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Abstract

Mapping potential changes in bioclimatic characteristics are critical for planning mitigation goals and climate change adaptation. 
Assessment of such changes is particularly important for Southeast Asia (SEA) — home to global largest ecological diversity. 
Twenty-three global climate models (GCMs) of Coupled Model Intercomparison Project Phase 6 (CMIP6) were used in this study 
to evaluate changes in 11 thermal bioclimatic indicators over SEA for two shared socioeconomic pathways (SSPs), 2–4.5 and 5–8.5. 
Spatial changes in the ensemble mean, 5th, and 95th percentile of each indicator for near (2020–2059) and far (2060–2099) periods 
were examined in order to understand temporal changes and associated uncertainty. The results indicated large spatial heterogeneity 
and temporal variability in projected changes of bioclimatic indicators. A higher change was projected for mainland SEA in the 
far future and less in maritime region during the near future. At the same time, uncertainty in the projected bioclimatic indices was 
higher for mainland than maritime SEA. Analysis of mean multi-model ensemble revealed a change in mean temperature ranged 
from − 0.71 to 3.23 °C in near and from 0.00 to 4.07 °C in far futures. The diurnal temperature range was projected to reduce 
over most of SEA (ranging from − 1.1 to − 2.0 °C), while isothermality is likely to decrease from − 1.1 to − 4.6%. A decrease in 
isothermality along with narrowing of seasonality indicated a possible shift in climate, particularly in the north of mainland SEA. 
Maximum temperature in the warmest month/quarter was projected to increase a little more than the coldest month/quarter and 
the mean temperature in the driest month to increase more than the wettest month. This would cause an increase in the annual 
temperature range in the future.
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Introduction

Annual and seasonal bioclimate information is essential 
to understanding climate influences on different species 
(O’Donnell and Ignizio, 2012). The information is also 
critical for estimating wildlife distribution (Molloy et al. 
2014; Yoon and Lee 2021), farming potential (Kriticos 
et al. 2012), human comfort (Çaliskan et al. 2013), and 
vulnerability to climate change (Theusme et al. 2021). 
Global warming has altered the climate in different ways 
in different regions of the world (Asadollah et al. 2021; 
Song et al. 2021; Salehie et al. 2022c). Climate change has 
changed several climatic characteristics intricately con-
nected to the biosphere (Pour et al. 2019). Minor climate 
change may significantly affect biological distribution (Hu 
et al. 2015; Sintayehu 2018), such as a shift in species 
distribution as the plants and animals would change their 
locations for survival (Bellard et al., 2012; Molloy et al., 
2014; Waltari et al., 2014). The phenology and physiology 
of many plants may also change in response to climate 
variability (Bellard et al. 2012). It could also alter people’s 
comfort and elevate public health risks in different regions 
(Ragheb et al. 2016; Duanmu et al. 2017).

Bioclimatic indicators are increasingly used to analyze 
the effects of climate change on bio-environment (Rehfeldt 
et  al. 2015; Daham et  al. 2018; Ribeiro et  al. 2019). 
Mapping potential changes in bioclimatic characteristics 
are critical for achieving climate change adaptation 
and mitigation goals. Future projection of bioclimatic 
indicators is particularly important for Southeast Asia 
(SEA) because it is one of the most climate-vulnerable 
regions of the world resulting from significant ocean-
land–atmosphere interactions (Raitzer et al. 2015; Vinke 
et  al. 2017). It is in the center of the Asian monsoon 
system and at the crossroad of the Asian monsoon’s 
interactions with El Niño–Southern Oscillation (ENSO), 
the Pacific and Indian Oceans and Northern and Southern 
Hemispheres. Four SEA nations are among the top ten 
most vulnerable countries to climate change in the world 
(Eckstein et al. 2017). According to a recent study (Raitzer 
et al. 2015), the SEA region’s gross domestic product 
would decline by 11% by the end of this century as a result 
of climate change, the highest on the planet. Agriculture 
and ecological industries would be the two most affected 
areas. Crop yields could drop significantly, and biome 
shifts might negatively affect ecosystems and livelihood 
of millions (Woetzel et al. 2020).

The complicated land–ocean boundary and highly 
irregular geographic variability have made the climate 
simulation in SEA challenging, particularly using coarse 
resolution global climate models (GCMs) (Robertson 
et al. 2011). However, GCMs of different CMIPs have 

been extensively used for climate simulations and climate 
change impact assessments in SEA over the past three 
decades (Moron et  al. 1998; Lau and Nath 2000; Abe 
et  al. 2003; Mochizuki et  al. 2007; Schiemann et  al. 
2014; Iqbal et al. 2021; Khadka et al. 2021; Supharatid 
et al. 2022). Several studies assessed the effect of climate 
change on the distribution of plants (van Zonneveld et al. 
2009; Redfern et al. 2012), animals, and fishing industry 
in SEA (Abdullah 2003; Asif 2019; Yoon and Lee 2021). 
Redfern et al. (2012) studied the impact of temperature 
rise, drought, salinity, rising sea levels, submergence, and 
socioeconomic factors on rice production in SEA countries. 
Asif (2019) studied environmental impact on marine 
resources, such as the fishing industry on Cambodia’s 
coast associated human migration. Yoon and Lee (2021) 
used bioclimatic indicators to study the distribution of two 
different pests.

Researchers used raw and downscaled GCMs to assess 
climate change impacts on biodiversity (Banerjee et al. 
2019; Dai et al. 2021; Wang et al. 2021). Banerjee et al. 
(2019) used the niche overlap method between species 
to predict the potential distribution under climate change 
scenarios using Coupled Model Intercomparison Project 
Phase 5 (CMIP5). Dai et al. (2021) studied the distribution 
of two different bears associated with climate warming using 
CMIP5 at current and far future (2070) in China. Wang 
et al. (2021) examined the projected future distribution of 
six species of flowering plants at present and future using 
CMIP5. Thus, assessing bioclimatic indicators in historical 
and future scenarios across SEA is crucial for sustainable 
development of the region.

SEA experienced an overall increase of 0.1 °C/decade in 
mean temperature in the past 50 years (IPCC 2007). Climate 
extremes in the region also showed a significant variability 
during this period (Nasional BPP 2012). The temperature 
is projected to increase by 1.99 and 4.29 °C at the end of 
the century for Shared Socioeconomic Pathways (SSPs) 
2–4.5 and 5–8.5, respectively (Supharatid and Nafung 2021; 
Hamed et al. 2022a). The extremes are expected to be more 
frequent in the future due to the rise in temperature, placing 
SEA at danger of climate change repercussions (Nashwan 
et al. 2018; Ge et al. 2019).

The purpose of this work is to quantify historical 
bioclimatic indicators and their future change in SEA 
under medium and high climate change scenarios. 
These indicators with biological significance could 
help researchers better understand species’ reactions 
to climate change (Pour et al. 2019). This is the first 
attempt to project bioclimate of SEA using recently 
released CMIP6 models. The novelty of this study is the 
use of readily available climate projection data to assess 
possible changes in bio-environment in the two future 
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periods and two climate change scenarios. Additionally, 
it may be used to assist policymakers in developing 
appropriate mitigation and adaptation strategies to 
climate change in the SEA.

Materials and methods

Study area

SEA consists of 11 countries, having a total population 
of 563 million with a land area of 4.3 million  km2 
(Fig. 1). There are seas, land, and many islands in the 
region; however, it consists of two primary regions 
(i.e., Mainland and Maritime SEA). Most of SEA’s 
topography is flat, except for Myanmar and Indonesia, 
where altitudes can be as high as 4000 m. It is one of 
the world’s most vulnerable regions to climate change 
because of its unique geographic and meteorological 
conditions together with socioeconomic and demographic 
features (Raitzer et al. 2015; Vinke et al. 2017). SEA has 
a mean annual temperature of 25.0 °C, and a mean annual 
rainfall is between 700 and 5000 mm, while the mean 
maximum and minimum temperatures were 30.82 and 
20.27 °C, respectively (Peel et al. 2007; Yang et al. 2021). 
Natural atmospheric processes that cause climate-related 
catastrophes such as droughts, floods, and other weather 

events have different spatial and temporal variations 
(Nashwan et al. 2018; Kuo et al. 2020).

Global climate models

Twenty-three CMIP6 models’ monthly rainfall  Tmax and 
 Tmin simulations for the historical and future projections 
are used. The GCMs (Table 1) are chosen based on the 
availability of projected rainfall, maximum  (Tmax) and 
minimum  (Tmin) monthly temperature for historical, 
and two SSPs, 2–4.5 and 5–8.5. Outputs of the models 
are acquired via https:// esgf- node. llnl. gov/ search/ 
cmip6/. Historical experiment covers 1975–2014, while 
future experiments (i.e., SSP2-4.5 and SSP5-8.5) cover 
2020–2099. The SSP2-4.5 implies middle of the scenarios, 
taking the rise of mean global temperature to 2.7 °C by 
2100. Contrarily, SSP5-8.5 represents the worst-case 
scenario in CMIP6 with double  CO2 emissions by 2050 
compared to its current level and warming of 4.4 °C by 
the end of this century. Thus, employing these two future 
scenarios can reflect variability in climate parameters for 
two possible pathways under climate warming.

Methodology

This study examines the change in biothermal indi-
cators in SEA for different future scenarios. Table  2 

Fig. 1  The location and topog-
raphy of Southeast Asia

91214 Environmental Science and Pollution Research  (2022) 29:91212–91231

1 3

https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/


provides comprehensive explanations of the indicators 
used (O’Donnell and Ignizio 2012). Among the 11 indica-
tors, five are annual indicators (Bio-1, Bio-2, Bio-3, Bio-
4, and Bio-7), four are seasonal indicators (Bio-5, Bio-6, 
Bio-10, and Bio-11) and two are limiting environment 
indicators (Bio-8 and Bio-9). This methodological flow 
starts with interpolating raw GCM models’ outputs into a 
common 1.0° spatial resolution, nearly to the mean reso-
lution of all GCMs, via bilinear interpolation discussed 
in Hamed et al. (2021). This guarantees that the results 
are not biased due to different spatial representations of 
raw GCMs (see Table 1) (Nashwan and Shahid 2020). The 
raw GCMs preserve the original climate change signal 
(Salehie et al. 2022a, b). Then, different indicators were 
computed for each model output for the historical period 
and two future scenarios. For Bio-8 to Bio-11, a dynamic 
method was followed to select the maximum or minimum 
temperature month. The selected maximum and minimum 
temperature/rainfall months for the historical and future 
periods were not fixed. They were reselected for the future 
periods (Bede-Fazekas and Somodi 2020). A historical 
mean multi-model ensemble (MME) was created using 23 
GCMs’ outputs to decrease uncertainty and represent the 
5th and 95th percentile or confidence interval (CI) in the 
change of each indicator. The MME mean and percentiles 

were also computed for the two projected periods (e.g., 
near 2020–2059 and far 2060–2100) for SSP2-4.5 and 
SSP5-8.5. The historical MME estimations were subtracted 
from the MME projections for the future periods to calcu-
late the changes in the future periods.

Results

Thermal bioclimatic indicators, estimated using different 
GCMs, are used to form an MME. The following sections 
present the historical MME mean of each indicator 
employed in this study. Besides, projected changes in 
MME mean and 5th and 95th percentiles for each indicator 
for near and far futures, under SSP2-4.5 and SSP5-8.5, 
are presented. The 5th and 95th percentiles are presented 
to show the 90-percentile confidence interval (CI) or the 
uncertainty in the changes.

Annual indicators

Annual mean temperature and diurnal temperature range

Spatial distribution of annual mean temperature (Bio-1) at 
different grids over SEA is presented in Fig. 2, while diurnal 

Table 1  CMIP6 GCMs used in 
the study

No Model Institution Country Raw nominal 
resolution (km)

Reference

1 ACCESS-CM2 CSIRO-ARCCSS Australia 250 (Dix et al. 2019)

2 ACCESS-ESM1-5 250 (Ziehn et al. 2019)

3 AWI-CM-1–1-MR AWI Germany 100 (Semmler et al. 2018)

4 BCC-CSM2-MR BCC China 100 (Wu et al. 2018)

5 CanESM5 CCCMA Canada 500 (Swart et al. 2019)

6 CAS-ESM2-0 CAS-ESM China 100 (Chai 2020)

7 CIESM CIESM China 100 (Huang 2019)

8 CMCC-ESM2 CMCC Italy 100 (Peano et al. 2020)

9 EC-Earth3 EC-Earth Europe 100 (Döscher et al. 2021)

10 EC-Earth3-CC 100

11 EC-Earth3-Veg 100

12 EC-Earth3-Veg-LR 100

13 FGOALS-g3 FGOALS China 250 (Pu et al. 2020)

14 FIO-ESM-2–0 FIO China 100 (Song et al. 2019)

15 GFDL-ESM4 NOAA-GFDL USA 100 (Krasting et al. 2018)

16 INM-CM4-8 INM Russia 100 (Volodin et al. 2019a)

17 INM-CM5-0 100 (Volodin et al. 2019b)

18 IPSL-CM6A-LR IPSL France 250 (Boucher et al. 2018)

19 MIROC6 MIROC Japan 250 (Tatebe et al. 2019)

20 MPI-ESM1-2-HR MPI-M Germany 100 (von Storch et al. 2017)

21 MPI-ESM1-2-LR 250 (Wieners et al. 2019)

22 MRI-ESM2-0 MRI Japan 100 (Yukimoto et al. 2019)

23 NESM3 Nanjing University China 250 (Cao and Wang 2019)
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Table 2  Definition of the bioclimatic indicators where  Tavg is the mean temperature ((Tmax +  Tmin)/2), and i is the month of the year

In Bio-8 and Bio-9 (Bio-10 and Bio-11) equations, the rainfall (temperature) are evaluated for consecutive 3 months, which may span over two 

consecutive years

Indicator Equation Unit

Annual indicators

Bio-1 annual mean temperature
Bio1 =

∑i=12

i=1
Tavgi

12

°C

Bio-2 diurnal temperature range
Bio2 =

∑i=12

i=1
(Tmax

i
−Tmin

i
)

12

°C

Bio-3 isothermality Bio3 =
Bio2

Bio7
× 100 %

Bio-4 temperature variation in a year Bio4 = SD
{

Tavg1,… , Tavg12

}

× 100 %

Bio-7 annual temperature range Bio7 = Bio5 − Bio6 °C

Seasonal temperature indicators

Bio-5 maximum monthly temperature Bio5 = max(
{

Tmax1,… , Tmax12

}

) °C

Bio-6 minimum monthly temperature Bio6 = min(
{

Tmin1,… , Tmin12

}

) °C

Bio-10 mean temperature of the warmest quarter

Qmax = max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑i=3

i=1
Tavgi

∑i=4

i=2
Tavgi

… ,∑i=1

i=11
Tavgi

∑i=2

i=12
Tavgi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Bio10 =

∑i=3

i=1
Tavgi

3  , based on the three selected months of Qmax

°C

Bio-11 mean temperature of the coldest quarter

Qmin = min

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑i=3

i=1
Tavgi

∑i=4

i=2
Tavgi

… ,∑i=1

i=11
Tavgi

∑i=2

i=12
Tavgi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Bio11 =

∑i=3

i=1
Tavgi

3  , based on the three selected months of Qmin

°C

Limiting environment indicators

Bio-8 mean temperature of the wettest quarter

Qmax = max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑i=3

i=1
Rainfalli

∑i=4

i=2
Rainfalli

… ,∑i=1

i=11
Rainfalli

∑i=2

i=12
Rainfalli

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Bio8 =

∑i=3

i=1
Tavgi

3  , based on the three selected months of Qmax

°C

Bio-9 mean temperature of the driest quarter

Qmin = min

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑i=3

i=1
Rainfalli

∑i=4

i=2
Rainfalli

… ,∑i=1

i=11
Rainfalli

∑i=2

i=12
Rainfalli

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Bio9 =

∑i=3

i=1
Tavgi

3  , based on the three selected months of Qmin

°C
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temperature range (DTR) or Bio-2 is presented in Fig. 3. 
Topography had a remarkable impact on the spatial distri-
bution of Bio-1 and Bio-2 across SEA. Bio-1 was low in 
the northern and southern mountains and high in the plains, 
while Bio-2 was the opposite. The DTR in SEA is generally 
low due to its nearness to the equator. A higher increase in 
 Tmin than  Tmax implies a drop in Bio-2 in many locations of 
the world resulting from global warming (Karoly et al. 2003; 
Shahid et al. 2012). It can be observed that the historical 
MME Bio-1 was the opposite of Bio-2.

The MME mean (with 5th to 95th percentiles) of pro-
jected Bio-1 revealed an increase of 1.08 °C (−0.71 to 
3.23 °C) and 1.86 °C (0.0 to 4.07 °C) for near and far 
futures for SSP2-4.5 over the SEA. The increase in main-
land SEA would be nearly 2.89 °C above historical levels. 
The projected MME mean and CI in Bio-1 are almost the 

for SSP5-8.5 and SSP2-4.5 in the near future. However, 
the increase in the far future would be by 3.13 °C (1.17 to 
5.50 °C), indicating more uncertainty in the projection in 
the far future and SSP5-8.5 than near future and SSP2-4.5. 
On the other hand, the MME projected a change in mean 
with CI in Bio-2 by 0.03 °C (−2.5 to 3.15 °C) and −0.03 
°C (−2.50 to 3.00 °C) for SSP2-4.5, and 0.00 °C (−2.48 
to 3.09 °C) and −0.05 °C (−2.50 to 2.94 °C) for SSP5-8.5, 
for the near and far futures. In addition, there are no major 
variations in areal means of 5th and 95th percentiles for 
different scenarios.

Isothermality, seasonality, and range

The spatial distribution of historical isothermality (Bio-3) 
and its future projection over SEA are shown in Fig. 4. Bio-3 

Fig. 2  Spatial distribution of 
changes in annual mean tem-
perature (Bio-1) for SSP2-4.5 
and SSP5-8.5 in near and far 
futures along with their histori-
cal values
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is the ratio of the annual mean diurnal temperature range 
(Bio-2) to the annual temperature range (Bio-7). A Bio-3 
< 100% indicates smaller diurnal temperature variability as 
compared to annual variability. The GCMs estimated higher 
values of Bio-3 over the maritime SEA and less in the main-
land SEA, as shown in Figs. 4 and 5. For SSP2-4.5, MME 
showed a change ranging from −3.4 to 0.7% during the near 
future and −4.6 to 1.4% during the far future. The CI in the 
change ranges −14.9‒13.25% and −15.3‒12.5% in the near 
and far future, respectively. The lowest increase would be 
in the southern coastal region and the highest in the central 
region of SEA (i.e., the Philippines). For SSP5-8.5, MME 
mean (CI) changes are expected to be −0.5% (−15.0 to 
13.04%) and −1.28% (−16.0 to 12.2%) for the near and far 
futures, respectively. The locations with high Bio-3 in the 
historical period, like Indonesia and Sarawak in Malaysia, 
show unremarkable change for the different future scenarios.

The seasonality of temperature (Bio-4) is the amount of 
temperature fluctuation averaged over the years, estimated 
based on standard deviation in percentage (O’Donnell and 
Ignizio, 2012). An increase in Bio-4 indicates a greater tem-
perature fluctuation (variability) (Hijmans 2004; O’Donnell 
and Ignizio 2012). The spatial distribution of Bio-4 indicates 
a non-homogeneous variability pattern over SEA, which is 
opposite of the distribution of annual mean temperature. The 
mean Bio-4 is less over the south SEA (Indonesia, Malaysia, 
Brunei, and Singapore) and high in the north. The projected 
changes in the MME mean and CI of Bio-4 showed more or 
less similar spatial distribution for different scenarios. The 
MME change in Bio-4 is about 1.36% (− 4.10 to 2.90%) for 
SSP2-4.5, and 0.68% (− 4.06 to 5.03%) for SSP5-8.5, for 
the near future, while 0.38% (− 4.21 to 6.31%) for SSP2-
4.5 and − 0.51% (− 2.52 to 2.63%) for SSP5-8.5 for the far 
future.

Fig. 3  Spatial distribution of 
changes in diurnal temperature 
range (Bio-2) for SSP2-4.5 and 
SSP5-8.5 in near and far futures 
along with their historical 
values
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Figure 6 presents the annual temperature range (Bio-7) 
for the historical period and its possible changes in future 
scenarios in the SEA region. Bio-7 is the temperature 
variation during a certain period or the difference 
between Bio-5 and Bio-6. The highest historical value of 
Bio-7 was in the north region (Myanmar, Thailand, Laos, 
and Vietnam), and the lowest was in the southeast (North 
Maluku). The Bio-7 is projected to change by 0.11 °C 
(− 3.66 to 4.10  °C) and 0.10  °C (− 3.68 to 4.05  °C) 
in the near and far futures, respectively for SSP2-4.5, 
while 0.08 °C (− 3.58 to 4.06 °C) and 0.13 °C (− 3.64 
to 4.00 °C) in the near and far futures, respectively for 
SSP5-8.5. The lowest and the largest change would be in 
the mainland SEA. The main change for each scenario 
and each future period would be more in the north 
(mainland SEA).

Seasonal indicators

Mean maximum and minimum monthly temperature

The maximum monthly temperature (Bio-5) and minimum 
monthly temperature (Bio-6) during the historical period 
over SEA, along with two future scenarios (SSP2-4.5 and 
5–8.5), are presented in Figs. 7 and 8, respectively. The 
highest historical values of Bio-5 are observed in Thai-
land and southern Myanmar and the lowest in northern 
Myanmar. The lowest Bio-6 values are noticed in northern 
Myanmar and the highest in the coastal regions of Indone-
sia, Brunei, and the Philippines.

The Bio-5 is projected to change by 1.17 °C (− 2.03 to 
4.63 °C) and 1.98 °C (− 1.40 to 5.48 °C) for the near and 
far futures for SSP2-4.5, while 1.35 °C (− 1.79 to 4.90 °C) 

Fig. 4  Spatial distribution of 
changes in temperature isother-
mally (Bio-3) for SSP2-4.5 and 
SSP5-8.5 in near and far futures 
along with their historical 
values
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and 3.27 °C (− 0.29 to 7.07 °C) for the near and far futures 
for SSP5-8.5. However, the changes in Bio-6 are projected 
1.06 °C (− 1.39 to 3.50 °C) and 1.88 °C (− 0.60 to 4.31 °C) 
for SSP2-4.5 and 1.27 °C (− 1.20 to 3.71 °C) and 3.15 °C 
(0.69 to 5.69 °C) for SSP5-8.5, for the near and far futures, 
respectively. It indicates a higher increase in Bio-6 than 
Bio-5 in SEA. For both indicators, the highest future 
change would be in the far future for SSP5-8.5, especially 
in the north of Myanmar.

Mean temperature of the warmest and coldest quarters

The mean temperature for the consecutive 3 months at 
each grid point was computed to determine the warmest 
and coldest quarters. Like the selection of maximum and 
minimum temperature months, a dynamic method was 
used to select the warmest and coldest quarters. The mean 

temperature of the warmest quarter (Bio-10) and mean 
temperature of the coldest quarter (Bio-11) during the 
historical period over SEA, along with two future sce-
narios (SSP2-4.5 and 5–8.5), are presented in Figs. 9 and 
10, respectively. Both indicators have the same historical 
spatial distribution over SEA. The lowest values of these 
indicators occur in the north and the highest in the Indone-
sian coastal regions. Both indicators follow the geography 
of SEA, where the mountain regions show the lower values 
and plain lands show higher values. The mean changes in 
Bio-11 were similar to that for Bio-10, for both futures 
and SSPs.

For SSP2-4.5, the CI of the projected changes 
in Bio-10 was − 0.93‒3.60  °C for the near future, 
while − 0.2‒4.50 °C for the far future. On the other hand, 
the changes in CI of Bio-11 are − 0.84‒3.28 °C for the 
near future and − 0.05‒4.07 °C for the far future. There 

Fig. 5  Spatial distribution of 
changes in temperature season-
ality (Bio-4) for SSP2-4.5 and 
SSP5-8.5 in near and far futures 
along with their historical 
values
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are no differences in the near future projections between 
SSP5-8.5 and SSP2-4.5 for both indicators. However, 
in the far future, the CI of the projected changes are 
0.87‒6.04 °C for Bio-10 and 1.16‒5.45 °C for Bio-11, 
respectively. The greatest changes were projected in the 
north for all scenarios and future periods. It is observed 
that the increase in mean temperature of the coldest 
quarter is higher than the warmest quarter in all scenarios 
and future periods.

Limiting environment indicators

The SEA has a varied climate, and therefore, rainfall 
distribution varies considerably throughout the year. The 
rainfall for the three successive months was computed for 
each grid point to select the wettest and driest quarters. 
The mean temperature of the wettest quarter (Bio-8) and 

mean temperature of the driest quarter (Bio-9) during the 
historical period over SEA, along with two future scenarios 
(SSP2-4.5 and 5–8.5), are presented in Figs. 11 and 12, 
respectively. Both indicators have the same distribution 
pattern in the historical period. The lowest values are in 
the north of Myanmar, and the highest values are in the 
southern coastal regions.

The projected change in the mean and CI of Bio-8 are 
expected to be 1.04 °C (− 0.75 to 3.10 °C) for the near and 
1.76 °C (− 0.03 to 3.89 °C) for the far futures for SSP2-4.5. 
Those are for Bio-9 were 1.12 °C (− 0.94 to 3.68 °C) in 
the near and 1.95 °C (− 0.16 to 4.50 °C) in the far future. 
For SSP5-8.5, the changes in Bio-8 are expected to 1.21 °C 
(− 0.55 to 3.32  °C) in the near and 2.97  °C (− 1.11 to 
5.33 °C) in the far future, while 1.33 °C (− 0.72 to 3.87 °C) 
in the near and 3.22 °C (1.00 to 5.97 °C) in the far future 
for Bio-9. North Myanmar showed the highest uncertainty 

Fig. 6  Spatial distribution of 
changes in annual temperature 
range (Bio-7) for SSP2-4.5 and 
SSP5-8.5 in near and far futures 
along with their historical 
values
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in projections of these indicators for all SSPs and future 
periods. Both indicators showed similar spatial distribution 
in the changes.

Discussion

The present study assessed the existing spatial distribu-
tion of eleven thermal bioclimatic indicators in SEA and 
their projections for two SSPs. These eleven indicators 
are used to provide information on different thermal con-
ditions meaningfully related to the biology and ecology 
of SEA. The study revealed that the mean temperature 
(Bio-1) in SEA would increase between 1.08 and 1.86 °C 
for SSP2-4.5, which agrees with Supharatid et al. (2022). 
However, the projected rise in temperature in SEA would 
be much less than in many other regions (Alamgir et al. 

2019; Khan et al. 2020; Shiru et al. 2020; Hamed et al. 
2022b). This also agrees with the findings of O’Gorman 
and Schneider (2009) and Trewin (2014). The spatial dis-
tribution of the changes in different bio-climatic indica-
tors (Table 3) showed higher sensitivity of bio-climate 
to climate change in the north of SEA. All indicators are 
projected to increase in the north except DTR and iso-
thermality. The increase in the annual temperature range 
indicates that hot extremes will continue to increase in 
the north. Despite an increase in minimum temperature, 
the cold extreme may not diminish considerably. The spa-
tial distribution of Bio-4 indicates an increase in the east 
and north of SEA, while a decrease in the central and 
southwest regions, which is opposite to the annual mean 
temperature distribution. It means that temperature would 
become more variable in the region where it is low and 
more stable in the region where it is high. It means the 

Fig. 7  Spatial distribution of 
changes in diurnal maximum 
temperature in the warmest 
month (Bio-5) for SSP2-4.5 and 
SSP5-8.5 in near and far futures 
along with their historical 
values
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temperature variability would gradually decrease in the 
higher temperature region, which would make the region 
less prone to temperature extremes. The opposite would 
be noticed in the lower temperature region in the east 
and north.

The temperature isothermally (Bio-3) is projected to 
decrease by − 4 to − 16% in most SEA. The decrease will 
be higher in the east of SEA, which has a dense species 
distribution. The decrease in Bio-2 and Bio-3 would 
remarkable impact the niche of many species and public 
health (Ehbrecht et al. 2019). The effect of climate change 
on temperature seasonality was small (− 5 to 5%) for all 
scenarios. This would be due to an increase in both the 
annual temperature range and DTR. The relative increase 
of both indicators would keep the temperature seasonality 
constant throughout the century. The temperature in both 
the warmest and coldest months would increase in SEA. 

However, the increase would be more in the coldest month 
than in the warmest month. In contrast, the temperature 
increase in the warmest and coldest quarters would be more 
or less the same. The increase in the wettest quarter would 
be more than the driest quarter. This indicates a possible 
increase in both humidity and temperature in the wettest 
months, which may negatively affect human comfort. The 
increased temperature in the driest quarter might increase 
water stress and forest fire.

Two methods are generally employed to consider the 
shifts in the warmest/coldest month or quarter. They can 
be reselected for the future period or can be kept fixed 
based on the historical period (Bede-Fazekas and Somodi 
2020). The dynamic method guarantees the selection of 
the warmest/coldest month or quarter for both historical 
and future periods. However, it ignores the possible shift 
in seasonal temperature variability. In contrast, fixing the 

Fig. 8  Spatial distribution of 
changes in minimum tempera-
ture in the coldest month (Bio-
6) for SSP2-4.5 and SSP5-8.5 in 
near and far futures along with 
their historical values
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warmest/coldest month or quarter based on a historical 
period may breach the definition of the indicator for future 
periods. Bede-Fazekas and Somodi (2020) evaluated the 
relative performance of the two methods and suggested 
not to consider one superior to another. The present study 
adopted the second approach. It ignored possible climate 
shifts in the future. Therefore, the presented results of 
Bio-5 to Bio-11 should be interpreted with caution. In the 
future, studies can be conducted to assess the shifts in 
the warmest/coldest month/quarter for different SSPs and 
future periods to provide better insight and selection of 
the most appropriate method of calculating the changes 
in these indicators.

Identifying the climatic drivers of the geographical 
distribution of plants and animals, particularly the factors 
prompting changes in their spatial range over time, is vital 
for ecologists, biogeographers, and conservation biologists 

(Braby et al. 2014). Changes in global climate have affected 
ecology and the environment in many across the globe 
(Bede-Fazekas and Somodi 2020). Several studies reported 
the projected effect of climate change on different species 
in SEA using CMIP5 (Kolanowska and Konowalik 2014; 
Bernardes 2016; Tan et al. 2017; Setyawan et al. 2018). Tan 
et al. (2017) results showed severe implications, such as dis-
ruption, habitat loss, extinction, and migration of species 
in SEA. Setyawan et al. (2018) used 4 RCPs models from 
CMIP5 for the potential niche distribution of selaginellas. 
The dataset and maps of the spatial distribution of biocli-
matic indicators generated in this study would help deter-
mine the niche distribution for the present climate. Besides, 
the maps can be used to identify the occurrence location of 
different species.

Previous studies related to the projection of bioclimatic 
indicators are based on CMIP5 models and RCP scenarios 

Fig. 9  Spatial distribution of 
changes in mean temperature of 
the warmest quarter (Bio-10) for 
SSP2-4.5 and SSP5-8.5 in near 
and far futures along with their 
historical values
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(Phillips and Bonfils 2015; Navarro-Racines et al. 2019; 
Noce et al. 2020). Noce et al. (2020) calculated different 
global bioclimatic indicators at 0.5° by 0.5° resolution for 
historical periods and RCP4.5 and RCP8.5 scenarios. They 
disseminated projected data through an open portal but did 
not show the projections of global bioclimate. However, 
analysis of their data showed an increase in temperature 
in SEA, but less than the global average as found in our 
study. The CMIP6 GCMs have some advantages, including 
enhancement in model structure, spatial resolution, uncer-
tainty, and representing synoptic progressions (Eyring 
et al. 2016; Song et al. 2021; Su et al. 2021; Hamed et al. 
2022a, b). Therefore, it is vital to reassess the effects for 
new scenarios using CMIP6 to update the knowledge of 
climate change implications on species distribution and 
rationalize the adaptation strategies planned based on 
CMIP5 projections.

Uncertainties associated with GCMs hinder the reli-
able projection of extreme temperature (Pour et al. 2018; 
Shiru et  al. 2019, 2020). Generally, projection uncer-
tainties are minimized using GCMs ensemble, selected 
according to their ability to replicate the observed climate 
(Lutz et al. 2016; Salman et al. 2019, 2020; Khan et al. 
2020; Nashwan and Shahid 2020; Hamed et al. 2022c). 
The present study estimated the spatial distribution of the 
changes in thermal bioclimatic indicators at a 90% confi-
dence interval. The uncertainty in the changes can provide 
better insight into the possible wide range of changes in 
the bio-environment of SEA.

The SEA has experienced a rapid change in land use in 
recent decades. The areal coverage of tropical forests has 
been reduced unremarkably in the last five decades. The 
restoration of forests for carbon sequestration and as a clean 
development mechanism has been given priority in different 

Fig. 10  Spatial distribution of 
changes in mean temperature 
of coldest quarter (Bio-11) for 
SSP2-4.5 and SSP5-8.5 in near 
and far futures along with their 
historical values
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SEA countries to combat global warming. The spatial dis-
tribution of bioclimatic indicators and their projections can 
play a strong role in this regard (Booth 2004). It can be used 
to assess which species could be promoted for which region. 
For example, Pangahas, (2003) used bioclimatic indicators 
to demarcate the suitable lands for forest refurbishment in 
the Philippines.

Mitigating climate change impacts on building energy 
consumption is a major challenge. Wong et al. (2012) 
showed an increase in heat stress in SEA, and thus, 
a possible increase in energy use and higher carbon 
emissions. Thermal bioclimatic indicators can reliably 
provide an estimation of building energy use. Therefore, 
projected changes in thermal bioclimatic indicators can 
be used to assess the changes in future building energy 
consumption in SEA for different SSPs. Bioclimatic 
indicators can also be used to evaluate the performance 

of energy-efficient buildings under climate change 
scenarios to identify the suitable building design for 
different regions of SEA.

Thermal bioclimatic indicators are also directly linked 
to disease spread and public health. Several studies 
showed that high temperatures favored larval development 
leading to faster disease vector population growth. Studies 
also revealed that temperature is positively related to 
disease vector activity. The geographical distribution of 
the projections of thermal bioclimatic indicators can be 
used to evaluate the changes in the favorable condition 
of vector-borne diseases, and thus, their possible spread 
in different regions. It can also be used to assess how the 
newly emerged disease can spread over SEA. For example, 
Gao et al. (2020) used bioclimatic indicators to predict the 
high-risk zones of possible transmission of a sub-Saharan 
virus if spread over SEA.

Fig. 11  Spatial distribution of 
changes in mean temperature of 
the wettest quarter (Bio-8) for 
SSP2-4.5 and SSP5-8.5 in near 
and far futures along with their 
historical values
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Table 3  Summary of the spatial distribution of the changes in thermal bio-indicators

Indicator Changes

Increase Decrease

Annual indicators

   Bio-1 annual mean temperature All over SEA. The higher increase in the north -

   Bio-2 diurnal temperature range East, south, and central West and north

   Bio-3 isothermality Central and west East

   Bio-4 temperature variation in a year East, north, and northeast Central and southwest

   Bio-7 annual temperature range North All over SEA, except in the north

Seasonal temperature indicators

   Bio-5 maximum monthly temperature All over SEA. The higher increase in the north -

   Bio-6 minimum monthly temperature All over SEA. The higher increase in the north -

   Bio-10 mean temperature of the warmest quarter All over SEA. The higher increase in the north -

   Bio-11 mean temperature of the coldest quarter All over SEA. The higher increase in the north -

Limiting environment indicators

   Bio-8 mean temperature of the wettest quarter All over SEA, mostly at the same rate -

   Bio-9 mean temperature of the driest quarter All over SEA. The higher increase in the north -

Fig. 12  Spatial distribution of 
changes in mean temperature 
of the driest quarter (Bio-9) for 
SSP2-4.5 and SSP5-8.5 in near 
and far futures along with their 
historical values
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Conclusions

The present study assessed the geographical distribution 
of only 11 thermal bioclimatic indicators in SEA and their 
possible spatiotemporal variability in the future with asso-
ciated uncertainties. The future projections were limited 
to only medium and high (SSP2-4.5 and 5–8.5) emission 
scenarios. The mean MME and 90% confidence interval of 
the projections of 23 GCMs were used. The study revealed 
an increase in mean and seasonal temperatures over the 
entire SEA. However, the temperature would rise more in 
the warmest or wettest quarters compared to cold or dry 
quarters. This could cause an increase in the annual tem-
perature range. A decrease in diurnal temperature range 
and increase in annual temperature range may lead to a 
decrease in their ratio and, thus, isothermality. A decrease 
in seasonality at the same time may cause a shift in the 
climate pattern in some parts of SEA. Environmental and 
conservation scientists can use maps and information 
generated in this study to understand possible changes or 
shifts in biodiversity with regard to climate change. It can 
also be used by the governments of SEA for sustainable 
development planning. Future studies can be conducted to 
evaluate changes in other bioclimatic indicators related to 
rainfall and humidity. Other SSPs, such as SSP1-1.9, 1–2.6 
and 3–7.0, can also be used in the future. Besides, species’ 
sensitivity to the projected climate can be estimated to 
assess risk and potential migration over space.
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