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Abstract: In this paper, a unique approach based on electrical characteristics observed from measure-
ments of contaminated polymeric insulators was established to calculate the electric field distribution
over their surfaces. A case study using two different 33 kV polymeric insulator geometric profiles
was performed to highlight the benefits of the proposed modeling approach. The conductance of
the pollution layer was tested to establish a nonlinear field-dependent conductivity for pollution
modeling. The leakage current (LC) of the polluted insulator was measured in a laboratory under
clean and wet conditions. Then, using the finite element method (FEM), the electric field and current
density distributions along the insulator were computed. The results showed that the insulators
experienced an increase in the electric field (EF) magnitude ranging from 0.3 kV/cm to 3.6 kV/cm
for the insulator with similar sheds (type I) and 2.2–4.5 kV/cm for the insulator with alternating
sheds (big and small, type II) under the high rain condition with a flow rate of 9 L/h. Meanwhile, the
highest electric field under fog was 1.74 kV/cm for the insulator with similar sheds and 2.32 kV/cm
for an insulator with alternating sheds. Due to the larger diameter on the big shed and the longer
leakage distance on the insulator with alternating sheds, the EF on the insulator with alternating sheds
is higher than the EF on the insulator with similar sheds. The proposed modeling and simulation
provided a detailed field condition estimation around the insulators. This is critical for forecasting
the emergence of dry bands and the commencement of flashover on the surfaces of the insulators.

Keywords: polymer; polluted insulators; conductance; FEM; electric field; current density

1. Introduction

Polymeric insulators are a vital part of electrical power transmission and distribution
networks, with a single insulator failure potentially causing the entire power system to
collapse catastrophically. The insulators are constantly subjected to environmental contami-
nation, such as industrial wastes, chemicals, and natural pollutants. The contamination led
by the sea wind is deposited in the form of salt on the surface of the insulator in coastal
locations. Meanwhile, under industrialized environments, pollution is deposited in the
form of dust and ashes [1–3]. Once the pollutants over the surface of the insulator absorb
moisture, a conductive layer forms, allowing the leakage current (LC) to flow on the insula-
tor surface. Water vapours evaporate as a result of resistive heating due to system voltages,
resulting in the formation of dry bands (dry regions on the insulator surface). Electric
forces will be combined with the working voltage throughout the dry bands, resulting in
cracking and degradation in the insulator surface [4–6]. Under exaggerated conditions,
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arcs are created, extending over numerous dry bands, causing a full insulator breakdown
and power interruption.

Electric power companies increasingly use polymeric insulators for overhead trans-
mission and distribution lines. However, their long-term efficiency and dependability
are unknown because they have a shorter operational lifetime than traditional glass and
porcelain insulators [7]. To verify the performance of polymeric insulators, significant
research has been conducted using theoretical and experimental methodologies [8–11].
Many of them are concerned with calculating the electric field surrounding the insulators.
The study of the electric field provides an insight into pollution concerns, such as aging
and quick deterioration. Moreover, dry band formation prediction may be undertaken with
greater accuracy [12].

It is difficult to measure the voltage and distribution of electric field around real-
istic insulators, and it is significantly more difficult when the surface is contaminated.
The electrostatic probe [13–15] approach is prone to mistakes. However, they may be
reduced by employing sophisticated and advanced electric field sensing devices. Therefore,
numerical techniques are used to examine insulators’ surrounding electric fields. Compu-
tational approaches, such as the finite element method (FEM) [16,17], boundary element
method (BEM) [18], and the charge simulation approach, can be used [19]. Compared to
experimental work, which necessitates a complex setting and a lengthy testing time, the
computing approaches are more cost-effective. Furthermore, modern numerical tools can
solve complicated field models faster and precisely.

In the literature, when modeling outdoor insulators, researchers commonly assume
that the pollution layer has a single and linear conductivity [20–24]. In an actual scenario,
this presumption may not always be appropriate. The tangential component of the electric
field significantly impacts surface conductivity. The conductivity reduces with time when
humidity evaporates from the contaminated layer due to surface heating [25–29]. The
pollution layer’s drying impact will account for the electric field strength. Experimental
findings of low voltage layer conductance testing were used to derive the suggested
nonlinear electrical attribute.

The current study presents the experimental investigation of the current and conduc-
tance of polluted insulators based on the electric field under various applied voltages. In
addition, the modeling approach for the distribution of electric fields and current density
on insulator surfaces was performed using the FEM technique. Under a clean and wet
environment, a three-dimensional structure is adequately modeled, but due to the symme-
try of the insulator, the insulator was effectively described by a two-dimensional model
due to axisymmetry. In the testing of insulators, fog and rain were taken into account.
The insulator profile was also considered. Hence, two polymer insulators with different
architectures were used in this investigation. The FEM simulation of the pollution scenario,
useful in forecasting dry band development, was applied.

2. Experimental Work and Method
2.1. Insulators Structure

The geometries of the test insulators are illustrated in Figure 1. As illustrated in
Figure 1, the test samples employed in this study are two different types of 33 kV polymeric
insulators, named as type I and type II. The two insulator designs were utilized in the study
to explore insulator conductance and current. Insulator type I has a constant shed diameter
D, whereas insulator type II has alternating big and small sheds with diameters D and
d, respectively. Table 1 shows the essential electrical characteristics of the test specimens,
in which D and d are the large and small shed diameters, respectively, S is the distance
between the sheds, L represents the creepage distance, H is the insulator height, and L/H is
the creepage factor.



Polymers 2022, 14, 1236 3 of 24

Polymers 2022, 14, x FOR PEER REVIEW 3 of 26 
 

 

distance between the sheds, L represents the creepage distance, H is the insulator height, 
and L/H is the creepage factor. 

 
Figure 1. Geometries of type (I) and type (II) insulators, where insulator type (I) has a constant shed 
diameter D while insulator type (II) has alternating big and small sheds with diameters D and d, 
respectively. 

Table 1. Dimensions of type I and type II insulators. 

Parameter in 
(mm) 

D d S H L L/H 
No. of 
Sheds 

Type I 98 - 45 390 930 2.96 8 
Type II 130 90 41 410 1310 2.1 9 

2.2. Laboratory Setup and Test Producers 
The leakage current and layer conductance tests were carried out by utilizing a fog 

chamber test equipment. The laboratory test equipment includes a single-phase AC 
0.230/300-kV, 150-kVA, 50-Hz transformer that generates a voltage of up to 300 kV to en-
ergize the tested insulators, controlled from the control panel. The humidity in the test 
chamber was controlled using a fog generator. The flashover voltage of the insulator was 
measured using a capacitive divider. Simultaneously, a shunt resistor was used to meas-
ure the leakage current. The insulators were placed in the test chamber with walls made 
of 50 × 50 × 75 cm polycarbonate sheets. The data acquisition system (DAQ) was used to 
monitor the leakage current data. The data were sent from the DAQ to a personal com-
puter (PC), where they were stored as a comma-separated values (CSV) file and presented 
on a graphical user interface in LabVIEW software. The oscilloscope was also used to val-
idate the data from the DAQ. The insulator experimental circuit is shown in Figure 2. 
Figure 2 shows the connection of the test equipment. The tests were carried out under low 
voltage in accordance with the methods reported in the IEC 60,507 standard [30]. The in-
sulators were subjected to various levels of low voltages, namely, 500 V, 1 kV, 1.5 kV, 2 
kV, and 2.5 kV, for about 1 h at each voltage level. The wetting process began simultane-
ously as the electricity was turned on. In the meantime, the leakage current and conduct-
ance were measured. The wetting process ended when the pollutant layer achieved its 
maximum conductance value or when the pollution layer became saturated with water, 
with the leakage current measurement maintained. 

Figure 1. Geometries of type (I) and type (II) insulators, where insulator type (I) has a constant shed diam-
eter D while insulator type (II) has alternating big and small sheds with diameters D and d, respectively.

Table 1. Dimensions of type I and type II insulators.

Parameter in (mm) D d S H L L/H No. of Sheds

Type I 98 - 45 390 930 2.96 8

Type II 130 90 41 410 1310 2.1 9

2.2. Laboratory Setup and Test Producers

The leakage current and layer conductance tests were carried out by utilizing a fog
chamber test equipment. The laboratory test equipment includes a single-phase AC
0.230/300-kV, 150-kVA, 50-Hz transformer that generates a voltage of up to 300 kV to
energize the tested insulators, controlled from the control panel. The humidity in the test
chamber was controlled using a fog generator. The flashover voltage of the insulator was
measured using a capacitive divider. Simultaneously, a shunt resistor was used to measure
the leakage current. The insulators were placed in the test chamber with walls made of
50 × 50 × 75 cm polycarbonate sheets. The data acquisition system (DAQ) was used to
monitor the leakage current data. The data were sent from the DAQ to a personal computer
(PC), where they were stored as a comma-separated values (CSV) file and presented on a
graphical user interface in LabVIEW software. The oscilloscope was also used to validate
the data from the DAQ. The insulator experimental circuit is shown in Figure 2. Figure 2
shows the connection of the test equipment. The tests were carried out under low voltage in
accordance with the methods reported in the IEC 60,507 standard [30]. The insulators were
subjected to various levels of low voltages, namely, 500 V, 1 kV, 1.5 kV, 2 kV, and 2.5 kV, for
about 1 h at each voltage level. The wetting process began simultaneously as the electricity
was turned on. In the meantime, the leakage current and conductance were measured.
The wetting process ended when the pollutant layer achieved its maximum conductance
value or when the pollution layer became saturated with water, with the leakage current
measurement maintained.
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Figure 2. Experimental test setup consisting of (1) Transformer; (2)Test chamber; (3)Insulator sample;
(4) Capacitive divider; (5) Shunt resistor; (6) Fog generator; (7) Data acquisition system (DAQ);
(8) Oscilloscope; (9) Computer; (10) Control panel.

2.3. Pollution Preparation

In this work, a solid layer technique was utilized to pollute the test sample [31,32].
The contaminated solution was made by combining 40 g of kaolin in 1000 mg of distilled
water. To achieve the desired conductivity at 20 ◦C, sodium chloride (NaCl) was added
in accordance with the IEC 60,507 standard criteria for severe pollution. Before applying
contamination, the test insulators were carefully cleaned with detergent and water. The
contaminated layer was wetted on the surface of the insulator using the ‘flow on’ approach.
The polluted samples insulators were then left at room temperature for more than 7 h to dry
before testing. If pollution was not dispersed consistently throughout the sample surface,
the insulators were re-contaminated until the required level of uniformity was achieved.
A contaminated layer from the sheds was carefully removed and dissolved in 1000 mg
distilled water to test the electrical conductivity. It is worth noting that the pollution layer in
this test consists of two types of pollutants: (a) soluble pollutant, measured with equivalent
salt deposit density (ESDD), such as salt NaCl; (b) non-soluble pollutant, measured with
non-soluble deposit density (NSDD), such as kaolin, sand, etc. The electrical conductivity
of the solution was then measured with the Senso-Direct SN conductivity meter. Next, the
salinity and the equivalent salt deposit density (ESDD) was determined as [32]:

Sa = (5.7× σ20)
1.03 (1)

ESDD = (Sa ×V)/A (2)

where Sa, σ20, A, and V are pollution solution salinity in mg/cm3, pollution layer con-
ductivity at 20 ◦C in mS/cm, insulator surface area in cm2, and solution volume in cm3,
respectively. Moreover, 5.7 is the constant of variation of the power function for the rela-
tionship between salinity and conductivity at 20 ◦C [30]. Following the measurement of
the ESDD, the polluted water was filtered out, and the filter was dried and weighed. The
non-soluble deposit density (NSDD) was computed as follows:

NSDD = 103(w f − wi)/A (3)
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where wf is the weight of contaminated filter paper, wi is the weight of dry filter paper, and
A is the area of the insulator surface.

Before beginning the low voltage test, a leakage current measurement was done to
ensure the consistent pollution level on each test insulator. The insulator was applied
with a relatively modest voltage (2 kV), which was sufficient to create a quantifiable
leakage current. It was only used briefly to minimize surface heating and evaporation. The
measured conductance was used to determine the degree of insulator pollution within a
10% standard deviation error. If the standard deviation error on the conductance value
exceeded an acceptable range, the insulator was cleaned and contaminated again to achieve
the desired conductance level. The high standard deviation error value indicated that the
samples were not contaminated using the correct method or that there was an error in the
test procedure.

The conductance of the contaminated layer was calculated using the leakage current
readings from this experiment:

G =
I

VC
F (4)

where I, Vc, and F are the current, the critical voltage, and the form factor of the insulator,
respectively. Equation (5) is used to calculate the form factor F based on the insulator
structure [30]:

F =
∫ L

0

1
2πr(l)

dl (5)

where 2πr(l) is the insulator circumference at partial creepage distance l. L is the insulator
creepage distance.

2.4. Wetting Process

This study considers two climatic conditions: fog and rain. The artificial wetting
activity in the pollution test simulates the natural wetting process.

2.4.1. Fog

Tiny water droplets flowed sluggishly and randomly in a foggy wetting case with
a rate of 1.5 L/h. The wetness practically reached all insulator surfaces in any direction.
Consequently, the foggy wetting process on the insulator surface was assumed to be
uniform. It is worth mentioning that the contamination layer is deemed wetted and
saturated once it achieves the maximum value of surface conductivity. Accordingly, this
contamination layer will take time to moisturize.

2.4.2. Rain

The characteristics that control the development of dry bands are dissipated power
and wetting rate (the rate of moisture deposited on the surfaces of the insulators). Dry
bands occur when the drying rate is equal to or greater than the wetting rate. Dry bands
and surface discharges are often less serious when faced with severe rain. Rain might
wash away contaminants and re-wet the dry areas on the insulator surface, lowering the
likelihood of electrical discharges. However, when filthy insulators are exposed to drizzle
or light rain, problems occur.

Rain, unlike fog particles, falls at a variable rate. When the rate of rain increases, so
does the wetness of exposed surfaces. The flow rate is determined by the amount of water
that reaches the insulator surface per hour. In this investigation, the contaminated layer
was examined at three different flow rates: 9 L/h (high), 6 L/h (medium), and 3 L/h (low).
Regardless of the angle of rain flow, wetting is considered uniform throughout the whole
insulator surface in this situation. Therefore, the contaminated insulator was evenly wetted
using the spray method. Using the suggested wetting method, water distribution on the
surface of the insulator may be easily regulated without worrying about the washing effect
or the time required to achieve optimal conductivity.
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3. Experimental Results
3.1. Surface Conductance Assessment

Figure 3 shows the experimental outcomes of leakage conductance measurements on
the pollution layer of insulators (ESDD = 0.15 mg/cm2) for 50 min. It can be seen that the
relative error bar for all tests was less than 5%, indicating that the testing and polluting
methods used were satisfactory. According to these results, the highest conductance
conduction occurs when the insulators get saturated with water. After being wet with
water for more than 0.5 h, the pollution layer is exposed to a high moisture content,
imposing a maximum layer conductance. The maximum conductance value for insulator
type I was about 8.22 µS at 43.2 min and 8.59 µS for insulator type II after 48.1 min.
The maximum insulators values of conductance for five tests, average conductance, and
standard division were listed in Table 2. The insulator structure affects the speed of wetting,
and the conductance layer reached the maximum value faster in insulator type I. Figure 4
depicts the conductance fluctuation in the wet pollution layer (ESDD 0.15 mg/cm2) during
the test for water flow rates of 3 L/h, 6 L/h, and 9 L/h for both insulators. For example,
maximum conductance values in the insulator type I ranged between 10.2 and 11.22 µS for
flow rates ranging from 3 to 9 L/h. The graph indicates that the variation in conductance is
related to the water flow rates. Higher flow rates expedite wetting, and the conductivity
layer reaches its maximum value faster.
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Figure 3. Leakage conductance behavior for insulator type I and insulator type II with respect to
time, under fog and ESDD = 0.15 mg/cm2.

Table 2. Maximum values of conductance for five tests, average conductance, and standard deviation
of surface conductance when the insulators were saturated with water.

Test No.
Conductance

Standard Deviation
1 2 3 4 5 Average

Type I (µS) 8.758 8.477 8.661 8.637 8.358 8.59 0.15

Type II (µS) 8.25 8.154 8.198 8.26 8.283 8.22 0.052
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Figure 4. Surface conductance behavior of (a) insulator type I; (b) insulator type II under different
rain flow rates.

3.2. Leakage Current Results

The leakage current was recorded throughout the test, and the time-varying leakage
current curves are presented as in Figure 5. The leakage current test was performed under
five voltage levels, with ESDD of 0.15 mg/cm2 and fog wetting for 52 min. According
to Figure 5, the energizing voltage has a considerable impact on increasing the leakage
current during the pollutant wetting process on the insulator surface. With increasing
applied voltage, the time taken for the current to reach maximum point will decrease.
Using insulator type I as an example, the duration from the start of the wetting process to
the moment when the leakage currents are maximum is 53.2, 52.1, 39.6, 36.4, and 33.2 min
when the applied voltage is 500 V, 1 kV, 1.5 kV, 2 kV, and 2.5 kV, respectively. The reason for
this is the rapid response of the leakage current for the applied voltage under the wetting
process of the pollution layer.

The current flowing through the contamination layer steadily increases as wetting
continues. However, when wetting is stopped, the current decreases over time, as shown
in Figure 5. This is due to surface evaporation caused by Joule heating during the voltage’s
applied period. The sharp gradient of the leakage current after wetting stops, due to
energizing, indicates an accelerated evaporate state that aids in drying the wet contaminated
layer. The value of leakage current falls when the moisture degree in the contaminated
layer lowers, and there is not enough heat energy to affect a further drop. As a result, minor
fluctuations in leakage current are noticed over time. Because of the creation of dry bands
on the surface of the insulator, the surface conductivity rapidly decreases near the end.
Variations in the applied voltage observe the time required for this fast decline. Higher
voltages, which provide a higher temperature as predicted, take less time to generate a
dry band, whereas lower voltages require a longer period, as seen in Figure 5. When the
intermittent dry bands occur, there is a series of abrupt fluctuations in the leakage current,
especially at high levels of the voltage (1500 V, 2000 V, and 2500 V), indicating the existence
of intermittent conduction.

The leakage current values on different insulators under the same conditions are
significantly diverse. However, the following are some of the causes:

(1) The pollution layer’s surface conductance is related to the insulator’s geometrical
form factor as in Equation (10).

(2) The wetting time of the pollutant layer on various types of insulators varies. The
quickest to soak the pollutant layer is the type I insulator. In contrast, the wetting of
the pollutant layer on the type II insulator takes longer. The causes are also connected
to the construction of the insulators.
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Under wet pollution tests, the leakage current and applied voltages for low voltage
were also investigated. The results of leakage current and applied voltage waveform for
insulator type II as an example under clean, pollution with fog, and pollution with high
rain is shown in Figure 6. The waveforms were captured at the voltage energization point
(1500 V). Figure 6 depicts how the leakage current phase shift angle changes in relation to
the applied voltage when the insulator state changes from clean to polluted.
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Figure 6. Waveforms of applied voltage and leakage current for insulator type II under different
conditions: (a) Clean; (b) Polluted with fog wetting; (c) Polluted with rain wetting rate of 3 L/h.

The amount of leakage current is minimal under dry surface conditions, mostly
capacitive with a phase shift of 90◦. However, in wet conditions, both the phase shift and
the amount of the LC alter, as seen in Figure 6. The amplitude of the current increases
from 0.078 mA to 4.6 mA and 8.21 mA, respectively. Meanwhile, in high wet and pollution
circumstances, the phase difference between applied voltage and current was found to be
zero, indicating resistive current conduction.

3.3. Electric Field Dependent Pollution Layer Conductivity

The maximum value of surface conductance is projected to reduce when water evap-
orates from the contaminated layer owing to the Joule heating impact. According to
Equation (7), the amount of water evaporation is directly related to the electric field. As
a result, the conductivity value is minimum in the low electric field regions. The electric
field quickly reduces when it hits the breakdown threshold. The breakdown voltage was
obtained experimentally to be around 10 kV/cm. If the contamination layer exceeds this
point, it will be dry, placing a highly resistant zone on the insulator surface.

Nonetheless, in the low voltage layer conductance experiments, this requirement
needed to be determined and proven experimentally. The test results of the conductance of
the pollution layer have been used to represent the parameters of the contaminated layer in
the subsequent modeling work. For an insulator under energization voltage, the effective
overall electric field of the insulator can be determined using:

E =
V
L

(6)

where L is the creepage distance of the insulator. The variation in conductance values
recorded at two different periods gives the change in conductance, ∆GLC, for a conductive
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contamination layer on the surface of the insulator. ∆GLC reaches maximum conductance
level under wet surface circumstances during a whole wetting process, assuming negligible
conductance when the dry band occurs. However, the dry band requires some time to be
formed under wet pollution. Therefore, the rate of reduction in pollution layer conductance
is expressed by:

R∆G=
∆GLC

t
(7)

The rate of conductance reduction, R∆G, for both insulators as a function of the electric
field is shown in Figure 7. The figure shows that with a rise in the electric field, the rate
of the growth in the conductance change of the pollution layers is likewise linked to the
evaporation rate. The large amplitude of the electric field generates enough heat energy
to speed the drying process, resulting in a faster drop rate in surface conductance. For
comparison, the box plot of the conductance reduction rate R∆G for both insulators is
presented in Figure 7. It can be noted that the range of R∆G for insulator type I is greater
than the R∆G range for insulator type II. This situation suggests that the insulator with the
high distance between the sheds has a high R∆G range. The large amplitude of the electric
field generates enough heat energy to speed up the drying process, resulting in a faster
drop rate in surface conductance. The relationship between E-field and insulator surface
conductance was used for modeling and simulation. Surface conductivity is shown to have
an inverse relationship with an electric field. When the contaminated insulator is moist,
surface conductance is assumed to be greatest at 8.22 µS for insulator type I and 8.57 µS
for insulator type II. When an electric field is increased, the pollution layer conductance
is projected to drop by R∆G owing to evaporation. However, due to a lack of test data
at high energization voltage, the correlation at a high value of electric field could not be
inferred. When the sample is energized with a voltage of more than 2.5 kV, violent electrical
discharges occur, affecting the experimental data displayed on the oscilloscope. As a result,
the plot extrapolation approach predicts features over a wider range of electric fields.
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Figure 7. Rate of reduction in conductance for insulator type I and insulator type II as a function of
the electric field.

The log-log plot of insulators I and II experimental data, shown in Figures 8 and 9,
depicts the relationship between the pollution layer conductance and the electric field.
However, due to a lack of empirical data at higher voltage levels, electric fields greater
than 0.03 kV/cm could not be calculated. In this work, the breakdown thresholds were
found to be 9.8 kV/cm for insulator type I and 8.7 kV/cm for insulator type II when the
pollution layer conductance is minimal (0.001 µS). This mean that in the higher-electric
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field range (10 kV/cm), the surface conductivity is 0.001 S/m, indicating that the drying
process is complete.
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Figure 8. Relationship between the conductance and electric field for insulator type I.
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Figure 9. Relationship between the conductance and electric field for insulator type II.

It is noteworthy that, to produce Figures 8 and 9, a curve-fitting technique was used to
determine the electric field and conductance relationship through extrapolation. In the log-
log plot, the trend displays an exponential decay, and this relationship is approximated as:

G = xe−yE (8)

where G is pollution layer conductance in µS, E is electric field in kV/cm, and x and y are
constants estimated using the curve-fitting technique.

Figure 10 illustrates the surface conductivity graphs of contaminated layers under
fog and rain conditions for both type I and type II insulators. The rain flow rate to the
insulator surface is classified based on three levels of rain: high rain, medium rain, and
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low rain. As can be seen, the curves follow a similar overall pattern, with minor variations
in initial conductivity and field threshold. In the insulator I curve, for example, high rain
has the greatest surface conductivity of 8.22 µS/m because it is highly saturated with
water. On the other hand, the medium and low curves have somewhat small values of
conductivity of 6.54 µS/m and 5.36 µS/m, respectively, due to the medium and low rain
flow rate. Furthermore, the surface conductivity of insulators under Fog was determined
to be 4.32 µS/m for insulator I and 4.85 µS/m for insulator II. The threshold is the field
value at which the conductivity of the contaminated layer quickly declines. Places with
low wetting have lower field threshold values, implying that dry band development is
more likely in these areas. As a result, the pollution model for fog offered indicates the
lowest field threshold value, followed by low rain and medium rain with a moderate value.
Finally, the high rain flow is confronted with the highest field threshold value.
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Figure 10. Relationship between the surface conductance and electric field under different wetting
levels during a period of testing for (a) insulator type I; (b) insulator type II.

Referring to Equation (8), the value of the parameter x is related to the conductivity
values on the surfaces of insulators. In contrast, the parameter g is related to the electric field
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threshold values. It can be observed that when the conductance value increases, so do the x
value. In contrast, when the electric field threshold value increases, the y value decreases.
Table 3 lists the values of x and y for the tested insulators under different conditions.

Table 3. The values of the fitting function parameters x and y under different wetting conditions.

Insulator Wetting x y Threshold Field

Type I

Fog 4.58 1.234 4.76
Low rain 5.87 1.063 4.98

Medium rain 6.92 0.953 6.42
High rain 8.43 0.914 8.71

Type II

Fog 4.92 1.185 3.93
Low rain 6.21 0.975 5.42

Medium rain 7.71 0.938 6.83
High rain 9.24 0.884 9.86

4. Modeling of the Polymeric Outdoor Insulators

COMSOL Multiphysics software [33] was used to model 33-kV polymeric insulators
with and without a contamination layer using the finite element model (FEM). The effect of
conductivity on the electric field and current density distribution has been considered in the
model. In addition, the quasi-static electric field was employed for numerical analysis [34].
The modeling procedures involve designing the insulator’s geometry, specifying the char-
acteristics of the materials in the insulator sections, implementing the boundary conditions
(electrical potentials), providing 33-kV for the HV end and ground (zero voltage) for the
other end, and applying the mesh for the model. The modeling process using FEM is shown
in Figure 11. The FEM approach is divided into a series of steps, beginning with design
and progressing to the application of material properties, followed by the application of
physics properties. The mesh is applied to the design prior to performing the simulation.
The findings of the simulation may be extracted once the simulation is completed.
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4.1. Properties of Insulator Material

Relative permittivity and conductivity are the main electrical features of the insulator
materials examined in this work for simulating the electric field and current density. The
insulator structure is shown in Figure 12 and the material properties of the insulator are
summarized in Table 4. The polymeric insulator, as illustrated in Figure 12, is made up of a
steel fitting on both ends and a fibre reinforced plastic (FRP) core as a load bearing structure,
with silicone rubber being utilized as sheds due to its hydrophobic characteristics.

In this study, the permittivity and conductivity values of the air, silicon rubber, FRP
core, and steel listed in Table 4 were used. The pollution layer conductivity is defined as a
function of an electric field, p = f (Es), which is obtained from the fit in Section 3. When the
pollution is in its conductive form the relative permittivity is set at 81, water is the major
substance for conductance. Contamination deposition on transmission line insulators
is often uneven and heavily influenced by the type and location of the insulator. The
pollution in this study is assumed to be homogeneous at a thickness of 0.5 mm throughout
the insulator surface to minimize modeling difficulty.
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Table 4. Material properties of insulator model.

Materials Relative Electrical Permittivity, εr Conductivity, σ (S/m)

Air 1 10−13

Silicone rubber 4.3 10−12

FRP core 7.2 10−14

Steel [35] 1 11 × 105

4.2. Electrical Characteristics Calculation Using FEM

To simulate the insulator, an axisymmetric model was used, taking into account
the axial symmetry of the insulator. Before calculating the electrical characteristics, the
insulators models have meshed. A normal element size with a triangular shape was used
in the meshing procedure. Figure 13 demonstrates type I and type II polymeric insulators
after meshing under clean and polluted conditions. The mesh properties and a number of
degrees of freedom (DOF) solved for each insulator under clean and pollution conditions
were listed in table Appendix A (Table A1). A noteworthy aspect of meshing is that the
elements were small in size in sharp or curvature areas. The simulation was conducted
after meshing, and the insulators’ electrical characteristics, namely potential V, electric field
E, and current density J, were obtained. We solved the Laplace equation in the geometry
of Figure 12. On each of the boundaries between two materials, we used the electrostatic
boundary condition that the normal component of the displacement field is continuous,
using the dielectric properties from Table 4.

During the simulation procedure, the following basic equations were utilized in
COMSOL software to calculate the electric field:

→
E = −

→
∇V (9)

where E and V represent the electric field and electric potential, respectively. The leakage
current density J was then determined as a function of conductivity as [36]:

→
J = σ

→
E (10)

where σ is the pollution layer conductivity. The current density varies with insulator shape,
with the greatest current density occurring at shank sections where the circular surface is
mainly minor. Increased power dissipation is caused by a rise in electric field and current
density that becomes the source of warming and dry band formation.
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5. Simulation Results and Discussion
5.1. Electric Field Distribution

The distribution of the electric field along the surface of the polymeric insulators
was investigated and calculated. Wet contaminated surfaces were simulated using exper-
imentally observed conductivity. The electric field, current density, and pollution layer
conductance are the most common modeling parameters observed in the majority of pub-
lished research [37]. However, the influences of the wetting and drying processes are not
taken into consideration in most of these studies. The results of the simulation were used as
a control and a comparison. Figures 14 and 15 depict the modeling results of insulators for
the electric field distribution, contour, and electric field arrows of the surface under clear,
fog, and high rain conditions. As shown in Figures 14 and 15, the electric field weakens in
polluted parts under fog circumstances compared to non-polluted regions. If the wetting
(rain) increases, the variance in conductivity induces interfacial polarization. It drives
charge building at the pollution border, leading to an electric field with a high value on
both sides of the pollution region. According to Figures 14b and 15b, it can be seen that
the electric field arrow comes out of the positive electrode (which is positively charged)
and moves towards the negative electrode (negatively charged). In addition, under heavy
rain circumstances, increasing the intensity arrows of the electric field indicates a rise in
charge flow, which ultimately raises the field’s strength. It is noteworthy that there is no
appreciable variation of the numerical results if the closed geometries of the models are
made larger than the ones used in the current simulation.
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Figures 16 and 17 demonstrate the electric field distribution under fog and rain in
comparison to the clean state for insulator type I and insulator type II, respectively. The
contamination models, as shown in Figures 18 and 19, are distinguished by nonlinear
field-dependent conductivity. There is a little variance between the field profiles. The
insulators under the Fog and rain face the increase in an electric field. When insulator type
I was exposed to wetness, the electric field increased along the insulator. It is worth noting
that the electric field has been considerably increased in the shed’s region, particularly near
terminals. When the insulator was exposed to fog and rain, the electric field rose from
0.3 kV/cm to 1.74 kV/cm and 3.68 kV/cm, respectively. In insulator II, the terminals are
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subjected to field stress increases ranging from 2.2 kV/cm to 4.5 kV/cm, resulting in a
104% raising in the field. In shank areas, there is also an increase in the electric field of
roughly 23%. Referring to Figure 14 the insulator surface conductivity is high in the high
rain condition. The rise in the electric field, particularly under heavy rain, is caused by an
increase in surface conductivity [38]. This explains the obtained high value of the electric
field under high rain conditions in Figures 16 and 17.

These variations are caused by a decrease in surface conductivity upon exceeding the
drying threshold in higher field locations. In this simulation, the pollution model produces
a field distribution with a succession of peaks at various positions on the polymeric surface.
It has been discovered that the field expands also on the sheds and most wetted surfaces.
Similarly, a considerable field increase is seen in the shed regions, suggesting a sensitive
location to electric discharge operations. On the other hand, the shed surfaces, which
are characterized by significant wetness and include the one nearest to the HV terminal,
indicate a beneficial shift in the electric field. This might be owing to the areas that are
subjected to significant wetting activity. Dry bands and electrical discharges are widely
detected on the shank areas in most experimental investigations, and they match well with
the modeling results of this study. With the increase of the pollution layer conductivity, the
increase in the electric field intensity is more noticeable.

In comparison between the electric field (EF) results of tested insulators, the EF on the
insulator type II is higher than on type I due to the larger diameter of the extremely large
shed on the insulator type II, which resulted in the formation of the dry bands with large
areas. In addition, the insulator type II’s larger leakage distance has an influence on the
EF increase.
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5.2. Current Dencity Distribution

The distribution of current density on the insulator surface with different electrical
conductivities is critical. Therefore, the current density distribution and its arrow direction
along insulators’ surfaces were simulated. The simulation was carried out in 3D geometrical
representations as shown in Figures 18a and 19a. It can be seen that the high current density
areas are mostly located in the cross of the sheds and the insulator’s shanks and around
the electrodes because the high current density is often formed in those areas where the
insulator diameter is the smallest. Figures 18b and 19b show the distribution of current
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density along the insulator under the clean and contamination with fog and rain. The
results indicate that the current density has a maximum value on the polluted insulator with
rain wetting for both insulators. The pollution layer conductance values were 8.22 µS and
11.23 µS, respectively, when the insulator was exposed to fog and heavy rain as mentioned
in Section 4.1. The relationship between the pollution layer conductance and current density
for both insulators is presented in Figure 20. As shown in Figure 20, by increasing the
conductance of the pollution layer, the current density increases significantly. For high
conductance, the increasing rate of the current density becomes minor.
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Figure 20. Relationship between current density and conductance of insulator type I and insulator
type II.

To determine the leakage current using the FEM model, the current density was
integrated over the surface of the insulator. Then, the leakage current results obtained
from the FEM model were compared with the experimental findings. Figure 21 depicts
the relationship between the leakage current of the insulator and the contamination layer
conductance obtained from experiments in Figure 6 and simulation. As can be observed,
there is an error in the leakage current simulation on the insulator’s surface compared to
experimental results. However, the error is still reasonable and reflects the FEM model’s
strong performance in simulating the leakage current.
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type II.
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6. Conclusions

The development of a nonlinear pollution model has been performed to estimate the
electric field distribution along the insulators. A contaminated layer conductance test was
carried out on two insulators with different profiles to generate the relationship between the
surface conductance and electric field. Under uniform wetting, the observed breakdown
voltage threshold for both insulators was not greater than 10 kV/cm. The extrapolation
plot of the surface conductance curve was used to extract the electrical characteristics of
the pollutant to be utilized in FEM modeling. The wetting and drying are considered and
characterized using simplified assumptions to define pollution under fog and three flow
rates of rain conditions. The proposed model indicated a distribution of both electric field
and current density with a sequence of peaks on the surface of the polymeric insulators. Due
to applied rain wetting on the insulators, the terminals experienced local stress increases
ranging from 0.3 kV/cm to 3.6 kV/cm for insulator type I and 2.2 kV/cm to 4.5 kV/cm
for insulator type II. Minor increases in the electric field were also detected in the shanks
of the insulators, owing mostly to a decrease in electric conductivity on the surface upon
exceeding the drying threshold at the regions with the higher fields. Similarly, the current
density has the maximum value around the electrodes and the cross of sheds with shanks.
The findings of the experiment and simulation revealed that the insulator profile had an
influence on the electrical properties.
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Appendix A

Table A1. Simulation parameters of insulators mesh.

Insulator Type
Elements Types Minimum Elements

Quality
DOF

Triangle Edge Vertex

Type I clean 16,740 905 134 0.4662 33,551
Type I polluted 36,424 3190 236 0.4068 72,903

Type II clean 22,235 1290 166 0.4902 76,284
Type II polluted 43,853 4202 260 0.3608 87,774
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