix. Positively
charged dyes, such as Victoria Blue 2B, Methyl Violet 2B, and Rhodamine 6G, were effec-
tively removed 98%, 84%, and 70% of the time by the membranes after 24 h of contact.
Fersi et al. [144] treated textile wastewater using microfiltration membrane (MF), ultrafiltra-
tion (UF), and nanofiltration (NF) separately and showed more than 90% of color, turbidity,
TDS, and COD were eliminated [141]. Suksaroj et al. [145] reported that nanofiltration is
one of the membrane technologies that can remove the color, COD, and salinity of textile
wastewater [145]. Karkooti et al. [146] developed advanced nanocomposite membranes
employing graphene nanoribbons and nanosheets for water purification. The development
of polymeric membranes may provide an effective solution to improve water recycling.
Four different graphene oxide (GO) derivatives were incorporated into a polyethersul-
fone (PES) matrix using a nonsolvent induced phase separation (NIPS) method. The GO
derivatives used have different shapes (nanosheets vs. nanoribbons) and oxidation states
(C/O = 1.05–8.01), with the potential to improve water flux and reduce membrane fouling
via controlled pore size, hydrophilicity, and surface charge. All graphene-based nanocom-
posite membranes exhibited superior water flux and organic matter rejection in comparison
to the unmodified PES membrane. The fouling measurements revealed that fouling was im-
peded due to the improved surface properties of the membrane. Longitudinally unzipped
graphene oxide nanoribbons (GONR-L) loaded at 0.1 wt% provided the highest water
flux (70 LMH at 60 psi), organic matter rejection (59%), and antifouling properties (30%)
improvement compared to the pristine PES membrane.

Overall, it may be said that membrane technology emerged for the efficient separation
of wastewater. Abouzeid et al. [147] suggest that water purification membranes or filter
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technology are good ways to filter water because they are very effective and do not create
any secondary pollutants.

3. Rubber-Based Membrane

The rubber-based membrane has been utilized for a variety of sustainable industrial
applications, including pervaporation, gas separation, and water treatment. Bicy et al. [148]
investigated the interfacial tuning and designer morphologies of microporous membranes
made from nanocomposites of polypropylene and natural rubber. Alquraish et al. [149]
use the latex phase blending and crosslinking technique to make nitrile butadiene rubber-
graphene oxide (NBR-GO) membranes. This new way of membrane fabrication is good for
the environment and makes membranes that separate oil and water. GO was discovered to
change the surface morphology of the NBR matrix by introducing creases and folds on its
surface, increasing the membrane’s permeation flux and rejection rate efficiency. The mem-
brane containing 2.0 pphr GO can permeate 7688.54 L/m2.h water at an operating pressure
of 0.3 bar, while the oil percentage removal is 94.89%. As GO loading increases from 0.5 to
2.0 pphr, fouling on the membrane surface increases from 45.03% to 87.96%. Nevertheless,
chemical backwashing might recover 100 percent of the membrane’s performance.

3.1. Epoxidized Natural Rubber Elastomer (ENR)

Natural rubber (NR) is derived from the latex of a rubber tree (Hevea Brasileansis),
which consists of more than 98% polyisoprene [150]. Epoxidized Natural Rubber (ENR) is
natural rubber (NR) to which epoxide units have been added to the double bond chain, as
shown in Figure 5 [151]. This process is better known as an oxidation process that involves
a simple reaction and usually uses inexpensive reagents [152], such as acetic peroxide,
which are formed in situ with formic acid and hydrogen peroxide [151]. ENR has better
properties than NR in terms of oil resistance, wet grip, high absorption properties, and gas
permeability [153]. In industry, there are three grades of ENR used based on the degree of
epoxidation on its chain structure, namely ENR-10 (10% mole epoxy), ENR-25 (25% mole
epoxy), and ENR-50 (50% mole epoxy). Table 3 shows the properties of the three ENR
grades [154].
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ENR-50 is the most widely used ENR grade because it has a high polarity compared
to the others. ENR-50 was used as a base material in various studies due to its unique
properties [156,157]. Among them is ENR-50, which is elastic, oil-resistant, has high
abrasion resistance, is hydrophilic [158], and has high tensile properties [154]. The presence
of high epoxy groups on the NR chain allows ENR to interact better with fillers and
result in more crosslinking with other polar polymers. The addition of fillers to the ENR
chain can also improve its mechanical properties. Today, among the fillers often used in
industry are carbon black (CB) [159,160], calcium carbonate (CaCO3) [161,162], and silica
(SiO2) [163–166]. A study conducted by Kim and Eom [167] has proved that there is a bond
between ENR with silica from rice husk (RH) flour that has high thermal stability when
mixed. Ahmad et al. [168] conducted a study on the effect of filler addition (carbon black
N110, SiO2, and CaCO3) on the mechanical properties of NR/LLDPE blend composites.
The composite dough is prepared using a Haake Rheomix machine. Fillers are added
to the batter by 10 to 60 w/v. It was found that the mechanical and physical properties
of the mixtures depended on how the filler was described (particle sizes, structure, and
surface properties). Carbon black-filled NR/LLDPE blends have a higher bound rubber
content than silica-filled NR/LLDPE blends, and calcium carbonate has the lowest bound
rubber content. As expected, the rubber–filler interaction is greater for carbon black-filled
NR/LLDPE blends than for other fillers, where the carbon black particles interact strongly
with rubber chains, resulting in the formation of chemical bonds. In addition, silica has
a lot of hydroxyl groups on its surface, which makes them interact strongly with each
other. Intermolecular hydrogen bonds between hydroxyl groups on the surface of silica are
extremely strong; consequently, they can agglomerate tightly, which results in the formation
of filler networking. The study conducted by Ismail et al. [163] showed that there is an
increase in the mechanical properties of rubber when silica is added to the natural rubber
matrix. This increase is directly proportional to the diffusion of silica in the rubber matrix
and the increase in crosslink bond density through silica agglomeration.

3.2. Poly(vinyl chloride) (PVC) Thermoplastic

Poly(vinyl chloride) (PVC) is a type of thermoplastic polymer formed from a straight
and long bonding chain and composed of vinyl chloride monomers, as shown in Figure 6.
PVC is a form of polymer that has a wide range of applications in the engineering, medical
device, packaging, and construction industries, among others [169,170].
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PVC has a specific density of 1350 kg/m3 and is an inexpensive, durable, and recy-
clable thermoplastic. In addition, PVC can produce materials that have high stress and
can provide elastic and flexible properties with the addition of plasticizers [171]. Therefore,
PVC is widely used in the market as a basic material for manufacturing goods, such as
pipes and toys. However, the disadvantage of PVC is that it is rigid and brittle and has
very limited thermal stability. Therefore, PVC blends with elastomers such as ENR can
overcome its disadvantages [172].

3.3. Thermoplastic Elastomer ENR/PVC Blends

The properties of a polymeric material can be improved by mixing two or more
different polymers. Hanafi Ismail [173] reported that the mixing of two or more different
polymers provided better and more unique properties than the original properties of each
of the materials. Various types of polymer blends are gaining attention nowadays, such
as elastomer–elastomer, thermoplastic–thermoplastic and thermoplastic–elastomer (TPE)
blends [174]. Elastomer is a type of polymer that is elastic, while thermoplastic is a type of
plastic that can be melted repeatedly. The combination of these two polymers, namely TPE,
will produce a material that has properties that can be enhanced from the original polymer.

TPE is a new class material that combines the vulcanized properties of rubber with
the ability to simplify thermoplastic processes [175]. Elastomers and thermoplastics help
in their mixing for the strengthening of the material. Softer elastomers can help thermo-
plastics increase the impact resistance and toughness of materials, while thermoplastics
can increase the rigidity of elastomeric materials [176]. According to Bhowmick [177],
TPE blends are one of the blends that have attractive properties because their processing
characteristics are the same as those of thermoplastics and their technical properties are
similar to vulcanized elastomers [177]. When rigid thermoplastic properties are mixed
with low rubber properties, the modulus value will produce a material that has better
mechanical properties. Among the TPEs that have been produced are blends of elastomers
such as natural rubber (NR), nitrile rubber (NBR), and epoxidized natural rubber (ENR)
with thermoplastics such as poly (vinyl chloride) (PVC), poly (ethylene) (PE) and poly
(propylene) (PP) that aim to produce TPEs with specific specifications.

Epoxidized natural rubber (ENR) is a renewable material and is a hydrocarbon poly-
mer that is compatible with PVC [178]. ENR is a flexible polymer that has high resistance to
oil and high mechanical properties [179], while PVC is a rigid and brittle polymer [180]. The
blend of ENR and PVC forms a thermoplastic elastomer (TPE), which has high mechanical,
elastic, flexible, and processing ability properties [172]. PVC is expected to impart high ten-
sile strength, and good chemical resistance, whereas ENR has good tear strength and acts
as a permanent plasticizer to PVC. TPE can be produced by blending ENR with synthetic
thermoplastics, where the compatibility of ENR with other polymers is determined by the
polarity of the ENR molecule [181]. The blending of ENR enhanced compatible polymers
to produce strong TPE. The strength of this mixture was constructed based on the strong
volcanic adhesion interaction between ENR and PVC. Ibrahim & Dahlan [182] described
the interaction of volcanic adhesions or crosslinking reactions formed between ENR and
PVC. Figure 7 shows the crosslinking reaction between these two polymers [183].

Based on the reaction proposed by Ramesh and De [183], the epoxy group on the
ENR can act as a proton acceptor, and this allows the occurrence of specific interactions
with chlorine on PVC [152]. When ENR and PVC are mixed at high temperatures, the
decomposition of the C–Cl groups on PVC increases and produces hydrochloric acid (HCl).
At the same time, the opening of the epoxy group ring on the ENR becomes furan. This
hydrochloric acid will react with the epoxy group on the ENR and form a chlorohydrin
group that acts as a reactive site [184].

Ratnam et al. reported that the tensile strength of ENR-50 increased when blended
with PVC [185]. Ramesh and De [186] reported that ENR/PVC thermoplastic elastomer
blends had the properties of oil resistance, abrasion resistance, and high modulus values.
According to Ratnam and Zaman [185], a blend of ENR-50 together with polyvinyl chloride
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(PVC) will form a thermoplastic elastomer that is compatible with any reaction ratio [185].
Varughese and his colleagues [184] conducted a study on the mechanical properties of ENR-
50/PVC blends at different compositions [184]. Rigid PVC becomes more flexible when
blended with ENR. However, the tensile strength, tear strength, and hardness decreased
due to the elastomeric properties of the ENR.
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The physical properties of TPE depend on the mixing method, mix composition,
morphology, and cross-bonding or maturation in the polymer mix. The most popular
TPE blending method is melt mixing due to its very simple and easy process. Processing
conditions, temperature, and mixing time are the parameters that determine the degree
of interaction and mixing between the components in the TPE mixture. Nasir et al. [187]
conducted a study to determine the optimal mixing conditions for ENR/PVC blends
with the melt mixing method using the Brabender Plasticoder. The study found that
the composition of the mixture between rubber and thermoplastic will affect the mixture
temperature and rotor speed. In polymers, when ENR is more dominant than PVC, high
temperatures and low rotor speeds are required to produce a compatible TPE. Studies
have found that the mixing of thermoplastic phases such as PVC with ENR can improve
the physical properties of the mixture, but when PVC is more dominant, the TPE mixture
cannot maintain its tensile strength. The dough becomes more brittle and hard, causing a
decrease in mechanical properties at a certain aging temperature.

Blending ENR with PVC can produce a compatible TPE that has both rubber and
thermoplastic properties. However, the production of membranes from elastomeric materi-
als is not porous [188,189]. Therefore, ENR/PVC blends as membranes require pores for
industrial wastewater treatment applications. The addition of fillers can help improve the
mechanical properties of ETP, in turn, acting as a pore generating agent on the membrane
so that it can be applied for industrial wastewater treatment.

The addition of reinforcing filler to thin-film composites has improved mechanical
properties [48]. By including reinforcing fillers in the polymer matrix, thin-film selectivity
and strength can be increased [190]. Ray et al. [191] reported that filler loading natural
rubber (NR) membranes showed better toluene selectivities than unfilled membranes. The
addition of fillers may increase the surface area and mechanical strength of the membrane.
Table 4 shows that the addition of filler in the ENR/PVC matrix improves the properties
of composites. Increasing the use of natural fiber-reinforced composites attracted much
attention in the past few years [192,193]. Agricultural fillers (such as kenaf, pineapple,
rubberwood, and palm oil empty fruit bunch) have been used to improve the material
properties of polymer composites because of their low cost, low density, high specific
strength, modulus, environmental friendliness, and renewable nature [164]. Normally,
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fiber type fillers improve tensile strength because the fibers are able to support stresses
transferred from the polymer [194].

Table 4. Filler for ENR/PVC matrix composites.

Filler Fabrication Techniques Properties Applications Ref.

Oil palm empty fruit
bunch (OPEFB) Electron-beam irradation

Tensile strength, Young’s modulus, and gel
content increase with a concurrent
reduction in the elongation at break (Eb) of
the composites.

Composite material [195]

Oil palm empty fruit
bunch (OPEFB) Melt blending

Young’s modulus, hardness, and flexural
modulus of the PVC/ ENR blend increase
with the increase in OPEFB loading

Composite material [196]

Rubber-wood Melt blending

Flexural modulus, Young’s modulus and
hardness increased with the RW loading.
The impact strength, Ts and Eb decrease
with the increase in RW loading

Composite material [194]

Titnium dioxide (TiO2) Melt blending, radiation Good distribution of TiO2 in the PVC/ENR
blends matrix Composite material [197]

Pineapple leaves
fiber cellulose

Solution blending, casting
technique, phase
inversion method

Number of pores increased with the
addition of cellulose. Decoloration of palm
oil mill effluent after treated by
ENR/PVC/Cell-20% and ENR/PVC/Cell-
g-PMMA-10% membranes.

Composite material [36]

Rice husk powder
Solution blending, casting
technique, phase
inversion method

Relative humidity (RH) reduces tensile
strength and increases the tensile modulus.
The number of pores increased with the
increasing wt% of RH.

Water permeation [198]

Silica
Solution blending, casting
technique, phase
inversion method

Thermal and mechanical stability of the
membranes improved with the
incorporation of silica.CO2 and N2 gas
permeation of silica-filled membranes
increased with increasing silica content

Gas permeation [189]

Silica
Solution blending, casting
technique, phase
inversion method

Silica as pore former. Mechanical
properties of the membrane improved by
the addition of silica. COD and BOD
showed a reduction of 44% and 38.3%,
respectively, after POME

POME treatment [199]

Magnesium Oxide, MgO
Solution blending, casting
technique, phase
inversion method

Pores developed as fillers were introduced
to the membrane.Permeability values of
CO2 and N2 increased with the addition
of MgO.

Gas permeation [200]

Microcrystalline
Cellulose, MCC Solution blending technique

Chemical oxygen demand (COD),
biochemical oxygen demand (BOD) and
total suspended solid (TSS) were reduced
to 99.9%, 70.3%, and 16.9%, respectively.

POME treatment [38]

4. Natural Fiber-Reinforced Polymeric Membrane

To date, global industries have thought about using natural fibers as an alternative to
synthetic materials as one of the components in composites due to renewable nature and
good marketing appeal in composite manufacturing industries [201,202]. The exceptional
characteristics of natural fibers, such as low cost, low density, recyclability, biodegradabil-
ity, and resource and abundance sustainability, make them the preferred material [203].
Natural fibers that come from either animals or plants can be used as fillers in polymer
composites [204–206]. Fillers are fine solids added to synthetic resins, rubber, or paints
to improve their mechanical properties without altering the molecular structure of the
polymer. Figure 8 shows natural fibers that are used to strengthen the matrix to improve
and enhance the physical, thermal and mechanical properties of materials as well as reduce
costs [207–217]. According to Bicy et al. [148], nanofiller shape and localization have a
substantial impact on the membrane’s properties and porosity [218–220].

In 2020, Mark et al. [207] investigated the effects of filler loading on the mechanical and
morphological properties of carbonized coconut shell particle-reinforced polypropylene
composites. The coconut shells were carbonized, pulverized, and sieved into four particle
sizes: 63, 150, 300, and 425 µm, with loadings of 0, 10, 20, 30, and 40 wt% for each particle
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size. The filler exhibited improved yield strength, tensile strength, tensile modulus, flexural
strength, flexural modulus, and hardness of polypropylene as filler loading increased. The
filler exhibited improved mechanical properties in the composites. Due to strong interfacial
adhesion, SEM revealed a positive filler–matrix interaction. The incorporation of more
filler resulted in the formation of more spherulite-producing nuclei, the diminution of pore
sizes, and an improvement in particle size distribution and mechanical properties. The
study conducted by Ismail et al. [154] is related to the effect of filling oil palm empty bunch
fibers in three size ranges, namely 270–500, 180–270, and 75–180 µm on the dispersion and
its interaction with the polymer matrix. Studies have found that rubber composites with
smaller-sized fiber powders show high mechanical properties. This is because smaller-sized
fillers have a large surface area, which in turn, increases the interaction of the rubber matrix
on the filler surface.
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In general, the strengthening ability of a filler is influenced by three main characteris-
tics, namely particle size and surface area, surface shape and structure, and the activity and
chemical properties of the surface [49]. This will have an impact on important properties
of the composite, such as processing ability, density, and aging performance [221]. When
fillers are added to the tensile strength value matrix, the modulus and hardness increase
with a decrease in filler particle size. Fillers such as silica (SiO2) and carbon black (CB) can
act as reinforcers if they have a small particle size and a large surface area. The addition of a
small-sized filler that is in the nanometer range will increase the surface area of the particles,
which causes the filler to play its role more effectively in its dispersion in the polymer
matrix more evenly [222–227]. The incorporation of fine particles produces a large surface
area and will disperse more evenly or homogeneously in the polymer matrix, further
increasing the tensile strength of the composite [207]. This is because the addition of fillers
into the polymer matrix has improved the mechanical properties of the membrane [228,229].
Furthermore, the addition of a smaller-sized filler will increase the surface area of the filler
causing the filler to be dispersed more evenly in the matrix [230]. The results of the study
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showed that the improvement of the mechanical properties of the material depends on the
surface interaction and adhesion between the filler and the matrix, as well as the uniform
distribution of the filler in the composite.

Moreover, the efficiency of fillers in improving the mechanical properties of materials is
highly dependent on the interface interactions and adhesion of fillers and matrices [231,232].
Premalal et al. [190] conducted a study related to the addition of rice husk (RH) and talcum
fillers in polypropylene (PP). The results showed that the addition of RH powder into the
matrix had increased the value of modulus, elongation at the breaking point, and tensile
strength but lower than talc due to weak interface interaction between RH powder and the
PP matrix compared to talc.

Recently, the use of organic or natural fillers has been gaining the attention of many
researchers due to the increasing awareness related to the problem of agricultural waste dis-
posal, which is worrying and causes pollution. The use of natural fillers to replace inorganic
fillers has many advantages, including unlimited resources, low cost, availability, easily
performed chemical and mechanical processing, and not endangering health [154,233].
Among the natural fillers that are often used are wood fiber, oil palm empty bunch fiber,
coconut fiber, jute, pineapple leaves, henequen waste, and rice husk. Some researchers
have reported the advantages of using natural fillers in thermoplastic matrices due to their
unique properties, such as being readily available, cheap, low density, easily biodegradable,
and environmentally friendly. In addition, the use of natural filler in the polymer matrix has
significant benefits because the strength and toughness of the matrix can be increased [234].
Referring to Torres and Cubillas [235], lignocellulose fiber reinforced plastic materials have
higher mechanical properties, are environmentally friendly, and reduce costs.

4.1. Matrix Filler

The biodegradability of natural fibers is deemed the most significant and intriguing
aspect of their use in polymeric materials [236]. When fillers are added to the polymer
matrix, the toughness, elasticity, and tensile strength all go up [49]. Rice husk (RH) is a
natural filler that is a cellulose fiber that can be used in composite manufacturing panels.
These natural fibers are assessed as an environmentally friendly, low-density source and
an inexpensive and readily available alternative and can be used as fillers to improve
the mechanical properties of a composite [237]. Based on some of the properties of these
natural fillers, many researchers have taken the initiative to apply their use in the field of
composites [173,188,238–240]. Table 5 shows the main compositions of the RH powder.

Table 5. Main rice husk (RH) composition.

Element Percent (%)

Cellulose 25–35
Hemicellulose 18–21

Lignin 26–31
Silica 15–17
Solute 2–5

Humidity 7.5

In 1975, Haxo and Mehta [156] reported that rice husk had 34–44% cellulose, 23–30% lignin,
13–39% ash, and 8–15% moisture. Rice husk (RH) is a source of high cellulose and even
silica, which can improve the mechanical properties of the material. According to Han-
dayani [241], several studies have shown that rice husk ash contains a lot of silica content
of 94–96%. Open-fired RH contains more silica and has a high potential as a filler in ther-
moplastics to replace synthetic fillers such as carbon black [157]. In a study conducted by
Ahmad et al. [242], the addition of RH and clay into the matrix of high-density liquid/liquid
natural rubber/poly (ethylene) (NR/LNR/HDPE), NR/HDPE, and HDPE has increased
the value of the composite tensile modulus. This is because RH has improved the stiffness
properties of the composite material by filling in the empty spaces in the matrix. According
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to [64], the addition of RH improved thermal stability, modulus, and the number of pores in
the ENR/PVC membrane. The ENR/PVC membranes with 5 wt% and 10 wt% RH loading
had pores on the surface, which improved the water absorption, flux, and permeability of
the membranes, according to SEM pictures.

In 2001, Hanafi Ismail et al. [164] reported that the addition of rice husk ash in
NR/LLDPE could improve the tensile modulus and hardness properties of the composite.
The addition of RH into the matrix has reduced the movement of the polymer chains,
thereby improving the stiffness properties of the material and resulting in composites
that have better thermal stability. Yang et al. [238] have studied the effect of RH addition
on poly (propylene) (PP) matrices. RH was added from 10 to 40 wt%, and composites
were produced using melt blending techniques. The study found that the addition of RH
increased the value of tensile modulus but decreased the tensile strength of the composite.
In general, this is due to an incompatibility between hydrophilic lignocellulose fillers with
hydrophobic matrices. Poor surface interaction and adhesion between the filler and the
matrix led to a decrease in the tensile strength of the composite. In addition, the addition of
RH into the matrix has complicated the movement of the polymer chains and improved
the stiffness (modulus) properties of the composite.

Weaknesses of interface and adhesion interactions between RH particles (hydrophilic)
and polymer matrices (hydrophobic) are a major problem in the production of composites
with these natural fillers [243]. The moisture of these natural fillers can cause the mechanical
properties of the resulting composites to be degraded. The fibers have a lignin layer
that makes it difficult for them to interact well when blended with a polymer matrix.
Through the study of Jamil et al. [244], it was shown that natural rubber blended with
high-density polyethylene (NR/HDPE) filled with rice husk and liquid natural rubber
(LNR) as adapters could change the composite properties in terms of mechanical properties,
thermal properties, and homogeneity of the resulting dough. Based on the study, the tensile
strength of the composite was found to decrease with the addition of RH in the matrix,
but the tensile modulus was found to increase with the presence of RH. Poor adhesion
between the matrix and the filler causes the distribution of the filler to the whole matrix to
be inhomogeneous, and the occurrence of particle clumping causes the properties of the
composite to become weak, thereby lowering the tensile strength of the composite [245].
However, this problem can be overcome by the addition of LNR in the composite matrix
because LNR has reduced the hydrophilic properties of RH and increased the interaction
of the filler interface, and the matrix in turn shows an increase in the mechanical properties
of the composite.

Therefore, the addition of a stabilizer or surface treatment on the natural fibers im-
proves the compatibility with the polymer matrix [246]. Among the treatments that are
often used is the use of gamma radiation, treatment with isocyanates, silane, peroxides,
and alkali [247]. Alkaline treatment using sodium hydroxide (NaOH) is one of the widely
used treatments by researchers aimed at improving the interface surface interaction and
adhesion between RH and matrix [248]. Moreover, this surface modification treatment
aims to improve the adsorption properties of RH [249]. In the treatment of lignocellulose
fibers, NaOH acts as a lignin binding agent because lignin is easily soluble in NaOH and
at the same time removes all impurities and oil residue present on the surface of cellulose
fibers. NaOH treatment improved the hydrophilic properties of lignocellulose fibers. This
is due to the removal of lignin, hemicellulose, and fat layers as well as increased porosity or
active surface area on RH [250]. Therefore, lignocellulose fibers more easily absorb water
from an environment that is also hydrophilic. The increase in such characteristics is due
to the increase in more active hydroxyl (–OH) terminals on the surface of lignocellulose
fibers after treatment is performed [248,251]. Several researchers have reported that RHs
that have been treated with NaOH can improve the mechanical properties and adsorption
properties of untreated materials [248,250,251].
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4.2. Pollutant Adsorbent

Natural fiber emerged as a promising adsorbent material for pollutant removal due
to its availability and abundance of hydroxyl groups. RH has potential as a dye and
heavy metal adsorbent for wastewater treatment [252,253], in addition to being a filler in
composites. Akhtar et al. [254] conducted a study related to the adsorption potential of RH
to remove 2,4-dichlorophenol (DCP) from an aqueous solution. The effects of RH thermal
treatment, stirring time, amount of adsorbent, pH of the solution, and amount of DCP
absorbed were studied for the adsorption of DCP in an aqueous solution. The study found
that thermally treated RH could improve the removal of DCP from an aqueous solution
more effectively than chemically treated RH. Therefore, the thermally treated RH is used
for the next stage and applied for wastewater application. After 10 min of stirring time with
an increase in RH composition of 0.025–0.1 g, the adsorption percentages of DCP increased
up to 97% and 66%, respectively. For industrial wastewater applications, the results show
that RH has eliminated DCP by 99 ± 0.2%. Studies show that RH is a cheap and easily
available adsorbent and can effectively remove DCP from industrial wastewater.

Ajmal et al. [255] conducted studies on the removal of cadmium (II) in an aqueous
solution using RH. The process of removal of this organic matter depends on the contact
time, solution concentration, pH, and temperature. The results of the study found that
RH treated with phosphate had improved the removal of cadmium (II) from wastewater.
Katal et al. [256] conducted a study on the adsorption of nitrate from aqueous solutions and
industrial wastewater using modified RH. The effects of contact time, amount of adsorbent,
pH of the solution, and temperature of solution on nitrate adsorption in aqueous solution
were studied. The highest adsorption capacity was at pH 7, 90 min, and 0.4 g/100 mL,
where the percentage of nitrate removal increased to 93.4%. For industrial wastewater
applications, studies show that the modified RH removed nitrate at a concentration of
34.7 ppm by 91.8%. This indicates that RH has high potential as an adsorbent and removes
nitrates in industrial wastewater.

The use of RH as an adsorbent for dyes such as methylene blue (MB), congo red (CR),
and brown carmine (IC) has been studied by many researchers. Chakraborty et al. [249]
conducted a study on the adsorption of purple crystal dye (CV) in an aqueous solution by
RH treated with NaOH [249]. The results of the study found that NaOH-modified RH has
the potential to remove dyes through the adsorption process based on several parameters
such as pH, amount of adsorbent, temperature, and initial concentration. Therefore, the
use of this natural resource as an adsorbent is one of the alternatives to treating industrial
wastewater because RH is an unlimited source, readily available, and cheap.

5. Conclusions and Future Perspective

Dyes, saturated salts, heavy metals, organic compounds, and oil emulsions represent
a substantial danger to water supplies, which is a major global problem. Membrane
technology for contaminant removal is becoming prominent since it provides more efficient
treatment methods, requires less energy, and does not require the addition of chemicals
to the waste stream. Rubber-based membranes have elastic, flexible, ductile, and robust
properties and are commonly employed in the pervaporation and gas separation process.
The use of rubber-based membrane for various industrial separation processes has been
explored, but few works have addressed a rubber-based membrane in water separation
applications. It is because the rubber-based membrane has a dense structure and has
no pores for water permeation. Hence, the addition of natural fibers as filler and pore
former was able to improve the thermal stability, mechanical characteristics, morphology,
and performance of ENR/PVC membrane, as well as their potential for use in the water
separation process. Furthermore, the use of natural filler in a polymer matrix is consistent
with the polymer’s excellent properties for a variety of applications. The excellent properties
of rice husk (RH), which is a rich source of cellulose, and even silica can improve the
mechanical properties of a material. RH also can be used as an adsorbent to adsorb dyes
from wastewater treatment. The potential of RH as filler, pore former, and adsorbent in
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rubber-based membrane enhanced the separation process of wastewater. In addition, the
fabrication method of the membrane also affects the morphology and properties of the
membrane and enhances the water permeability of wastewater. Thus, the incorporation of
RH into the ENR/PVC matrix resulted in the formation of a porous membrane with the
potential for wastewater treatment applications.
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