Universiti Teknologi Malaysia Institutional Repository

Physical, mechanical, and morphological performances of arrowroot (Maranta arundinacea) fiber reinforced arrowroot starch biopolymer composites

Tarique, J. and Zainudin, E. S. and Salit, Mohd. Sapuan and Rushdan, Ahmad Ilyas and Khalina, A. (2022) Physical, mechanical, and morphological performances of arrowroot (Maranta arundinacea) fiber reinforced arrowroot starch biopolymer composites. Polymers, 14 (3). pp. 1-21. ISSN 2073-4360

[img] PDF
726kB

Official URL: http://dx.doi.org/10.3390/polym14030388

Abstract

This research is driven by stringent environmental legislation requiring the consumption and use of environmentally friendly materials. In this context, this paper is concerned with the development and characterization of thermoplastic arrowroot starch (TPAS) based biocomposite films by incorporating arrowroot fiber (AF) (0−10%) into a glycerol plasticized matrix by using the solution casting method. Developed TPAS/AF composite films were investigated, such as physical, morphological (FESEM), tensile, and tear strength characteristics. The tensile and tear strengths of TPAS/AF composites were increased significantly from 4.77 to 15.22 MPa and 0.87 to 1.28 MPa, respectively, as compared to the control TPAS films, which were 2.42 MPa and 0.83 MPa, respectively, while elongation was significantly decreased from 25.57 to 6.21% compared to control TPAS film, which was 46.62%. The findings revealed that after the fiber was reinforced, the mechanical properties were enhanced, and the optimum filler content was 10%. Regardless of fiber loadings, the results of water absorption testing revealed that the composite films immersed in seawater and rainwater absorbed more water than distilled water. Overall, the results of this research focus on providing information on biopolymer composite film and revealing the great potential it has for the food packaging industry.

Item Type:Article
Uncontrolled Keywords:arrowroot fibers, arrowroot starch, mechanical properties, morphological properties, physical properties, plasticizer
Subjects:Q Science > Q Science (General)
Divisions:Chemical and Energy Engineering
ID Code:103787
Deposited By: Yanti Mohd Shah
Deposited On:01 Dec 2023 01:41
Last Modified:01 Dec 2023 01:41

Repository Staff Only: item control page